PLINK: a tool set for whole-genome association and population-based linkage analyses
- PMID:17701901
- PMCID: PMC1950838
- DOI: 10.1086/519795
PLINK: a tool set for whole-genome association and population-based linkage analyses
Abstract
Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
Figures




Similar articles
- PLINK: Key Functions for Data Analysis.Slifer SH.Slifer SH.Curr Protoc Hum Genet. 2018 Apr;97(1):e59. doi: 10.1002/cphg.59.Curr Protoc Hum Genet. 2018.PMID:30040203
- Inference of relationships in population data using identity-by-descent and identity-by-state.Stevens EL, Heckenberg G, Roberson ED, Baugher JD, Downey TJ, Pevsner J.Stevens EL, et al.PLoS Genet. 2011 Sep;7(9):e1002287. doi: 10.1371/journal.pgen.1002287. Epub 2011 Sep 22.PLoS Genet. 2011.PMID:21966277Free PMC article.
- Second-generation PLINK: rising to the challenge of larger and richer datasets.Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ.Chang CC, et al.Gigascience. 2015 Feb 25;4:7. doi: 10.1186/s13742-015-0047-8. eCollection 2015.Gigascience. 2015.PMID:25722852Free PMC article.
- Application of genome-wide SNP data for uncovering pairwise relationships and quantitative trait loci.Sham PC, Cherny SS, Purcell S.Sham PC, et al.Genetica. 2009 Jun;136(2):237-43. doi: 10.1007/s10709-008-9349-4. Epub 2009 Jan 7.Genetica. 2009.PMID:19127410Review.
- Linkage analysis and the study of Mendelian disease in the era of whole exome and genome sequencing.Teare MD, Santibañez Koref MF.Teare MD, et al.Brief Funct Genomics. 2014 Sep;13(5):378-83. doi: 10.1093/bfgp/elu024. Epub 2014 Jul 14.Brief Funct Genomics. 2014.PMID:25024279Review.
Cited by
- Integrating Multimodal Neuroimaging and Genetics: A Structurally-Linked Sparse Canonical Correlation Analysis Approach.Chung J, Kim S, Won JH, Park H.Chung J, et al.IEEE J Transl Eng Health Med. 2024 Sep 19;12:659-667. doi: 10.1109/JTEHM.2024.3463720. eCollection 2024.IEEE J Transl Eng Health Med. 2024.PMID:39464624Free PMC article.
- Parameter Estimation of Host Genomic and Gut Microbiota Contribution to Growth and Feed Efficiency Traits in Meat Rabbits.Tian X, Zhou J, Qin Y, Zhang K, Sun W, Lai SJ, Jia X, Chen SY.Tian X, et al.Microorganisms. 2024 Oct 19;12(10):2091. doi: 10.3390/microorganisms12102091.Microorganisms. 2024.PMID:39458400Free PMC article.
- On the origin and diversification of Podolian cattle breeds: testing scenarios of European colonization using genome-wide SNP data.Senczuk G, Mastrangelo S, Ajmone-Marsan P, Becskei Z, Colangelo P, Colli L, Ferretti L, Karsli T, Lancioni H, Lasagna E, Marletta D, Persichilli C, Portolano B, Sarti FM, Ciani E, Pilla F.Senczuk G, et al.Genet Sel Evol. 2021 Jun 2;53(1):48. doi: 10.1186/s12711-021-00639-w.Genet Sel Evol. 2021.PMID:34078254Free PMC article.
- The catechol-O-methyltransferase gene (COMT) and cognitive function from childhood through adolescence.Gaysina D, Xu MK, Barnett JH, Croudace TJ, Wong A, Richards M, Jones PB; LHA genetics group.Gaysina D, et al.Biol Psychol. 2013 Feb;92(2):359-64. doi: 10.1016/j.biopsycho.2012.11.007. Epub 2012 Nov 21.Biol Psychol. 2013.PMID:23178897Free PMC article.
- Genetic risk factors affecting mitochondrial function are associated with kidney disease in people with Type 1 diabetes.Swan EJ, Salem RM, Sandholm N, Tarnow L, Rossing P, Lajer M, Groop PH, Maxwell AP, McKnight AJ; GENIE Consortium.Swan EJ, et al.Diabet Med. 2015 Aug;32(8):1104-9. doi: 10.1111/dme.12763. Epub 2015 Apr 13.Diabet Med. 2015.PMID:25819010Free PMC article.
References
Web Resources
- Haploview,http://www.broad.mit.edu/mpg/haploview/
- HapMap,http://www.hapmap.org/
- PLINK and gPLINK,http://pngu.mgh.harvard.edu/purcell/plink/
- Queue portal at the Coriell Institute,https://queue.coriell.org/q/
References
- Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61 - PubMed
Publication types
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials