Stxbp4 regulates DeltaNp63 stability by suppression of RACK1-dependent degradation
- PMID:19451233
- PMCID: PMC2704755
- DOI: 10.1128/MCB.00449-09
Stxbp4 regulates DeltaNp63 stability by suppression of RACK1-dependent degradation
Abstract
p63, a member of the p53 tumor suppressor family, is essential for the development of epidermis as well as other stratified epithelia. Collective evidence indicates that DeltaNp63 proteins, the N-terminally deleted versions of p63, are essential for the proliferation and survival of stratified epithelial cells and squamous cell carcinoma cells. But in response to DNA damage, DeltaNp63 proteins are quickly downregulated in part through protein degradation. To elucidate the mechanisms by which DeltaNp63 proteins are maintained at relatively high levels in proliferating cells but destabilized in response to stress, we sought to identify p63 interactive proteins that regulate p63 stability. We found that Stxbp4 and RACK1, two scaffold proteins, play central roles in balancing DeltaNp63 protein levels. While Stxbp4 functions to stabilize DeltaNp63 proteins, RACK1 targets DeltaNp63 for degradation. Under normal growth conditions, Stxbp4 is indispensable for maintaining high basal levels of DeltaNp63 and preventing RACK1-mediated p63 degradation. Upon genotoxic stress, however, Stxbp4 itself is downregulated, correlating with DeltaNp63 destabilization mediated in part by RACK1. Taken together, we have delineated key mechanisms that regulate DeltaNp63 protein stability in vivo.
Figures








Similar articles
- RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage.Fomenkov A, Zangen R, Huang YP, Osada M, Guo Z, Fomenkov T, Trink B, Sidransky D, Ratovitski EA.Fomenkov A, et al.Cell Cycle. 2004 Oct;3(10):1285-95. doi: 10.4161/cc.3.10.1155. Epub 2004 Oct 6.Cell Cycle. 2004.PMID:15467455
- STXBP4 regulates APC/C-mediated p63 turnover and drives squamous cell carcinogenesis.Rokudai S, Li Y, Otaka Y, Fujieda M, Owens DM, Christiano AM, Nishiyama M, Prives C.Rokudai S, et al.Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4806-E4814. doi: 10.1073/pnas.1718546115. Epub 2018 May 7.Proc Natl Acad Sci U S A. 2018.PMID:29735662Free PMC article.
- Itch/AIP4 associates with and promotes p63 protein degradation.Rossi M, De Simone M, Pollice A, Santoro R, La Mantia G, Guerrini L, Calabrò V.Rossi M, et al.Cell Cycle. 2006 Aug;5(16):1816-22. doi: 10.4161/cc.5.16.2861. Epub 2006 Aug 15.Cell Cycle. 2006.PMID:16861923
- RACK1 vs. HSP90: competition for HIF-1 alpha degradation vs. stabilization.Liu YV, Semenza GL.Liu YV, et al.Cell Cycle. 2007 Mar 15;6(6):656-9. doi: 10.4161/cc.6.6.3981. Epub 2007 Mar 7.Cell Cycle. 2007.PMID:17361105Review.
- TAp63 and DeltaNp63 in cancer and epidermal development.Candi E, Dinsdale D, Rufini A, Salomoni P, Knight RA, Mueller M, Krammer PH, Melino G.Candi E, et al.Cell Cycle. 2007 Feb 1;6(3):274-85. doi: 10.4161/cc.6.3.3797. Epub 2007 Feb 3.Cell Cycle. 2007.PMID:17264681Review.
Cited by
- Pirh2 E3 ubiquitin ligase modulates keratinocyte differentiation through p63.Jung YS, Qian Y, Yan W, Chen X.Jung YS, et al.J Invest Dermatol. 2013 May;133(5):1178-87. doi: 10.1038/jid.2012.466. Epub 2012 Dec 13.J Invest Dermatol. 2013.PMID:23235527Free PMC article.
- RAB40C regulates RACK1 stability via the ubiquitin-proteasome system.Day JP, Whiteley E, Freeley M, Long A, Malacrida B, Kiely P, Baillie GS.Day JP, et al.Future Sci OA. 2018 Jul 2;4(7):FSO317. doi: 10.4155/fsoa-2018-0022. eCollection 2018 Jul.Future Sci OA. 2018.PMID:30112187Free PMC article.
- The Mechanism of Long Non-coding RNA in Cancer Radioresistance/Radiosensitivity: A Systematic Review.Wu W, Zhang S, He J.Wu W, et al.Front Pharmacol. 2022 May 5;13:879704. doi: 10.3389/fphar.2022.879704. eCollection 2022.Front Pharmacol. 2022.PMID:35600868Free PMC article.Review.
- Rack1 is required for Vangl2 membrane localization and planar cell polarity signaling while attenuating canonical Wnt activity.Li S, Esterberg R, Lachance V, Ren D, Radde-Gallwitz K, Chi F, Parent JL, Fritz A, Chen P.Li S, et al.Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2264-9. doi: 10.1073/pnas.1013170108. Epub 2011 Jan 24.Proc Natl Acad Sci U S A. 2011.PMID:21262816Free PMC article.
- A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma.Ory B, Ramsey MR, Wilson C, Vadysirisack DD, Forster N, Rocco JW, Rothenberg SM, Ellisen LW.Ory B, et al.J Clin Invest. 2011 Feb;121(2):809-20. doi: 10.1172/JCI43897.J Clin Invest. 2011.PMID:21293058Free PMC article.
References
- Barbieri, C. E., C. E. Barton, and J. A. Pietenpol. 2003. ΔNp63α expression is regulated by the phosphoinositide 3-kinase pathway. J. Biol. Chem. 27851408-51414. - PubMed
- Barbieri, C. E., C. A. Perez, K. N. Johnson, K. A. Ely, D. Billheimer, and J. A. Pietenpol. 2005. IGFBP-3 is a direct target of transcriptional regulation by ΔNp63α in squamous epithelium. Cancer Res. 652314-2320. - PubMed
- Blanpain, C., and E. Fuchs. 2007. p63: revving up epithelial stem-cell potential. Nat. Cell Biol. 9731-733. - PubMed
- Candi, E., A. Rufini, A. Terrinoni, D. Dinsdale, M. Ranalli, A. Paradisi, V. De Laurenzi, L. G. Spagnoli, M. V. Catani, S. Ramadan, R. A. Knight, and G. Melino. 2006. Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ. 131037-1047. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous