Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
NCBI home page
Search in PMCSearch
  • View on publisher site icon
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more:PMC Disclaimer | PMC Copyright Notice
Genetics logo

The evolution of recombination in a heterogeneous environment.

T Lenormand1,S P Otto1
1Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. lenormand@cefe.cnrs-mop.fr
PMCID: PMC1461255  PMID:10978305

Abstract

Most models describing the evolution of recombination have focused on the case of a single population, implicitly assuming that all individuals are equally likely to mate and that spatial heterogeneity in selection is absent. In these models, the evolution of recombination is driven by linkage disequilibria generated either by epistatic selection or drift. Models based on epistatic selection show that recombination can be favored if epistasis is negative and weak compared to directional selection and if the recombination modifier locus is tightly linked to the selected loci. In this article, we examine the joint effects of spatial heterogeneity in selection and epistasis on the evolution of recombination. In a model with two patches, each subject to different selection regimes, we consider the cases of mutation-selection and migration-selection balance as well as the spread of beneficial alleles. We find that including spatial heterogeneity extends the range of epistasis over which recombination can be favored. Indeed, recombination can be favored without epistasis, with negative and even with positive epistasis depending on environmental circumstances. The selection pressure acting on recombination-modifier loci is often much stronger with spatial heterogeneity, and even loosely linked modifiers and free linkage may evolve. In each case, predicting whether recombination is favored requires knowledge of both the type of environmental heterogeneity and epistasis, as none of these factors alone is sufficient to predict the outcome.

Full Text

The Full Text of this article is available as aPDF (475.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes P. T., Holland B., Courreges V. Genotype-by-environment and epistatic interactions in Drosophila melanogaster: the effects of Gpdh allozymes, genetic background and rearing temperature on larval developmental time and viability. Genetics. 1989 Aug;122(4):859–868. doi: 10.1093/genetics/122.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barton N. H. Linkage and the limits to natural selection. Genetics. 1995 Jun;140(2):821–841. doi: 10.1093/genetics/140.2.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourguet D., Prout M., Raymond M. Dominance of insecticide resistance presents a plastic response. Genetics. 1996 May;143(1):407–416. doi: 10.1093/genetics/143.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bulmer M. G. The sib competition model for the maintenance of sex and recombination. J Theor Biol. 1980 Jan 21;82(2):335–345. doi: 10.1016/0022-5193(80)90107-1. [DOI] [PubMed] [Google Scholar]
  5. Burt A., Bell G. Mammalian chiasma frequencies as a test of two theories of recombination. Nature. 1987 Apr 23;326(6115):803–805. doi: 10.1038/326803a0. [DOI] [PubMed] [Google Scholar]
  6. Charlesworth B., Barton N. H. Recombination load associated with selection for increased recombination. Genet Res. 1996 Feb;67(1):27–41. doi: 10.1017/s0016672300033450. [DOI] [PubMed] [Google Scholar]
  7. Charlesworth B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res. 1990 Jun;55(3):199–221. doi: 10.1017/s0016672300025532. [DOI] [PubMed] [Google Scholar]
  8. Charlesworth B. Recombination modification in a flucturating environment. Genetics. 1976 May;83(1):181–195. doi: 10.1093/genetics/83.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Charlesworth D., Charlesworth B. Selection on recombination in clines. Genetics. 1979 Mar;91(3):581–589. doi: 10.1093/genetics/91.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DEMPSTER E. R. Maintenance of genetic heterogeneity. Cold Spring Harb Symp Quant Biol. 1955;20:25-31; discussion, 31-2. doi: 10.1101/sqb.1955.020.01.005. [DOI] [PubMed] [Google Scholar]
  11. Elena S. F., Lenski R. E. Test of synergistic interactions among deleterious mutations in bacteria. Nature. 1997 Nov 27;390(6658):395–398. doi: 10.1038/37108. [DOI] [PubMed] [Google Scholar]
  12. Felsenstein J. The theoretical population genetics of variable selection and migration. Annu Rev Genet. 1976;10:253–280. doi: 10.1146/annurev.ge.10.120176.001345. [DOI] [PubMed] [Google Scholar]
  13. Fry J. D., Nuzhdin S. V., Pasyukova E. G., Mackay T. F. QTL mapping of genotype-environment interaction for fitness in Drosophila melanogaster. Genet Res. 1998 Apr;71(2):133–141. doi: 10.1017/s0016672398003176. [DOI] [PubMed] [Google Scholar]
  14. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  15. Johannesson K., Johannesson B., Lundgren U. Strong natural selection causes microscale allozyme variation in a marine snail. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2602–2606. doi: 10.1073/pnas.92.7.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirkpatrick M., Servedio M. R. The reinforcement of mating preferences on an island. Genetics. 1999 Feb;151(2):865–884. doi: 10.1093/genetics/151.2.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koehler K. E., Hawley R. S., Sherman S., Hassold T. Recombination and nondisjunction in humans and flies. Hum Mol Genet. 1996;5(Spec No):1495–1504. doi: 10.1093/hmg/5.supplement_1.1495. [DOI] [PubMed] [Google Scholar]
  18. Koehn R. K., Newell R. I., Immermann F. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5385–5389. doi: 10.1073/pnas.77.9.5385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kondrashov A. S. Classification of hypotheses on the advantage of amphimixis. J Hered. 1993 Sep-Oct;84(5):372–387. doi: 10.1093/oxfordjournals.jhered.a111358. [DOI] [PubMed] [Google Scholar]
  20. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  21. Kondrashov A. S., Houle D. Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc Biol Sci. 1994 Dec 22;258(1353):221–227. doi: 10.1098/rspb.1994.0166. [DOI] [PubMed] [Google Scholar]
  22. Korol A. B., Iliadi K. G. Increased recombination frequencies resulting from directional selection for geotaxis in Drosophila. Heredity (Edinb) 1994 Jan;72(Pt 1):64–68. doi: 10.1038/hdy.1994.7. [DOI] [PubMed] [Google Scholar]
  23. Lenormand T., Bourguet D., Guillemaud T., Raymond M. Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature. 1999 Aug 26;400(6747):861–864. doi: 10.1038/23685. [DOI] [PubMed] [Google Scholar]
  24. Otto S. P., Barton N. H. The evolution of recombination: removing the limits to natural selection. Genetics. 1997 Oct;147(2):879–906. doi: 10.1093/genetics/147.2.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Otto S. P., Feldman M. W. Deleterious mutations, variable epistatic interactions, and the evolution of recombination. Theor Popul Biol. 1997 Apr;51(2):134–147. doi: 10.1006/tpbi.1997.1301. [DOI] [PubMed] [Google Scholar]
  26. Peters AD, Lively CM. The Red Queen and Fluctuating Epistasis: A Population Genetic Analysis of Antagonistic Coevolution. Am Nat. 1999 Oct;154(4):393–405. doi: 10.1086/303247. [DOI] [PubMed] [Google Scholar]
  27. Pylkov K. V., Zhivotovsky L. A., Feldman M. W. Migration versus mutation in the evolution of recombination under multilocus selection. Genet Res. 1998 Jun;71(3):247–256. doi: 10.1017/s0016672398003243. [DOI] [PubMed] [Google Scholar]
  28. Slatkin M. Gene flow and selection in a two-locus system. Genetics. 1975 Dec;81(4):787–802. doi: 10.1093/genetics/81.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith J. M. A short-term advantage for sex and recombination through sib-competition. J Theor Biol. 1976 Dec;63(2):245–258. doi: 10.1016/0022-5193(76)90033-3. [DOI] [PubMed] [Google Scholar]
  30. Smith J. M. Why the genome does not congeal. Nature. 1977 Aug 25;268(5622):693–696. doi: 10.1038/268693a0. [DOI] [PubMed] [Google Scholar]
  31. Szathmáry E. Do deleterious mutations act synergistically? Metabolic control theory provides a partial answer. Genetics. 1993 Jan;133(1):127–132. doi: 10.1093/genetics/133.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tachida H., Mukai T. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. Xix. Genotype-Environment Interaction in Viability. Genetics. 1985 Sep;111(1):43–55. doi: 10.1093/genetics/111.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taylor P. D. An analytical model for a short-term advantage for sex. J Theor Biol. 1979 Dec 7;81(3):407–421. doi: 10.1016/0022-5193(79)90044-4. [DOI] [PubMed] [Google Scholar]
  34. Wagner A. Robustness against mutations in genetic networks of yeast. Nat Genet. 2000 Apr;24(4):355–361. doi: 10.1038/74174. [DOI] [PubMed] [Google Scholar]
  35. Williams G. C., Mitton J. B. Why reproduce sexually? J Theor Biol. 1973 Jun;39(3):545–554. doi: 10.1016/0022-5193(73)90067-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy ofOxford University Press

ACTIONS

RESOURCES


[8]ページ先頭

©2009-2026 Movatter.jp