- Article
- Published:
A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles
- Ricardo N. Martínez ORCID:orcid.org/0000-0002-6013-11391,
- Tiago R. Simões ORCID:orcid.org/0000-0003-4716-649X2,3,
- Gabriela Sobral ORCID:orcid.org/0000-0002-5001-44064 &
- …
- Sebastián Apesteguía5
Naturevolume 597, pages235–238 (2021)Cite this article
6799Accesses
26Citations
407Altmetric
Subjects
Abstract
The early evolution of diapsid reptiles is marked by a deep contrast between our knowledge of the origin and early evolution of archosauromorphs (crocodiles, avian and non-avian dinosaurs) to that of lepidosauromorphs (squamates (lizards, snakes) and sphenodontians (tuataras)). Whereas the former include hundreds of fossil species across various lineages during the Triassic period1, the latter are represented by an extremely patchy early fossil record comprising only a handful of fragmentary fossils, most of which have uncertain phylogenetic affinities and are confined to Europe1,2,3. Here we report the discovery of a three-dimensionally preserved reptile skull, assigned asTaytalura alcoberi gen. et sp. nov., from the Late Triassic epoch of Argentina that is robustly inferred phylogenetically as the earliest evolving lepidosauromorph, using various data types and optimality criteria. Micro-computed tomography scans of this skull reveal details about the origin of the lepidosaurian skull from early diapsids, suggesting that several traits traditionally associated with sphenodontians in fact originated much earlier in lepidosauromorph evolution.Taytalura suggests that the strongly evolutionarily conserved skull architecture of sphenodontians represents the plesiomorphic condition for all lepidosaurs, that stem and crown lepidosaurs were contemporaries for at least ten million years during the Triassic, and that early lepidosauromorphs had a much broader geographical distribution than has previously been thought.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
Data availability
Computed tomography scan data, including surface volume files of the holotype, all morphological and molecular data generated and analysed, along with trees and log files described in the Article are available online as 'Supplementary Data 1' at Harvard Dataverse (https://doi.org/10.7910/DVN/G5EOOC)43.
Code availability
The MrBayes commands for Bayesian analyses are provided as ‘Supplementary Data 2’ and R scripts for reproducing the morphospace analyses and figures are available as the file ‘Supplementary Data 3’, both at Harvard Dataverse (https://doi.org/10.7910/DVN/G5EOOC)43.
References
Sues, H. D.The Rise of Reptiles: 320 Million Years of Evolution (John Hopkins Univ. Press, 2019).
Simões, T. R. & Caldwell, M. W. inEncyclopedia of Geology 2nd ed., vol. 3 (eds Alderton, D. & Elias, S. A.) 165–174 (Academic, 2021).
Simões, T. R. & Pyron, R. A. The squamate tree of life.Bull. Mus. Comp. Zool.163, 47–95 (2021).
Uetz, P. & Hošek, J.The Reptile Database http://www.reptile-database.org (2021).
Gill, F., Donsker, D. & Rasmussen, F.IOC World Bird List (v.11.1) (2021).
Simões, T. R., Apesteguía, S., Hsiou, A. S. & Daza, J. D. Lepidosaurs from Gondwana: an introduction.J. Herpetol.51, 297–299 (2017).
Sues, H.-D. & Kligman, B. T. A new lizard-like reptile from the Upper Triassic (Carnian) of Virginia and the Triassic record of Lepidosauromorpha (Diapsida, Sauria).J. Vert. Paleontol.40, e1879102 (2021).
Schoch, R. R. & Sues, H.-D. A new lepidosauromorph reptile from the Middle Triassic (Ladinian) of Germany and its phylogenetic relationships.J. Vertebr. Paleontol.38, e1444619 (2018).
Evans, S. E. & Borsuk-Białynicka, M. A small lepidosauromorph reptile from the Early Triassic of Poland.Palaeontol. Pol.65, 179–202 (2009).
Romo De Vivar, P. R., Martinelli, A. G., Fonseca, P. H. M. & Soares, M. B. To be or not to be: the hidden side ofCargninia enigmatica and other puzzling remains of Lepidosauromorpha from the Upper Triassic of Brazil.J. Vert. Paleontol.40, e1828438 (2020).
Cavicchini, I., Zaher, M. & Benton, M. J. An enigmatic neodiapsid reptile from the Middle Triassic of England.J. Vertebr. Paleontol.40, e1781143 (2020).
Sobral, G., Simões, T. R. & Schoch, R. R. A tiny new Middle Triassic stem-lepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna.Sci. Rep.10, 2273 (2020).
Simões, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps.Nature557, 706–709 (2018).
Simões, T. R., Vernygora, O., Caldwell, M. W. & Pierce, S. E. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles.Nat. Commun.11, 3322 (2020).
Simões, T. R., Caldwell, M. W. & Pierce, S. E. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates.BMC Biol.18, 191 (2020).
Scheyer, T. M. et al.Colobops: a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite.R. Soc. Open Sci.7, 192179 (2020).
Hsiou, A. S., De França, M. A. G. & Ferigolo, J. New data on theClevosaurus (Sphenodontia: Clevosauridae) from the Upper Triassic of Southern Brazil.PLoS ONE10, e0137523 (2015).
Fraser, N. C. The osteology and relationships ofClevosaurus (Reptilia: Sphenodontida).Phil. Trans. R. Soc. Lond. B321, 125–178 (1988).
Martinez, R. N. et al. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea.Science331, 206–210 (2011).
Garberoglio, F. F. et al. New skulls and skeletons of the Cretaceous legged snakeNajash, and the evolution of the modern snake body plan.Sci. Adv.5, eaax5833 (2019).
Bittencourt, J. S., Simões, T. R., Caldwell, M. W. & Langer, M. C. Discovery of the oldest South American fossil lizard illustrates the cosmopolitanism of early South American squamates.Commun. Biol.3, 201 (2020).
Bertin, T. J. C., Thivichon-Prince, B., LeBlanc, A. R. H., Caldwell, M. W. & Viriot, L. Current perspectives on tooth implantation, attachment, and replacement in Amniota.Front. Physiol.9, 1630 (2018).
Fraser, N. C. A new rhynchocephalian from the British Upper Trias.Palaeontology25, 709–725 (1982).
Evans, S. E. The skull of a new eosuchian reptile from the Lower Jurassic of South Wales.Zool. J. Linn. Soc.70, 203–264 (1980).
Whiteside, D. I. The head skeleton of the Rhaetian sphenodontidDiphydontosaurus avonis gen. et sp. nov. and the modernizing of a living fossil.Phil. Trans. R. Soc. Lond. B312, 379–430 (1986).
Herrera‐Flores, J. A., Stubbs, T. L. & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?Palaeontology60, 319–328 (2017).
Gemmell, N. J. et al. The tuatara genome reveals ancient features of amniote evolution.Nature584, 403–409 (2020).
Jones, M. E. H. et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara).BMC Evol. Biol.13, 208 (2013).
Hsiou, A. S. et al. A new clevosaurid from the Triassic (Carnian) of Brazil and the rise of sphenodontians in Gondwana.Sci. Rep.9, 11821 (2019).
Vernygora, O. V., Simões, T. R. & Campbell, E. O. Evaluating the performance of probabilistic algorithms for phylogenetic analysis of big morphological datasets: a simulation study.Syst. Biol.69, 1088–1105 (2020).
Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis, version 3.04,http://mesquiteproject.org (2015).
Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis.Cladistics24, 774–786 (2008).
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Syst. Biol.61, 539–542 (2012).
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees inGateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010).
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Mol. Biol. Evol.34, 772–773 (2017).
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data.Syst. Biol.50, 913–925 (2001).
Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution.Proc. Natl Acad. Sci. USA110, 13875–13879 (2013).
Sutherland, J., Flannery, T., Moon, B. C., Stubbs, T. L. & Benton, M. J. Does exceptional preservation distort our view of disparity in the fossil record?Proc. R. Soc. Lond. Biol. Sci.286, 20190091 (2019).
Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions.Biol. J. Linn. Soc.118, 131–151 (2016).
Gerber, S. Use and misuse of discrete character data for morphospace and disparity analyses.Palaeontology62, 305–319 (2019).
Cisneros, J. C. & Ruta, M. Morphological diversity and biogeography of procolophonids (Amniota: Parareptilia).J. Syst. Palaeontology8, 607–625 (2010).
Ciampaglio, C. N., Kemp, M. & McShea, D. W. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity.Paleobiology27, 695–715 (2001).
Martinez, R., Simões, T. R., Sobral, G. & Apesteguía, S. Supplementary Data for “A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles”Harvard Dataverse (2021).
Acknowledgements
R.N.M. thanks the Secretaría de Ciencia, Técnica e Innovación of San Juan (SECITI) and the field crew and EarthWatch volunteers of 2001 fieldwork. T.R.S. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for providing a postdoctoral fellowship. We thank J. Antonio González for his line reconstruction ofTaytalura skull and jaw and J. Blanco for his artwork ofTaytalura.
Author information
Authors and Affiliations
Instituto y Museo de Ciencias Naturales, Centro de Investigaciones de la Geósfera y la Biósfera, Universidad Nacional de San Juan, San Juan, Argentina
Ricardo N. Martínez
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
Tiago R. Simões
Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
Tiago R. Simões
Department of Palaeontology, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
Gabriela Sobral
Área de Paleontología, Fundación de Historia Natural Félix de Azara, Universidad Maimónides, Buenos Aires, Argentina
Sebastián Apesteguía
- Ricardo N. Martínez
You can also search for this author inPubMed Google Scholar
- Tiago R. Simões
You can also search for this author inPubMed Google Scholar
- Gabriela Sobral
You can also search for this author inPubMed Google Scholar
- Sebastián Apesteguía
You can also search for this author inPubMed Google Scholar
Contributions
R.N.M. led the project, and conducted fieldwork and specimen preparation. T.R.S. conducted phylogenetic and morphospace analyses. G.S. performed CT scan data segmentation. T.R.S., G.S. and S.A. produced the figures. All authors contributed to interpretation of the results, discussions and manuscript writing.
Corresponding authors
Correspondence toRicardo N. Martínez orTiago R. Simões.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review informationNature thanks Hans-Dieter Sues and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Location and geology of the Ischigualasto–Villa Unión Basin.
a, Geologic map of the southern outcrops of the Ischigualasto–Villa Unión Basin.b, Stratigraphic section of the Ischigualasto Formation. Black star indicates the type locality of PVSJ 698. Black line indicates the location of the stratigraphic section.
Extended Data Fig. 2 Cranial anatomy ofT. alcoberi on the basis of segmented micro-computed tomography scan data.
a,b, Three-dimensional model ofTaytalura with segmented bones in right lateral and ventral views.c, Segmented right squamosal and quadrate in lateral view (left) and corresponding line drawing (right).d, Segmented left quadrate in posterior view.e,f, Line drawings of the left jaw in medial and dorsal views. af, adductor fossa; ap, anterior process; ar, articular; bc, braincase; co, coronoid; dp, dorsal process, fr, frontal; gf, glenoid fossa; hy, hyoid arch; ju, jugal; lc, lateral condyle, lj, lower jaw; mc, medial condyle, mf, medial flange; mx, maxilla; na, nasal; oc, otic conch; pa, parietal; pm, pre-maxilla; pl, palate; po, post-orbital; pof, post-frontal; pr, pre-artciular; prf, pre-frontal; qd, quadrate; qj, quadrato-jugal; sp., splenial; sq, squamosal; vp, ventral process. Scale bars, 3.5 mm.
Extended Data Fig. 3 Further details of cranial anatomy ofT. alcoberi on the basis of segmented micro-computed tomography scan data.
a,b, Segmented palate in right lateral and left dorsolateral views.c, Segmented right posterior half of the braincase with stapes in red in lateral view.d, Segmented left posterior half of the braincase in lateral view.e,f, Segmented anterior region of the braincase in left lateral and anterior views. ap, ascending process; bc, braincase; bp, basipterygoid process; CN, cranial nerve; cp, cultriform process; cr, raised crest formed by the pterygoids meeting medially; clp, clinoid process; crp, crista prootica; ds, dorsum sella; ec, ectopterygoid; ep, epipterygoid; fo, fenestra ovalis; hf, hypophyseal fossa; lf, lateral flange; oc, otic conch; os, orbitosphenoid; pa, palatine; pp, paroccipital process; qw, quadrate wing; rc, recess; st, stapes. Roman numerals indicate corresponding cranial nerves. Scale bars, 3.5 mm (a,b), 1.5 mm (c–f).
Extended Data Fig. 4 Cranial anatomy ofT. alcoberi on the basis of 2D cross-sectional slices from micro-computed tomography scan data.
a–c, Transverse cross sections of the skull showing the paired nasals (a), frontals (b) and parietals (c).d, Longitudinal cross-section of the paired frontals.e, Transverse cross section of the left lower and upper jaws in anterior view, showing labial and lingual walls of the tooth grooves of the maxilla and dentary.f, Transverse cross section of the posterior region of the skull through the braincase and the left lower jaw in anterior view.g, Transverse cross section of the left maxilla, showing the replacement tooth going into position.h, Longitudinal cross-section of the left dentary in occlusal view.i,j, Longitudinal cross section of the anterior (i) and posterior (j) sectors of the right maxilla in occlusal view. Inh–i, the absence of the interdental ridges and less dense attachment tissue (alveolar bone and/or cementum) in the interdental space of the anterior dentition is shown, whereasj shows the direct contact between the posterior teeth and the absence of interdental space. Planes of the sections in the corresponding details. ac, adductor crest; alv.t., alveolar tissue; de, dentary; mx, maxilla; na, nasals; f-f, inter-frontal suture; fr, frontals; la, labial wall; li, lingual wall; ot, otolith; pa, parietals; pof, post-frontal; prf, pre-frontal; rp, resorption pit; rt, replacement tooth; to, tooth. Scale bars, 1.5 mm (a), 1 mm (b–e,h–j), 2.5 mm (f), 2 mm (g).
Extended Data Fig. 5 Skull and jaw ofT. alcoberi.
a–d, Photographs of PVSJ 698 in dorsal (a), ventral (b), left lateral (c) and right lateral (d) views.e–h, Reconstruction of the skull ofT. alcoberi in dorsal (e), ventral (f), anterior (g) and left lateral (h) views (reconstructed on the basis of information from both sides).i–k, Reconstruction of the lower jaw ofT. alcoberi in lateral (i), medial (j) and occlusal (k) views. d, dentary; ec, ectopterygoid; fr, frontal; ju, jugal; mx, maxilla; na, nasal; pa, parietal; pm, pre-maxilla; pl, palatine; po, post-orbital; pof, post-frontal; prf, pre-frontal; pt, pterygoid; qd, quadrate; qj, quadrato-jugal; sq, squamosal; Scale bar, 10 mm.
Extended Data Fig. 6 Phylogenetic analyses using morphological data only, including data from all species.
a, Equal weights maximum parsimony analysis. Strict consensus of 602 most parsimonious trees (2,481 steps each).b, Bayesian inference analysis. Majority rule consensus tree. Numbers at nodes indicate posterior probabilities.
Extended Data Fig. 7 Bayesian inference phylogenetic analysis of combined morphological and molecular data, including data from all species.
Maximum compatibility tree (illustrating all nodes, including those with very low support). Numbers at nodes indicate posterior probabilities.
Extended Data Fig. 8 Phylogenetic analyses using morphological data only, with data from the rogue taxon (Vellbergia) removed.
a, Equal weights maximum parsimony analysis. Strict consensus of 572 most parsimonious trees (2,480 steps each).b, Bayesian inference analysis. Majority rule consensus tree. Numbers at nodes indicate posterior probabilities.
Extended Data Fig. 9 Bayesian inference phylogenetic analysis of combined morphological and molecular data, with data from the rogue taxon (Vellbergia) removed.
Majority rule consensus tree. Numbers at nodes indicate posterior probabilities.
Extended Data Fig. 10 Morphospace occupation by early diapsid reptiles and lepidosauromorphs, with the first 10 pairwise principal coordinate comparisons illustrated.
PC1 distinguishes squamates from all other groups when contrasted against all other principal coordinates (red), whereas PC3 distinguishes sphenodontians from all other groups when contrasted against all other principal coordinates (cyan). Major clades of interest are highlighted within convex hulls: squamatans (yellow), sphenodontians (light green), early lepidosaurs of uncertain placement (blue), all other diapsids (purple) andTaytalura (turquoise). For individual taxon names for each data point and relative contribution of each principal coordinate, see supplementary data files at Harvard Dataverse (‘Data availability’ in Methods).
Supplementary information
Supplementary Information
This file contains Geological and paleontological settings, Description ofTaytahura alcoberi, Historical overview of lepidosauromorph classification, Additional taxa added to phylogenetic dataset, Synapomorphies Supplementary References.
Rights and permissions
About this article
Cite this article
Martínez, R.N., Simões, T.R., Sobral, G.et al. A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles.Nature597, 235–238 (2021). https://doi.org/10.1038/s41586-021-03834-3
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Topological Structure Design and Obstacle-climbing Capability Analysis of a Lizard-inspired Torso-leg-foot Biomimetic Robot
- Yuting Du
- Yan-an Yao
- Wenbo Mi
Journal of Bionic Engineering (2025)
A new sphenodontian (Diapsida: Lepidosauria) from the Upper Triassic (Norian) of Germany and its implications for the mode of sphenodontian evolution
- Lisa S. Freisem
- Johannes Müller
- Gabriela Sobral
BMC Ecology and Evolution (2024)
Ontogenetic variation in the cranium of Mixosaurus cornalianus, with implications for the evolution of ichthyosaurian cranial development
- Feiko Miedema
- Gabriele Bindellini
- Erin E. Maxwell
Swiss Journal of Palaeontology (2023)
Extended embryo retention and viviparity in the first amniotes
- Baoyu Jiang
- Yiming He
- Michael J. Benton
Nature Ecology & Evolution (2023)
Africa’s oldest dinosaurs reveal early suppression of dinosaur distribution
- Christopher T. Griffin
- Brenen M. Wynd
- Hazel R. Taruvinga
Nature (2022)