Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
                                  NCBI home page
Search in PMCSearch
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more:PMC Disclaimer | PMC Copyright Notice
The Journal of Physiology logo

Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle

M J Anderson,M W Cohen
PMCID: PMC1350889  PMID:4133039

Abstract

1. α-Bungarotoxin was labelled with fluorescent dyes and used as a stain for visualizing the distribution of acetylcholine receptors in vertebrate skeletal muscle fibres.

2. Dye-toxin conjugates had the same pharmacological properties as native toxin, but their potencies were lower.

3. Fluorescent staining was examined in teased muscle fibres. The stain was found to be confined to the neuromuscular junction and associated with the subsynaptic membrane.

4. Staining intensity was reduced by curare and even more so by carbachol, but not by atropine or neostigmine. Pre-treatment of muscles with unlabelled α-bungarotoxin entirely prevented staining.

5. The staining at amphibian neuromuscular junctions was characterized by a pattern of intense transverse bands occurring at intervals of approximately 0·5-1 μm, with fluorescence of lower intensity between them. Fluorescent staining was not detected on adjacent, extrasynaptic, muscle membrane. In side views the staining appeared as a fine line with small protuberances occurring at the same intervals as the intense bands seen face-on. These results indicate that acetylcholine receptors are associated with the entire subsynaptic membrane, including the membrane of the junctional folds and that their density changes abruptly at the border between synaptic and extrasynaptic muscle membrane.

Full text

PDF
385

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRKS R., HUXLEY H. E., KATZ B. The fine structure of the neuromuscular junction of the frog. J Physiol. 1960 Jan;150:134–144. doi: 10.1113/jphysiol.1960.sp006378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BIRKS R., KATZ B., MILEDI R. Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol. 1960 Jan;150:145–168. doi: 10.1113/jphysiol.1960.sp006379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnard E. A., Wieckowski J., Chiu T. H. Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature. 1971 Nov 26;234(5326):207–209. doi: 10.1038/234207a0. [DOI] [PubMed] [Google Scholar]
  4. Berg D. K., Kelly R. B., Sargent P. B., Williamson P., Hall Z. W. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proc Natl Acad Sci U S A. 1972 Jan;69(1):147–151. doi: 10.1073/pnas.69.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bosmann H. B. Acetylcholine receptor. I. Identification and biochemical characteristics of a cholinergic receptor of guinea pig cerebral cortex. J Biol Chem. 1972 Jan 10;247(1):130–145. [PubMed] [Google Scholar]
  6. Bourgeois J. P., Tsuji S., Boquet P., Pillot J., Ryter A., Changeux J. -P. Localization of the cholinergic receptor protein by immunofluoroscence in eel electroplax. FEBS Lett. 1971 Aug 1;16(2):92–94. doi: 10.1016/0014-5793(71)80340-x. [DOI] [PubMed] [Google Scholar]
  7. COUTEAUX R. THE DIFFERENTIATION OF SYNAPTIC AREAS. Proc R Soc Lond B Biol Sci. 1963 Nov 19;158:457–480. doi: 10.1098/rspb.1963.0058. [DOI] [PubMed] [Google Scholar]
  8. Chang C. C., Chen T. F., Chuang S. T. N,O-di and N,N,O-tri ( 3 H) acetyl -bungarotoxins as specific labelling agents of cholinergic receptors. Br J Pharmacol. 1973 Jan;47(1):147–160. doi: 10.1111/j.1476-5381.1973.tb08169.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang C. C., Chen T. F., Lee C. Y. Studies of the presynaptic effect of -bungarotoxin on neuromuscular transmission. J Pharmacol Exp Ther. 1973 Feb;184(2):339–345. [PubMed] [Google Scholar]
  10. DEL CASTILLO J., KATZ B. On the localization of acetylcholine receptors. J Physiol. 1955 Apr 28;128(1):157–181. doi: 10.1113/jphysiol.1955.sp005297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ECCLES J. C., JAEGER J. C. The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):38–56. doi: 10.1098/rspb.1958.0003. [DOI] [PubMed] [Google Scholar]
  12. Edidin M., Fambrough D. Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens. J Cell Biol. 1973 Apr;57(1):27–37. doi: 10.1083/jcb.57.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fambrough D. M., Hartzell H. C. Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm. Science. 1972 Apr 14;176(4031):189–191. doi: 10.1126/science.176.4031.189. [DOI] [PubMed] [Google Scholar]
  14. Feltz A., Mallart A. An analysis of acetylcholine responses of junctional and extrajunctional receptors of frog muscle fibres. J Physiol. 1971 Oct;218(1):85–100. doi: 10.1113/jphysiol.1971.sp009605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greene L. A., Sytkowski A. J., Vogel Z., Nirenberg M. W. -Bungarotoxin used as a probe for acetylcholine receptors of cultured neurones. Nature. 1973 May 18;243(5403):163–166. doi: 10.1038/243163a0. [DOI] [PubMed] [Google Scholar]
  16. Hartzell H. C., Fambrough D. M. Acetylcholine receptors. Distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J Gen Physiol. 1972 Sep;60(3):248–262. doi: 10.1085/jgp.60.3.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hubbard J. I., Schmidt R. F., Yokota T. The effect of acetylcholine upon mammalian motor nerve terminals. J Physiol. 1965 Dec;181(4):810–829. doi: 10.1113/jphysiol.1965.sp007799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KATZ B., MILEDI R. FURTHER OBSERVATIONS ON THE DISTRIBUTION OF ACTYLCHOLINE-REACTIVE SITES IN SKELETAL MUSCLE. J Physiol. 1964 Mar;170:379–388. doi: 10.1113/jphysiol.1964.sp007338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LEHRER G. M., ORNSTEIN L. A diazo coupling method for the electron microscopic localization of cholinesterase. J Biophys Biochem Cytol. 1959 Dec;6:399–406. doi: 10.1083/jcb.6.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Langley J. N. On the contraction of muscle, chiefly in relation to the presence of "receptive" substances: Part I. J Physiol. 1907 Dec 31;36(4-5):347–384. doi: 10.1113/jphysiol.1907.sp001236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee C. Y., Chang S. L., Kau S. T., Luh S. H. Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components. J Chromatogr. 1972 Oct 5;72(1):71–82. doi: 10.1016/0021-9673(72)80009-8. [DOI] [PubMed] [Google Scholar]
  23. Lee C. Y., Tseng L. F. Distribution of Bungarus multicinctus venom following envenomation. Toxicon. 1966 Apr;3(4):281–290. doi: 10.1016/0041-0101(66)90076-6. [DOI] [PubMed] [Google Scholar]
  24. Lester H. A. Postsynaptic action of cobra toxin at the myoneural junction. Nature. 1970 Aug 15;227(5259):727–728. doi: 10.1038/227727a0. [DOI] [PubMed] [Google Scholar]
  25. MARSHALL J. D., EVELAND W. C., SMITH C. W. Superiority of fluorescein isothiocyanate (Riggs) for fluorescent-antibody technic with a modification of its application. Proc Soc Exp Biol Med. 1958 Aug-Sep;98(4):898–900. doi: 10.3181/00379727-98-24222. [DOI] [PubMed] [Google Scholar]
  26. MILEDI R. Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibres. J Physiol. 1960 Apr;151:24–30. [PMC free article] [PubMed] [Google Scholar]
  27. Mebs D., Narita K., Iwanaga S., Samejima Y., Lee C. Y. Amino acid sequence of -bungarotoxin from the venom of Bungarus multicinctus. Biochem Biophys Res Commun. 1971 Aug 6;44(3):711–716. doi: 10.1016/s0006-291x(71)80141-9. [DOI] [PubMed] [Google Scholar]
  28. Miledi R., Molinoff P., Potter L. T. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature. 1971 Feb 19;229(5286):554–557. doi: 10.1038/229554a0. [DOI] [PubMed] [Google Scholar]
  29. Miledi R., Potter L. T. Acetylcholine receptors in muscle fibres. Nature. 1971 Oct 29;233(5322):599–603. doi: 10.1038/233599a0. [DOI] [PubMed] [Google Scholar]
  30. Miledi R., Slater C. R. Electrophysiology and electron-microscopy of rat neuromuscular junctions after nerve degeneration. Proc R Soc Lond B Biol Sci. 1968 Feb 27;169(1016):289–306. doi: 10.1098/rspb.1968.0012. [DOI] [PubMed] [Google Scholar]
  31. Miledi R., Zelená J. Sensitivity to acetylcholine in rat slow muscle. Nature. 1966 May 21;210(5038):855–856. doi: 10.1038/210855a0. [DOI] [PubMed] [Google Scholar]
  32. Porter C. W., Chiu T. H., Wieckowski J., Barnard E. A. Types and locations of cholinergic receptor-like molecules in muscle fibres. Nat New Biol. 1973 Jan 3;241(105):3–7. doi: 10.1038/newbio241003a0. [DOI] [PubMed] [Google Scholar]
  33. Tamiya N., Arai H. Studies on sea-snake venoms. Crystallization of erabutoxins a and b from Laticauda semifasciata venom. Biochem J. 1966 Jun;99(3):624–630. doi: 10.1042/bj0990624. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy ofThe Physiological Society

ACTIONS

RESOURCES


[8]ページ先頭

©2009-2025 Movatter.jp