Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
                                  NCBI home page
Search in PMCSearch
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more:PMC Disclaimer | PMC Copyright Notice
British Journal of Clinical Pharmacology logo

Pharmacological effects of the non-competitive NMDA antagonist CNS 1102 in normal volunteers.

K W Muir1,D G Grosset1,E Gamzu1,K R Lees1
1University Department of Medicine and Therapeutics, Gardiner Institute, Western Infirmary, Glasgow.
PMCID: PMC1364834  PMID:7946934
This article has been corrected. SeeBr J Clin Pharmacol. 1995 Apr;39(4):464.1.

Abstract

1. Non-competitive antagonists at the glutamatergic N-methyl D-aspartate receptor significantly reduce the volume of ischaemic cerebral infarction in animals and are potential agents for the treatment of acute stroke in humans. 2. CNS 1102, a novel non-competitive NMDA antagonist, was administered as a 15 min intravenous infusion to healthy male volunteers in a double-blind, placebo-controlled, dose-ranging study. This was the first administration to man. 3. Clinically significant sedation, increased mean arterial pressure and pulse rate were seen at doses of 30 micrograms kg-1 and above. Symptoms of sedation and central nervous excitation became unacceptable for conscious individuals at doses of 45 micrograms kg-1 and above. 4. Rapid onset of central nervous system effects after administration is in keeping with rapid distribution of CNS 1102 to brain. Steady state volume of distribution was large (444 l) and terminal elimination half-life from plasma was approximately 4 h. 5. Pharmacokinetic properties are favourable for a potential neuroprotective therapy. The maximum tolerated dose for conscious individuals was 30 micrograms kg-1 given intravenously over 15 min. Further assessment of CNS 1102 should seek methods of drug administration which maximise administered dose with minimal side effects.

Full text

PDF
33

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown T. H., Chapman P. F., Kairiss E. W., Keenan C. L. Long-term synaptic potentiation. Science. 1988 Nov 4;242(4879):724–728. doi: 10.1126/science.2903551. [DOI] [PubMed] [Google Scholar]
  2. Davies S. N., Alford S. T., Coan E. J., Lester R. A., Collingridge G. L. Ketamine blocks an NMDA receptor-mediated component of synaptic transmission in rat hippocampus in a voltage-dependent manner. Neurosci Lett. 1988 Oct 5;92(2):213–217. doi: 10.1016/0304-3940(88)90063-8. [DOI] [PubMed] [Google Scholar]
  3. Foster A. C., Fagg G. E. Neurobiology. Taking apart NMDA receptors. Nature. 1987 Oct 1;329(6138):395–396. doi: 10.1038/329395a0. [DOI] [PubMed] [Google Scholar]
  4. Jung R., Bruce E. N., Katona P. G. Cardiorespiratory responses to glutamatergic antagonists in the caudal ventrolateral medulla of rats. Brain Res. 1991 Nov 15;564(2):286–295. doi: 10.1016/0006-8993(91)91465-d. [DOI] [PubMed] [Google Scholar]
  5. MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S. J., Barker J. L. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. 1986 May 29-Jun 4Nature. 321(6069):519–522. doi: 10.1038/321519a0. [DOI] [PubMed] [Google Scholar]
  6. McCulloch J. Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. Br J Clin Pharmacol. 1992 Aug;34(2):106–114. doi: 10.1111/j.1365-2125.1992.tb04118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mills E. H., Minson J. B., Pilowsky P. M., Chalmers J. P. N-methyl-D-aspartate receptors in the spinal cord mediate pressor responses to stimulation of the rostral ventrolateral medulla in the rat. Clin Exp Pharmacol Physiol. 1988 Feb;15(2):147–155. doi: 10.1111/j.1440-1681.1988.tb01056.x. [DOI] [PubMed] [Google Scholar]
  8. Minematsu K., Fisher M., Li L., Davis M. A., Knapp A. G., Cotter R. E., McBurney R. N., Sotak C. H. Effects of a novel NMDA antagonist on experimental stroke rapidly and quantitatively assessed by diffusion-weighted MRI. Neurology. 1993 Feb;43(2):397–403. doi: 10.1212/wnl.43.2.397. [DOI] [PubMed] [Google Scholar]
  9. Park C. K., Nehls D. G., Graham D. I., Teasdale G. M., McCulloch J. Focal cerebral ischaemia in the cat: treatment with the glutamate antagonist MK-801 after induction of ischaemia. J Cereb Blood Flow Metab. 1988 Oct;8(5):757–762. doi: 10.1038/jcbfm.1988.124. [DOI] [PubMed] [Google Scholar]
  10. Park C. K., Nehls D. G., Graham D. I., Teasdale G. M., McCulloch J. The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol. 1988 Oct;24(4):543–551. doi: 10.1002/ana.410240411. [DOI] [PubMed] [Google Scholar]
  11. Rothman S. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci. 1984 Jul;4(7):1884–1891. doi: 10.1523/JNEUROSCI.04-07-01884.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schanne F. A., Kane A. B., Young E. E., Farber J. L. Calcium dependence of toxic cell death: a final common pathway. Science. 1979 Nov 9;206(4419):700–702. doi: 10.1126/science.386513. [DOI] [PubMed] [Google Scholar]
  13. Sonders M. S., Keana J. F., Weber E. Phencyclidine and psychotomimetic sigma opiates: recent insights into their biochemical and physiological sites of action. Trends Neurosci. 1988 Jan;11(1):37–40. doi: 10.1016/0166-2236(88)90048-3. [DOI] [PubMed] [Google Scholar]
  14. Wise R. J., Bernardi S., Frackowiak R. S., Legg N. J., Jones T. Serial observations on the pathophysiology of acute stroke. The transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain. 1983 Mar;106(Pt 1):197–222. doi: 10.1093/brain/106.1.197. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy ofBritish Pharmacological Society

ACTIONS

RESOURCES


[8]ページ先頭

©2009-2025 Movatter.jp