Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
NCBI home page
Search in PMCSearch
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more:PMC Disclaimer | PMC Copyright Notice
Biochemical Journal logo

Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex.

M M Bowker-Kinley1,W I Davis1,P Wu1,R A Harris1,K M Popov1
1Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA.
PMCID: PMC1219031  PMID:9405293

Abstract

Tissue distribution and kinetic parameters for the four isoenzymes of pyruvate dehydrogenase kinase (PDK1, PDK2, PDK3 and PDK4) identified thus far in mammals were analysed. It appeared that expression of these isoenzymes occurs in a tissue-specific manner. The mRNA for isoenzyme PDK1 was found almost exclusively in rat heart. The mRNA for PDK3 was most abundantly expressed in rat testis. The message for PDK2 was present in all tissues tested but the level was low in spleen and lung. The mRNA for PDK4 was predominantly expressed in skeletal muscle and heart. The specific activities of the isoenzymes varied 25-fold, from 50nmol/min per mg for PDK2 to 1250nmol/min per mg for PDK3. Apparent Ki values of the isoenzymes for the synthetic analogue of pyruvate, dichloroacetate, varied 40-fold, from 0.2 mM for PDK2 to 8 mM for PDK3. The isoenzymes were also different with respect to their ability to respond to NADH and NADH plus acetyl-CoA. NADH alone stimulated the activities of PDK1 and PDK2 by 20 and 30% respectively. NADH plus acetyl-CoA activated these isoenzymes nearly 200 and 300%. Under comparable conditions, isoenzyme PDK3 was almost completely unresponsive to NADH, and NADH plus acetyl-CoA caused inhibition rather than activation. Isoenzyme PDK4 was activated almost 2-fold by NADH, but NADH plus acetyl-CoA did not activate above the level seen with NADH alone. These results provide the first evidence that the unique tissue distribution and kinetic characteristics of the isoenzymes of PDK are among the major factors responsible for tissue-specific regulation of the pyruvate dehydrogenase complex activity.

Full Text

The Full Text of this article is available as aPDF (219.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cate R. L., Roche T. E. A unifying mechanism for stimulation of mammalian pyruvate dehydrogenase(a) kinase by reduced nicotinamide adenine dinucleotide, dihydrolipoamide, acetyl coenzyme A, or pyruvate. J Biol Chem. 1978 Jan 25;253(2):496–503. [PubMed] [Google Scholar]
  2. Dahl H. H., Brown R. M., Hutchison W. M., Maragos C., Brown G. K. A testis-specific form of the human pyruvate dehydrogenase E1 alpha subunit is coded for by an intronless gene on chromosome 4. Genomics. 1990 Oct;8(2):225–232. doi: 10.1016/0888-7543(90)90275-y. [DOI] [PubMed] [Google Scholar]
  3. De Marcucci O. G., Hodgson J. A., Lindsay J. G. The Mr-50 000 polypeptide of mammalian pyruvate dehydrogenase complex participates in the acetylation reactions. Eur J Biochem. 1986 Aug 1;158(3):587–594. doi: 10.1111/j.1432-1033.1986.tb09795.x. [DOI] [PubMed] [Google Scholar]
  4. Dennis S. C., DeBuysere M., Scholz R., Olson M. S. Studies on the relationship between ketogenesis and pyruvate oxidation in isolated rat liver mitochondria. J Biol Chem. 1978 Apr 10;253(7):2229–2237. [PubMed] [Google Scholar]
  5. Fitzgerald J., Dahl H. H., Iannello R. C. Differential expression of two testis-specific transcripts of the mouse Pdha-2 gene during spermatogenesis. DNA Cell Biol. 1994 May;13(5):531–537. doi: 10.1089/dna.1994.13.531. [DOI] [PubMed] [Google Scholar]
  6. Fitzgerald J., Wilcox S. A., Graves J. A., Dahl H. H. A eutherian X-linked gene, PDHA1, is autosomal in marsupials: a model for the evolution of a second, testis-specific variant in eutherian mammals. Genomics. 1993 Dec;18(3):636–642. doi: 10.1016/s0888-7543(05)80366-0. [DOI] [PubMed] [Google Scholar]
  7. Gudi R., Bowker-Kinley M. M., Kedishvili N. Y., Zhao Y., Popov K. M. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem. 1995 Dec 1;270(48):28989–28994. doi: 10.1074/jbc.270.48.28989. [DOI] [PubMed] [Google Scholar]
  8. Hucho F., Randall D. D., Roche T. E., Burgett M. W., Pelley J. W., Reed L. J. -Keto acid dehydrogenase complexes. XVII. Kinetic and regulatory properties of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase from bovine kidney and heart. Arch Biochem Biophys. 1972 Jul;151(1):328–340. doi: 10.1016/0003-9861(72)90504-8. [DOI] [PubMed] [Google Scholar]
  9. Kerbey A. L., Randle P. J., Cooper R. H., Whitehouse S., Pask H. T., Denton R. M. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J. 1976 Feb 15;154(2):327–348. doi: 10.1042/bj1540327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kerbey A. L., Randle P. J. Pyruvate dehydrogenase kinase/activator in rat heart mitochondria, Assay, effect of starvation, and effect of protein-synthesis inhibitors of starvation. Biochem J. 1982 Jul 15;206(1):103–111. doi: 10.1042/bj2060103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Linn T. C., Pettit F. H., Reed L. J. Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci U S A. 1969 Jan;62(1):234–241. doi: 10.1073/pnas.62.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maragos C., Hutchison W. M., Hayasaka K., Brown G. K., Dahl H. H. Structural organization of the gene for the E1 alpha subunit of the human pyruvate dehydrogenase complex. J Biol Chem. 1989 Jul 25;264(21):12294–12298. [PubMed] [Google Scholar]
  15. Miernyk J. A., Randall D. D. Some kinetic and regulatory properties of the pea mitochondrial pyruvate dehydrogenase complex. Plant Physiol. 1987 Feb;83(2):306–310. doi: 10.1104/pp.83.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patel M. S., Roche T. E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990 Nov;4(14):3224–3233. doi: 10.1096/fasebj.4.14.2227213. [DOI] [PubMed] [Google Scholar]
  17. Pettit F. H., Pelley J. W., Reed L. J. Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Commun. 1975 Jul 22;65(2):575–582. doi: 10.1016/s0006-291x(75)80185-9. [DOI] [PubMed] [Google Scholar]
  18. Popov K. M., Kedishvili N. Y., Zhao Y., Gudi R., Harris R. A. Molecular cloning of the p45 subunit of pyruvate dehydrogenase kinase. J Biol Chem. 1994 Nov 25;269(47):29720–29724. [PubMed] [Google Scholar]
  19. Popov K. M., Kedishvili N. Y., Zhao Y., Shimomura Y., Crabb D. W., Harris R. A. Primary structure of pyruvate dehydrogenase kinase establishes a new family of eukaryotic protein kinases. J Biol Chem. 1993 Dec 15;268(35):26602–26606. [PubMed] [Google Scholar]
  20. Popov K. M., Shimomura Y., Harris R. A. Purification and comparative study of the kinases specific for branched chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase. Protein Expr Purif. 1991 Aug;2(4):278–286. doi: 10.1016/1046-5928(91)90084-v. [DOI] [PubMed] [Google Scholar]
  21. Popov K. M., Zhao Y., Shimomura Y., Kuntz M. J., Harris R. A. Branched-chain alpha-ketoacid dehydrogenase kinase. Molecular cloning, expression, and sequence similarity with histidine protein kinases. J Biol Chem. 1992 Jul 5;267(19):13127–13130. [PubMed] [Google Scholar]
  22. Pratt M. L., Roche T. E. Mechanism of pyruvate inhibition of kidney pyruvate dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. J Biol Chem. 1979 Aug 10;254(15):7191–7196. [PubMed] [Google Scholar]
  23. Priestman D. A., Mistry S. C., Halsall A., Randle P. J. Role of protein synthesis and of fatty acid metabolism in the longer-term regulation of pyruvate dehydrogenase kinase. Biochem J. 1994 Jun 15;300(Pt 3):659–664. doi: 10.1042/bj3000659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Priestman D. A., Orfali K. A., Sugden M. C. Pyruvate inhibition of pyruvate dehydrogenase kinase. Effects of progressive starvation and hyperthyroidism in vivo, and of dibutyryl cyclic AMP and fatty acids in cultured cardiac myocytes. FEBS Lett. 1996 Sep 16;393(2-3):174–178. doi: 10.1016/0014-5793(96)00877-0. [DOI] [PubMed] [Google Scholar]
  25. Rahmatullah M., Jilka J. M., Radke G. A., Roche T. E. Properties of the pyruvate dehydrogenase kinase bound to and separated from the dihydrolipoyl transacetylase-protein X subcomplex and evidence for binding of the kinase to protein X. J Biol Chem. 1986 May 15;261(14):6515–6523. [PubMed] [Google Scholar]
  26. Rahmatullah M., Roche T. E. The catalytic requirements for reduction and acetylation of protein X and the related regulation of various forms of resolved pyruvate dehydrogenase kinase. J Biol Chem. 1987 Jul 25;262(21):10265–10271. [PubMed] [Google Scholar]
  27. Randle P. J. Fuel selection in animals. Biochem Soc Trans. 1986 Oct;14(5):799–806. doi: 10.1042/bst0140799. [DOI] [PubMed] [Google Scholar]
  28. Ravindran S., Radke G. A., Guest J. R., Roche T. E. Lipoyl domain-based mechanism for the integrated feedback control of the pyruvate dehydrogenase complex by enhancement of pyruvate dehydrogenase kinase activity. J Biol Chem. 1996 Jan 12;271(2):653–662. doi: 10.1074/jbc.271.2.653. [DOI] [PubMed] [Google Scholar]
  29. Reed L. J., Hackert M. L. Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem. 1990 Jun 5;265(16):8971–8974. [PubMed] [Google Scholar]
  30. Roche T. E., Reed L. J. Monovalent cation requirement for ADP inhibition of pyruvate dehydrogenase kinase. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1341–1348. doi: 10.1016/0006-291x(74)90461-6. [DOI] [PubMed] [Google Scholar]
  31. Rowles J., Scherer S. W., Xi T., Majer M., Nickle D. C., Rommens J. M., Popov K. M., Harris R. A., Riebow N. L., Xia J. Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem. 1996 Sep 13;271(37):22376–22382. doi: 10.1074/jbc.271.37.22376. [DOI] [PubMed] [Google Scholar]
  32. Siess E. A., Wieland O. H. Phosphorylation state of cytosolic and mitochondrial adenine nucleotides and of pyruvate dehydrogenase in isolated rat liver cells. Biochem J. 1976 Apr 15;156(1):91–102. doi: 10.1042/bj1560091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stepp L. R., Pettit F. H., Yeaman S. J., Reed L. J. Purification and properties of pyruvate dehydrogenase kinase from bovine kidney. J Biol Chem. 1983 Aug 10;258(15):9454–9458. [PubMed] [Google Scholar]
  34. Teague W. M., Pettit F. H., Wu T. L., Silberman S. R., Reed L. J. Purification and properties of pyruvate dehydrogenase phosphatase from bovine heart and kidney. Biochemistry. 1982 Oct 26;21(22):5585–5592. doi: 10.1021/bi00265a031. [DOI] [PubMed] [Google Scholar]
  35. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu P., Sato J., Zhao Y., Jaskiewicz J., Popov K. M., Harris R. A. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J. 1998 Jan 1;329(Pt 1):197–201. doi: 10.1042/bj3290197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy ofThe Biochemical Society

ACTIONS

RESOURCES


[8]ページ先頭

©2009-2025 Movatter.jp