Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo
- PMID:23522048
- DOI: 10.1016/j.neuron.2013.01.031
Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo
Abstract
Corticothalamic slow oscillations of neuronal activity determine internal brain states. At least in the cortex, the electrical activity is associated with large neuronal Ca(2+) transients. Here we implemented an optogenetic approach to explore causal features of the generation of slow oscillation-associated Ca(2+) waves in the in vivo mouse brain. We demonstrate that brief optogenetic stimulation (3-20 ms) of a local group of layer 5 cortical neurons is sufficient for the induction of global brain Ca(2+) waves. These Ca(2+) waves are evoked in an all-or-none manner, exhibit refractoriness during repetitive stimulation, and propagate over long distances. By local optogenetic stimulation, we demonstrate that evoked Ca(2+) waves initially invade the cortex, followed by a secondary recruitment of the thalamus. Together, our results establish that synchronous activity in a small cluster of layer 5 cortical neurons can initiate a global neuronal wave of activity suited for long-range corticothalamic integration.
Copyright © 2013 Elsevier Inc. All rights reserved.
Comment in
- Generating waves in corticothalamocortical networks.Wester JC, Contreras D.Wester JC, et al.Neuron. 2013 Mar 20;77(6):995-7. doi: 10.1016/j.neuron.2013.03.002.Neuron. 2013.PMID:23522035
Similar articles
- Synchrony in the interconnected circuitry of the thalamus and cerebral cortex.Jones EG.Jones EG.Ann N Y Acad Sci. 2009 Mar;1157:10-23. doi: 10.1111/j.1749-6632.2009.04534.x.Ann N Y Acad Sci. 2009.PMID:19351352Review.
- Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex.Conhaim J, Cedarbaum ER, Barahimi M, Moore JG, Becker MI, Gleiss H, Kohl C, Moody WJ.Conhaim J, et al.Dev Neurobiol. 2010 Sep;70(10):679-92. doi: 10.1002/dneu.20797.Dev Neurobiol. 2010.PMID:20506182
- Modeling sleep and wakefulness in the thalamocortical system.Hill S, Tononi G.Hill S, et al.J Neurophysiol. 2005 Mar;93(3):1671-98. doi: 10.1152/jn.00915.2004. Epub 2004 Nov 10.J Neurophysiol. 2005.PMID:15537811
- Complementary Ca2+ Activity of Sensory Activated and Suppressed Layer 6 Corticothalamic Neurons Reflects Behavioral State.Augustinaite S, Kuhn B.Augustinaite S, et al.Curr Biol. 2020 Oct 19;30(20):3945-3960.e5. doi: 10.1016/j.cub.2020.07.069. Epub 2020 Aug 20.Curr Biol. 2020.PMID:32822605
- Coalescence of sleep rhythms and their chronology in corticothalamic networks.Steriade M, Amzica F.Steriade M, et al.Sleep Res Online. 1998;1(1):1-10.Sleep Res Online. 1998.PMID:11382851Review.
Cited by
- Lag threads organize the brain's intrinsic activity.Mitra A, Snyder AZ, Blazey T, Raichle ME.Mitra A, et al.Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2235-44. doi: 10.1073/pnas.1503960112. Epub 2015 Mar 30.Proc Natl Acad Sci U S A. 2015.PMID:25825720Free PMC article.Clinical Trial.
- Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus.Patton AP, Chesham JE, Hastings MH.Patton AP, et al.J Neurosci. 2016 Sep 7;36(36):9326-41. doi: 10.1523/JNEUROSCI.0958-16.2016.J Neurosci. 2016.PMID:27605609Free PMC article.
- Cortical circuits modulate mouse social vocalizations.Gan-Or B, London M.Gan-Or B, et al.Sci Adv. 2023 Sep 29;9(39):eade6992. doi: 10.1126/sciadv.ade6992. Epub 2023 Sep 29.Sci Adv. 2023.PMID:37774030Free PMC article.
- Low frequency visual stimulation enhances slow wave activity without disrupting the sleep pattern in mice.Thankachan S, Yang C, Kastanenka KV, Bacskai BJ, Gerashchenko D.Thankachan S, et al.Sci Rep. 2022 Jul 19;12(1):12278. doi: 10.1038/s41598-022-16478-8.Sci Rep. 2022.PMID:35853986Free PMC article.
- Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.Schmid F, Wachsmuth L, Schwalm M, Prouvot PH, Jubal ER, Fois C, Pramanik G, Zimmer C, Faber C, Stroh A.Schmid F, et al.J Cereb Blood Flow Metab. 2016 Nov;36(11):1885-1900. doi: 10.1177/0271678X15619428. Epub 2015 Nov 30.J Cereb Blood Flow Metab. 2016.PMID:26661247Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous