Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
NCBI home page
Search in PMCSearch
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more:PMC Disclaimer | PMC Copyright Notice
Proceedings of the National Academy of Sciences of the United States of America logo

The nested assembly of plant–animal mutualistic networks

Jordi Bascompte†,,Pedro Jordano,Carlos J Melián,Jens M Olesen§
Integrative Ecology Group, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Apartado 1056, E-41080 Sevilla, Spain; and§Department of Ecology and Genetics, University of Aarhus, Ny Munkegade, Building 540, DK-8000 Aarhus, Denmark

To whom correspondence should be addressed. E-mail:bascompte@ebd.csic.es.

Communicated by Mary Arroyo, Universidad de Chile, Santiago, Chile, June 11, 2003

Received 2002 Dec 18; Issue date 2003 Aug 5.

Copyright © 2003, The National Academy of Sciences
PMCID: PMC170927  PMID:12881488

Abstract

Most studies of plant–animal mutualisms involve a small number of species. There is almost no information on the structural organization of species-rich mutualistic networks despite its potential importance for the maintenance of diversity. Here we analyze 52 mutualistic networks and show that they are highly nested; that is, the more specialist species interact only with proper subsets of those species interacting with the more generalists. This assembly pattern generates highly asymmetrical interactions and organizes the community cohesively around a central core of interactions. Thus, mutualistic networks are neither randomly assembled nor organized in compartments arising from tight, parallel specialization. Furthermore, nestedness increases with the complexity (number of interactions) of the network: for a given number of species, communities with more interactions are significantly more nested. Our results indicate a nonrandom pattern of community organization that may be relevant for our understanding of the organization and persistence of biodiversity.


Studies of plant–animal mutualisms have traditionally focused on highly specific interactions among a few species, such as a plant and its pollinators or seed dispersers (1,2). On the other hand, some systems seem to involve a much larger number of species, and some authors have used the term “diffuse coevolution” to describe the coevolutionary process in such communities (35). The approach of diffuse coevolution, however, has not provided any insight on the structural organization of species-rich communities (6), yet this is a fundamental property to understand coevolution in these species-rich assemblages.

Mutualistic networks can be depicted by a matrix of plant species in rows and animal species in columns (ref.7;Fig. 1). An elementaij of such a matrix is 1 if planti and animalj interact, and zero otherwise. In a perfectly nested matrix (8), each species would interact only with proper subsets of those species interacting with the more generalist species (Fig. 1a). On the other hand, a mutualistic network would be assembled randomly if each plant (animal) species interacts with a random set of the total pool of animals (plants) (Fig. 1b). Nestedness entails a nonrandom pattern of structure beyond the topological pattern of connectedness frequently assessed in networks of ecological interactions (911).

Fig. 1.

Fig. 1.

Plant–animal mutualistic interaction matrices. Numbers label plant and animal species, which are ranked in decreasing number of interactions per species. A filled square indicates an observed interaction between planti and animalj.ac correspond to perfectly nested, random, and real mutualistic matrices [plant–pollinator network of Zackenberg (J.M.O. and H. Elberling, unpublished work)], respectively. Values of nestedness areN = 1(a),N = 0.55 (b), andN = 0.742 (P < 0.01) (c). The box outlined ina represents the central core of the network, and the line inc represents the isocline of perfect nestedness. On a perfectly nested scenario, all interactions would lie before the isocline (on the left side).

Here we analyzed 27 plant–frugivore networks and 25 plant–pollinator networks illustrating a wide range of conditions of species richness, taxonomy, latitude, and ecology (Table 1). Our goal is to understand how mutualistic networks are assembled. We report on the highly nested organization of mutualistic networks and discuss the implications of nestedness for their persistence and coevolution.

Table 1. Data sets analyzed in this article.

Type Nestedness No. of species Latitude Ref.
Seed dispersal 0.762NS 28 Temperate32
Seed dispersal 0.806** 40 Tropical33
Seed dispersal 0.944* 54 Mediterranean34
Seed dispersal 0.842** 78 Tropical35
Seed dispersal 0.847* 26 Subtropical36
Seed dispersal 0.679NS 19 Temperate37
Seed dispersal 0.857** 33 Mediterranean P.J., unpublished
Seed dispersal 0.771* 32 Tropical38
Seed dispersal 0.768** 86 Tropical39
Seed dispersal 0.932** 209 Tropical40
Seed dispersal 0.878** 46 Mediterranean P.J., unpublished
Seed dispersal 0.565NS 27 Tropical41
Seed dispersal 0.936** 23 Temperate42
Seed dispersal 0.848NS 13 Temperate43
Seed dispersal 0.748* 25 Tropical44
Seed dispersal 0.877** 64 Tropical44
Seed dispersal 0.651** 64 Tropical45
Seed dispersal 0.999NS 9 Mediterranean34
Seed dispersal 0.853** 18 Mediterranean34
Seed dispersal 0.984** 14 Mediterranean34
Seed dispersal 0.866** 25 Mediterranean34
Seed dispersal 0.921** 17 Mediterranean34
Seed dispersal 0.996NS 10 Mediterranean34
Seed dispersal 0.884NS 11 Mediterranean34
Seed dispersal 0.897** 24 Mediterranean46
Seed dispersal 0.958** 317 Tropical47 and unpublished
Seed dispersal 0.716NS 25 Temperate48
Pollination 0.960** 185 Temperate49
Pollination 0.910** 107 Temperate49
Pollination 0.925** 61 Temperate49
Pollination 0.860* 142 Arctic50
Pollination 0.742** 107 Arctic J.M.O. and H. Elberling, unpublished
Pollination 0.945** 110 Arctic51
Pollination 0.911** 205 Mediterranean52
Pollination 0.671NS 22 Tropical J.M.O., unpublished
Pollination 0.594NS 50 Temperate J.M.O., unpublished
Pollination 0.952** 84 Tropical J.M.O., unpublished
Pollination 0.828** 108 Temperate J.M.O., unpublished
Pollination 0.955** 251 Temperate53
Pollination 0.955** 111 Arctic54
Pollination 0.628NS 50 Temperate J.M.O., unpublished
Pollination 0.702NS 32 Tropical55
Pollination 0.781NS 29 Arctic56
Pollination 0.925** 97 Tropical57
Pollination 0.940** 167 Temperate58
Pollination 0.925** 180 Temperate58
Pollination 0.736** 78 Temperate58
Pollination 0.867** 40 Temperate59
Pollination 0.874** 27 Tropical L. I. Eskildsenet al., unpublished
Pollination 0.871* 93 Tropical60
Pollination 0.904* 117 Temperate61
Pollination 0.975** 446 Temperate62
Food web 0.678NS 20 Temperate63
Food web 0.670NS 22 Temperate63
Food web 0.507NS 16 Subtropical64
Food web 0.607NS 12 Subtropical64
Food web 0.724** 75 Temperate65
Food web 0.774NS 78 Temperate65
Food web 0.522NS 28 Temperate66
Food web 0.772NS 59 Temperate66
Food web 0.737NS 32 Temperate66
Food web 0.856** 104 Tropical67
Food web 0.547NS 64 Tropical67
Food web 0.554NS 37 Temperate68
Food web 0.942** 76 Temperate68
Food web 0.826** 25 Temperate69

No. of species, sum of animal and plant species. Food webs were decomposed in resource—consumer, bipartite graphs, so two or three different graphs can be obtained from the same food web. The level of significance was tested against null model 2 (results are qualitatively similar for null model 1). *,P < 0.05; **,P < 0.01; NS, not significant.

Materials and Methods

Measure of Nestedness. We estimated an index of matrix nestedness (N) by usingnestedness calculator software. This software was originally developed by W. Atmar and B. D. Patterson in 1995 (AICS Research, University Park, NM; see ref.8) to characterize how species are distributed among a set of islands (8,12,13).

nestedness calculator first reorganizes the matrix by arranging rows (plants) and columns (animals) from the most generalist to the most specialist in the way that maximizes nestedness (8). Given a particular number of plants (P), animals (A), and interactions (L), an isocline of perfect nestedness is calculated for each matrix (Fig. 1c). For each plant species (row) all of the absences of pairwise interactions before the isocline and all of the observed interactions beyond the isocline are recorded as unexpected. For each of these unexpected presences or absences, a normalized measure of global distance to the isocline is calculated (8), and these values are averaged. By using an analogy with physical disorder, this measure is called temperature,T (8), with values ranging from 00 to 1000. Because in this paper we emphasize nestedness or order instead of disorder, we define the level of nestedness,N, as:N = (100 –T)/100, with values ranging from 0 to 1 (maximum nestedness).

Null Models and Significance. To assess the significance of nestedness we have to compare the observed value with a benchmark provided by a null model. The goal is to test whether the observed level of structure (in our case nestedness) can be explained by simple rules (e.g., a derived probability of cell occupancy). An intensive discussion has revolved around null models and how conclusions on community structure may depend on our choice of a null model (1416).

nestedness calculator uses a null model in which each cell in the interaction matrix has the same probability of being occupied. This probability is estimated as the number of “1s” in the original matrix divided by the number of cells (A ×P). We will refer to this as null model 1. This null model is very general, and so deviations from this homogeneous benchmark could be due to multiple factors, such as a different degree (some species have more connections than others) (14,16). Previous work has shown that mutualistic networks have a variation in the number of connections per species (degree) much larger than expected by random (11). Because we want to look at a deeper level of structure beyond the one depicted by the degree distribution, we have considered a second null model. In our null model 2, the probability of each cell being occupied is the average of the probabilities of occupancy of its row and column. Biologically, this means that the probability of drawing an interaction is proportional to the level of generalization (degree) of both the animal and the plant species. Interestingly enough, the results here provided are very robust, and there are not strong qualitative differences for both null models (only 6 of 52 networks changed in significance status from one model to the other). Throughout the paper, we will present the results for null model 2, which yields the most conservative inference about the significance of nestedness (16).

For each mutualistic matrix, we generated a population ofn = 50 random networks for each null model. Our statistic wasP, the probability of a random replicate being equally or more nested than the observed matrix. To allow across-network comparisons, that is, to account for variation in species richness and number of interactions, relative nestedness is defined asN* = (NR)/R, whereN andR are the value of nestedness for the actual matrix and the average nestedness of the random replicates, respectively.

Results

Most mutualistic webs were highly nested (Fig. 2). The average ± SE nestedness was = 0.844 ± 0.043 for seed dispersal and = 0.853 ± 0.047 for pollination (Fig. 2a). There were no significant differences between both systems (F = 0.098, df = 1, 50,P = 0.75), which suggests a common assembly process regardless of the different nature of these mutualisms.

Fig. 2.

Fig. 2.

Nestedness values for seed dispersal (SD, circles), pollination (P, squares), and food webs (FW, diamonds). (a) Mean and SE of nestedness for the three types of networks. Seed-dispersal and pollination matrices have similar nestedness, significantly higher than consumer–resource webs. (b) Nestedness vs. species richness for all data sets. Each point corresponds to a specific community and is solid if the level of nestedness is significant at theP < 0.05 level and empty otherwise. The arrow indicates the plant–pollinator network shown inFig. 1c.

The fraction of networks that departed significantly (P < 0.05) from randomly assembled webs was 0.70 for seed dispersal and 0.80 for pollination. These percentages, however, increased dramatically beyond a minimum number of species. For example, all seed-dispersal networks >28 species (40.7%) and all pollination networks >50 species (72.0%) were significantly nested (Fig. 2b).

To assess the generality of our results and to put them within the context of other ecological webs, we also studied nestedness in a set of 14 resource–consumer bipartite graphs extracted from several detailed food webs (Table 1). Their level of nestedness ( = 0.694 ± 0.077) was significantly lower than for mutualistic networks (their residual nestedness, after accounting for variation in species richness, differed significantly from both pollinator and seed-dispersal webs;F = 7.71, df = 1, 60,P = 0.007; Tukey's honestly significant difference test;Fig. 2a). It is not clear whether this difference reflects a different biological organization or differences in sampling resolution.

Is the level of nestedness independent of the complexity of the network? To answer this question, we begin by considering the relationship between the number of species (S =A +P) and the number of interactions (L), a question widely discussed in food web studies (1724). As shown inFig. 3, our mutualistic data fit a power-law relationship betweenL andS; that is, log(L) = 0.132 + 1.139 log(S),r = 0.943, andP < 0.0001. The slope of the log–log plot (1.139) is slightly higher than 1. This means thatL increases slightly faster thanS, confirming early results for food webs (24).

Fig. 3.

Fig. 3.

Number of interactions (L) vs. number of species (S) for the mutualistic networks (pollination and seed dispersal). The continuous line is the best fitto data. The broken line represents thex =y axis. As noted,L increases slightly faster thanS (slope = 1.139). All communities can be classified in two groups: networks with fewer interactions than expected (negative residuals) and networks with more interactions than expected (positive residuals). (Inset) The average and SE of relative nestedness (N*) for the communities with positive and negative residuals. Networks with positive residuals, that is, with more interactions than expected for a specific number of species, are significantly more nested than networks with fewer interactions than expected.

We calculated the residuals from the regression inFig. 3. Positive and negative residuals correspond to those matrices that have more and fewer connections, respectively, than expected from their number of species. We compared the average relative value of nestedness ( *) for both groups of residuals. Interestingly enough, there are significant differences between them (F = 6.59, df = 1, 50,P = 0.013). For a given species richness, communities with a larger than expected number of interactions are significantly more nested than communities with a lower than expected number of interactions. The mutualistic webs become relatively more structured as their complexity (number of links for a given number of species) increases.

Discussion

A long-standing challenge in food web theory has been to detect the level of structure of food webs (21,2428). There is not enough empirical support on how food webs are structured. For example, attempts to find compartmentalization in food webs have failed (refs.25 and27; see, however, refs.28 and29). The question remains on whether this is due to the incompleteness of the data or to the fact that complex networks are organized in a different way. By analyzing the best resolved data set on ecological networks, we have unambiguously shown that mutualistic webs are neither randomly assembled nor compartmentalized, but are highly nested.

Some potential implications of nestedness for community persistence can be drawn. First, nested networks are highly cohesive; that is, the most generalist plant and animal species interact among them generating a dense core of interactions to which the rest of the community is attached (Fig. 1). Together with highly heterogeneous distributions of the number of interactions per species (11), this cohesive pattern can provide alternative routes for system responses to perturbations. For example, a species is more unlikely to become isolated of the network after the elimination of other species when embedded on a highly cohesive network. Second, nestedness organizes the community in a highly asymmetrical way (Fig. 1), with specialist species interacting only with generalist (and so less fluctuating) (30) species. This asymmetrical pattern can provide pathways for rare species to persist (7).

In relation to coevolution, previous studies have traditionally focused on interactions between pairs of species. But, as noted by Thompson, “studies of pair-wise interactions alone are insufficient for understanding the evolution of interactions in general and the coevolutionary process in particular” (ref.6, p. 286; see also ref.31). In this paper we have presented empirical evidence for a highly significant structural pattern with far-reaching consequences for coevolutionary interactions in species-rich communities. Nestedness organizes complex coevolving networks in a specific way between highly specialized pairwise coevolution and highly diffuse coevolution. It results in both a core of taxa that may drive the evolution of the whole community, and in asymmetric interactions among species with different specialization levels. Our data do not indicate the presence of compartments suggestive of tight, parallel specialization. Rather, our results show that specialized species are frequently dependent on a core of generalist taxa. This macroscopic organization of coevolutionary interactions can be reduced neither to a collection of pairs of coevolving species, nor to a collection of subwebs made up of tightly integrated species. A nontrivial question that deserves further study is how the assembly pattern described in this paper affects the coevolutionary process in species-rich networks.

Acknowledgments

We thank P. Amarasekare, L.-F. Bersier, A. Liebhold, R. May, S. Pimm, and G. Sugihara for reading a previous draft and making useful suggestions, W. Silva and L. I. Eskildsen for sharing data, and K. Frank, T. Lewinsohn, B. Patterson, and W. Silva for interesting discussions. This work was supported by Spanish Ministry of Science and Technology Grants BOS2000-1366-C02-02 (to J.B.) and BOS2000-1366-C02-01 (to P.J.) and Ph.D. Fellowship FP2000-6137 (to C.J.M.), and Danish Natural Science Research Council Grant 94-0163-1 (to J.M.O.).

References

  • 1.Johnson, S. D. & Steiner, K. E. (1997) Evolution (Lawrence, Kans.) 51, 45–53. [DOI] [PubMed] [Google Scholar]
  • 2.Nilsson, L. A. (1988) Nature 334, 147–149. [Google Scholar]
  • 3.Janzen, D. H. (1980) Evolution (Lawrence, Kans.) 34, 611–612. [DOI] [PubMed] [Google Scholar]
  • 4.Herrera, C. M. (1982) Ecology 63, 773–785. [Google Scholar]
  • 5.Iwao, K. & Rausher, M. D. (1997) Am. Nat. 149, 316–335. [Google Scholar]
  • 6.Thompson, J. N. (1994) The Coevolutionary Process (Univ. of Chicago Press, Chicago).
  • 7.Jordano, P. (1987) Am. Nat. 129, 657–677. [Google Scholar]
  • 8.Atmar, W. & Patterson, B. D. (1993) Oecologia 96, 373–382. [DOI] [PubMed] [Google Scholar]
  • 9.Solé, R. V. & Montoya, J. M. (2001) Proc. R. Soc. London Ser. B 268, 2039–2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Dunne, J. A., Williams, R. J. & Martinez, N. D. (2002) Proc. Natl. Acad. Sci. USA 99, 12917–12922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Jordano, P., Bascompte, J. & Olesen, J. M. (2003) Ecol. Lett. 6, 69–81. [Google Scholar]
  • 12.Darlington, P. J. (1957) Zoogeography: The Geographical Distribution of Animals (Wiley, New York).
  • 13.Patterson, B. D. (1987) Conserv. Biol. 1, 323–334. [Google Scholar]
  • 14.Cook, R. R. & Quinn, J. F. (1998) Oecologia 113, 584–592. [DOI] [PubMed] [Google Scholar]
  • 15.Gotelli, N. J. (2001) Global Ecol. Biogeogr. 10, 337–343. [Google Scholar]
  • 16.Fischer, J. & Lindenmayer, D. B. (2002) Oikos 99, 193–199. [Google Scholar]
  • 17.May, R. M. (1972) Nature 238, 413–414. [DOI] [PubMed] [Google Scholar]
  • 18.Yodzis, P. (1980) Nature 284, 544–545. [Google Scholar]
  • 19.Pimm, S. L. (1980) Nature 285, 591. [Google Scholar]
  • 20.Sugihara, G., Schoenly, K. & Trombla, A. (1989) Science 245, 48–52. [DOI] [PubMed] [Google Scholar]
  • 21.Cohen, J. E., Briand, F. & Newman, C. M. (1990) Community Food Webs: Data and Theory (Springer, Berlin).
  • 22.Martinez, N. D. (1991) Ecol. Monogr. 61, 367–392. [Google Scholar]
  • 23.Winemiller, K. O., Pianka, E. P., Vitt, L. J. & Joern, A. (2001) Am. Nat. 158, 193–199. [DOI] [PubMed] [Google Scholar]
  • 24.Pimm, S. L. (2002) Food Webs (Univ. of Chicago Press, Chicago), 2nd Ed.
  • 25.Pimm, S. L. & Lawton, J. H. (1980) J. Anim. Ecol. 49, 879–898. [Google Scholar]
  • 26.Sugihara, G. (1982) Ph.D. thesis (Princeton Univ., Princeton).
  • 27.Raffaelli, D. & Hall, S. (1992) J. Anim. Ecol. 61, 551–560. [Google Scholar]
  • 28.Paine, R. T. (1992) Nature 355, 73–75. [Google Scholar]
  • 29.Dicks, L. V., Corbet, S. A. & Pywell, R. F. (2002) J. Anim. Ecol. 71, 32–43. [Google Scholar]
  • 30.Turchin, P. & Hanski, I. (1997) Am. Nat. 149, 842–874. [DOI] [PubMed] [Google Scholar]
  • 31.Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. (1996) Ecology 77, 1043–1060. [Google Scholar]
  • 32.Baird, J. W. (1980) Wilson Bull. 92, 63–73. [Google Scholar]
  • 33.Beehler, B. (1983) Auk 100, 1–12. [Google Scholar]
  • 34.Jordano, P. (1993) in Frugivory and Seed Dispersal: Ecological and Evolutionary Aspects, eds. Fleming, T. H. & Estrada, A. (Kluwer, Dordrecht, The Netherlands), pp. 85–104.
  • 35.Crome, F. H. J. (1975) Aust. J. Wildlife Res. 2, 155–185. [Google Scholar]
  • 36.Frost, P. G. H. (1980) in Acta XVII Congresus Internationalis Ornithologici, ed. Noring, R. (Deutsches Ornithologische Gessenshaft, Berlin), pp. 1179–1184.
  • 37.Guitián, J. (1983) Ph.D. thesis (Universidad de Santiago, Santiago, Spain).
  • 38.Kantak, G. E. (1979) Auk 96, 183–186. [Google Scholar]
  • 39.Lambert, F. (1989) J. Trop. Ecol. 5, 401–412. [Google Scholar]
  • 40.Wheelwright, N. T., Haber, W. A., Murray, K. G. & Guindon, C. (1984) Biotropica 16, 173–192. [Google Scholar]
  • 41.Tutin, C. E. G., Ham, R. M., White, L. J. T. & Harrison, M. J. S. (1997) Am. J. Primatol. 42, 1–24. [DOI] [PubMed] [Google Scholar]
  • 42.Noma, N. (1997) Tropics 6, 441–449. [Google Scholar]
  • 43.Sorensen, A. E. (1981) Oecologia (Berlin) 50, 242–249. [DOI] [PubMed] [Google Scholar]
  • 44.Galetti, M. & Pizo, M. A. (1996) Ararajuba Rev. Brasil. Ornitol. 4, 71–79. [Google Scholar]
  • 45.Snow, B. K. & Snow, D. W. (1971) Auk 88, 291–322. [Google Scholar]
  • 46.Herrera, C. M. (1984) Ecol. Monogr. 54, 1–23. [Google Scholar]
  • 47.Silva, W. R., De Marco, P., Hausi, E. & Gomes, V. S. M. (2002) in Seed Dispersal and Frugivory: Ecology, Evolution, and Conservation, eds. Levey, D. J., Silva, W. R. & Galetti, M. (CAB International, Wallingford, U.K.), pp. 423–435.
  • 48.Snow, B. K. & Snow, D. W. (1988) Birds and Berries (T & AD Poyser, Calton, U.K.).
  • 49.Arroyo, M. T. K., Primack, R. & Armesto, J. (1982) Am. J. Bot. 69, 82–97. [Google Scholar]
  • 50.Elberling, H. & Olesen, J. M. (1999) Ecography 22, 314–323. [Google Scholar]
  • 51.Hocking, B. (1968) Oikos 19, 359–387. [Google Scholar]
  • 52.Herrera, J. (1988) J. Ecol. 76, 274–287. [Google Scholar]
  • 53.Kato, M. & Miura, R. (1996) Contrib. Biol. Lab. Kyoto Univ. 29, 1–48. [Google Scholar]
  • 54.Kevan, P. G. (1970) Ph.D. thesis (University of Alberta, Edmonton, AB, Canada).
  • 55.McMullen, C. K. (1993) Pan-Pac. Entomol. 69, 95–106. [Google Scholar]
  • 56.Mosquin, T. & Martin, J. E. (1967) Can. Field Nat. 81, 201–205. [Google Scholar]
  • 57.Percival, M. (1974) Biotropica 6, 104–129. [Google Scholar]
  • 58.Primack, R. B. (1983) New Zealand J. Bot. 21, 317–333. [Google Scholar]
  • 59.Schemske, D., Willson, M. F., Melampy, M., Miller, L., Verner, L., Schemske, K. & Best, L. (1978) Ecology 59, 351–366. [Google Scholar]
  • 60.Ramirez, N. (1989) Biotropica 21, 319–330. [Google Scholar]
  • 61.Inouye, D. W. & Pyke, G. H. (1988) Aust. J. Ecol. 13, 191–210. [Google Scholar]
  • 62.Kato, M., Matsumoto, M. & Kato, T. (1993) Contrib. Biol. Lab. Kyoto Univ. 28, 119–172. [Google Scholar]
  • 63.Baird, D. & Ulanowicz, R. E. (1989) Ecol. Monogr. 59, 329–364. [Google Scholar]
  • 64.Almunia, J., Basterretxea, G., Aristegui, J. & Ulanowicz, R. E. (1999) Estuarine Coastal Shelf Sci. 49, 363–384. [Google Scholar]
  • 65.Memmot, J., Martinez, N. D. & Cohen, J. (2000) J. Anim. Ecol. 69, 1–15. [Google Scholar]
  • 66.Martinez, N. D., Hawkins, B. A., Dawah, H. A. & Feifarek, B. P. (1999) Ecology 80, 1044–1055. [Google Scholar]
  • 67.Reagan, D. P. & Waide, R. B. (1996) The Food Web of a Tropical Rain Forest (Univ. of Chicago Press, Chicago).
  • 68.McKinnerney, M. (1977) Ph.D. thesis (Univ. of Texas, El Paso).
  • 69.Polis, G. A. (1991) Am. Nat. 138, 123–155. [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy ofNational Academy of Sciences

ACTIONS

RESOURCES


[8]ページ先頭

©2009-2025 Movatter.jp