- Article
- Published:
A giant planet candidate transiting a white dwarf
- Andrew Vanderburg ORCID:orcid.org/0000-0001-7246-54381,2,
- Saul A. Rappaport3,
- Siyi Xu ORCID:orcid.org/0000-0002-8808-42824,
- Ian J. M. Crossfield5,
- Juliette C. Becker6,
- Bruce Gary7,
- Felipe Murgas8,9,
- Simon Blouin ORCID:orcid.org/0000-0002-9632-143610,
- Thomas G. Kaye ORCID:orcid.org/0000-0001-7996-618X11,12,
- Enric Palle8,9,
- Carl Melis13,
- Brett M. Morris14,
- Laura Kreidberg15,16,
- Varoujan Gorjian17,
- Caroline V. Morley2,
- Andrew W. Mann ORCID:orcid.org/0000-0003-3654-160218,
- Hannu Parviainen ORCID:orcid.org/0000-0001-5519-13918,9,
- Logan A. Pearce ORCID:orcid.org/0000-0003-3904-737819,
- Elisabeth R. Newton20,
- Andreia Carrillo2,
- Ben Zuckerman21,
- Lorne Nelson ORCID:orcid.org/0000-0002-6916-813022,
- Greg Zeimann23,
- Warren R. Brown ORCID:orcid.org/0000-0002-4462-234116,
- René Tronsgaard ORCID:orcid.org/0000-0003-1001-070724,
- Beth Klein ORCID:orcid.org/0000-0001-5854-675X21,
- George R. Ricker3,
- Roland K. Vanderspek3,
- David W. Latham16,
- Sara Seager ORCID:orcid.org/0000-0002-6892-69483,25,26,
- Joshua N. Winn ORCID:orcid.org/0000-0002-4265-047X27,
- Jon M. Jenkins ORCID:orcid.org/0000-0002-4715-946028,
- Fred C. Adams29,30,
- Björn Benneke ORCID:orcid.org/0000-0001-5578-149831,32,
- David Berardo3,
- Lars A. Buchhave ORCID:orcid.org/0000-0003-1605-566624,
- Douglas A. Caldwell ORCID:orcid.org/0000-0003-1963-961628,33,
- Jessie L. Christiansen34,
- Karen A. Collins ORCID:orcid.org/0000-0001-6588-957416,
- Knicole D. Colón35,
- Tansu Daylan3,
- John Doty36,
- Alexandra E. Doyle ORCID:orcid.org/0000-0003-0053-385437,
- Diana Dragomir ORCID:orcid.org/0000-0003-2313-467X38,
- Courtney Dressing ORCID:orcid.org/0000-0001-8189-023339,
- Patrick Dufour31,32,
- Akihiko Fukui8,40,
- Ana Glidden3,25,
- Natalia M. Guerrero3,
- Xueying Guo3,
- Kevin Heng ORCID:orcid.org/0000-0003-1907-591014,
- Andreea I. Henriksen ORCID:orcid.org/0000-0001-8817-681724,
- Chelsea X. Huang3,
- Lisa Kaltenegger41,42,
- Stephen R. Kane43,
- John A. Lewis ORCID:orcid.org/0000-0001-5199-352216,
- Jack J. Lissauer28,
- Farisa Morales ORCID:orcid.org/0000-0001-9414-385117,44,
- Norio Narita ORCID:orcid.org/0000-0001-8511-29818,45,46,47,48,
- Joshua Pepper ORCID:orcid.org/0000-0002-3827-841749,
- Mark E. Rose ORCID:orcid.org/0000-0003-4724-745X28,
- Jeffrey C. Smith ORCID:orcid.org/0000-0002-6148-790328,33,
- Keivan G. Stassun ORCID:orcid.org/0000-0002-3481-905250,51 &
- …
- Liang Yu3,52
Naturevolume 585, pages363–367 (2020)Cite this article
12kAccesses
173Citations
1506Altmetric
Subjects
Abstract
Astronomers have discovered thousands of planets outside the Solar System1, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star2, but more distant planets can survive this phase and remain in orbit around the white dwarf3,4. Some white dwarfs show evidence for rocky material floating in their atmospheres5, in warm debris disks6,7,8,9 or orbiting very closely10,11,12, which has been interpreted as the debris of rocky planets that were scattered inwards and tidally disrupted13. Recently, the discovery of a gaseous debris disk with a composition similar to that of ice giant planets14 demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far, no intact planets have been detected in close orbits around white dwarfs. Here we report the observation of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. We observed and modelled the periodic dimming of the white dwarf caused by the planet candidate passing in front of the star in its orbit. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95 per cent confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red giant phase and shrinks owing to friction. In this case, however, the long orbital period (compared with other white dwarfs with close brown dwarf or stellar companions) and low mass of the planet candidate make common-envelope evolution less likely. Instead, our findings for the WD 1856+534 system indicate that giant planets can be scattered into tight orbits without being tidally disrupted, motivating the search for smaller transiting planets around white dwarfs.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
We provide all reduced light curves and spectra with the manuscript. The Spitzer images are available for download at the Spitzer Heritage Archive (http://irsa.ipac.caltech.edu/applications/Spitzer/SHA/), and the TESS images and light curves are available from the Mikulski Archive for Space Telescopes (https://archive.stsci.edu/tess/).Source data are provided with this paper.
Code availability
Much of the code used to produce these results is publicly available and linked throughout the paper. We wrote custom software to analyse the data collected in this project. Though this code was not written with distribution in mind, it is available online athttps://github.com/avanderburg/.
References
Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research.Publ. Astron. Soc. Pacif.125, 989–999 (2013).
Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giant stars.Astrophys. J. Lett.705, 81–85 (2009).
Luhman, K. L., Burgasser, A. J. & Bochanski, J. J. Discovery of a candidate for the coolest known brown dwarf.Astrophys. J. Lett.730, 9 (2011).
Marsh, T. R. et al. The planets around NN Serpentis: still there.Mon. Not. R. Astron. Soc.437, 475–488 (2014).
Jura, M. A tidally disrupted asteroid around the white dwarf G29–38.Astrophys. J. Lett.584, 91–94 (2003).
Kilic, M., von Hippel, T., Leggett, S. K. & Winget, D. E. Excess infrared radiation from the massive DAZ white dwarf GD 362: a debris disk?Astrophys. J. Lett.632, 115–118 (2005).
Becklin, E. E. et al. A dusty disk around GD 362, a white dwarf with a uniquely high photospheric metal abundance.Astrophys. J. Lett.632, 119–122 (2005).
Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseous metal disk around a white dwarf.Science314, 1908 (2006).
Wilson, T. G., Farihi, J., Gänsicke, B. T. & Swan, A. The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble.Mon. Not. R. Astron. Soc.487, 133–146 (2019).
Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf.Nature526, 546–549 (2015).
Manser, C. J. et al. A planetesimal orbiting within the debris disc around a white dwarf star.Science364, 66–69 (2019).
Vanderbosch, Z. et al. A white dwarf with transiting circumstellar material far outside the Roche limit.Astrophys. J.897, 171 (2020).
Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs?Astrophys. J.572, 556–565 (2002).
Gänsicke, B. T. et al. Accretion of a giant planet onto a white dwarf star.Nature576, 61–64 (2019).
McCook, G. P. & Sion, E. M. A catalog of spectroscopically identified white dwarfs.Astrophys. J. Suppl. Ser.121, 1–130 (1999).
Nelson, L., Schwab, J., Ristic, M. & Rappaport, S. Minimum orbital period of precataclysmic variables.Astrophys. J.866, 88 (2018).
Marley, M., Saumon, D., Morley, C. & Fortney, J.Sonora 2018: Cloud-free, Solar Composition, Solar C/O Substellar Atmosphere Models and Spectra (2018);https://doi.org/10.5281/zenodo.1309035
Spiegel, D. S., Burrows, A. & Milsom, J. A. The deuterium-burning mass limit for brown dwarfs and giant planets.Astrophys. J.727, 57 (2011).
Casewell, S. L. et al. WD0837+185: the formation and evolution of an extreme mass-ratio white-dwarf–brown-dwarf binary in Praesepe.Astrophys. J. Lett.759, 34 (2012).
Littlefair, S. P. et al. The substellar companion in the eclipsing white dwarf binary SDSS J141126.20+200911.1.Mon. Not. R. Astron. Soc.445, 2106–2115 (2014).
Rappaport, S. et al. WD 1202-024: the shortest-period pre-cataclysmic variable.Mon. Not. R. Astron. Soc.471, 948–961 (2017).
Parsons, S. G. et al. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2.Mon. Not. R. Astron. Soc.471, 976–986 (2017).
Paczynski, B. Common-envelope binaries. InInternational Astronomical Union Symp. No. 73: Structure and Evolution of Close Binary Systems (eds Eggleton, P., Mitton, S. & Whelan, J.) 75–80 (Reidel, 1976).
Xu, X.-J. & Li, X.-D. On the binding energy parameterλ of common-envelope evolution.Astrophys. J.716, 114–121 (2010).
Veras, D. & Gänsicke, B. T. Detectable close-in planets around white dwarfs through late unpacking.Mon. Not. R. Astron. Soc.447, 1049–1058 (2015).
Goldreich, P. & Soter, S.Q in the Solar System.Icarus5, 375–389 (1966).
Veras, D. & Fuller, J. Tidal circularization of gaseous planets orbiting white dwarfs.Mon. Not. R. Astron. Soc.489, 2941–2953 (2019).
Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b.Nature505, 69–72 (2014).
Agol, E. Transit surveys for Earths in the habitable zones of white dwarfs.Astrophys. J. Lett.731, 31 (2011).
Boss, A. P. et al. Working group on extrasolar planets.Proc. International Astronomical Union A26A, 183–186 (2005).
Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS).J. Astron. Telesc. Instrum. Syst.1, 014003 (2014).
Dufour, P. et al. The Montreal White Dwarf Database: a tool for the community. In20th European White Dwarf Workshop (EuroWD16) (eds Tremblay, P.-E., Gaensicke, B. & Marsh, T.) 3–8 (2017).
Stassun. K. G. et al. The TESS Input Catalog and candidate target list.Astron. J.156, 102 (2018); correction156, 183 (2018).
Gould, A. & Morgan, C. W. Transit target selection using reduced proper motions.Astrophys. J.585, 1056–1061 (2003).
Altmann, M., Roeser, S., Demleitner, M., Bastian, U. & Schilbach, E. Hot Stuff for One Year (HSOY). A 583 million star proper motion catalogue derived from Gaia DR1 and PPMXL.Astron. Astrophys.600, L4 (2017).
Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS.Mon. Not. R. Astron. Soc.482, 4570–4591 (2019).
Jenkins, J. M. Overview of the TESS Science Pipeline. InAAS/Division for Extreme Solar Systems III (chairs Mayor, M. & Rasio, F.) 106.05 (2015).
Jenkins, J. M. et al. The TESS science processing operations center. InProc. SPIE 9913 Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J. C.) 99133E (2016).
Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction.Publ. Astron. Soc. Pacif.124, 1000–1014 (2012).
Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data.Publ. Astron. Soc. Pacif.126, 100 (2014).
Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets.Astrophys. J.575, 493–505 (2002).
Evans, D. F. Evidence for unresolved exoplanet-hosting binaries in Gaia DR2.Res. Notes AAS2, 20 (2018).
Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). VIII. A two-planet system in Praesepe from K2 Campaign 16.Astron. J.156, 195 (2018).
Lindegren, L.Re-normalising the Astrometric Chi-Square in Gaia DR2 Gaia Technical Note No. GAIA-C3-TN-LU-LL-124-01 (Gaia DPAC, 2018).
Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society–Palomar Observatory Sky Survey.Publ. Astron. Soc. Pacif.67, 258–261 (1955).
Rappaport, S. et al. Drifting asteroid fragments around WD 1145+017.Mon. Not. R. Astron. Soc.458, 3904–3917 (2016).
Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-m Telescopio Carlos Sánchez.J. Astron. Telesc. Instrum. Syst.5, 015001 (2019).
Schmidt, G. D., Weymann, R. J. & Foltz, C. B. A. Moderate-resolution, high-throughput CCD channel for the MMT Spectrograph.Publ. Astron. Soc. Pacif.101, 713 (1989).
Miller, J. S. & Stone, R. P.The Kast Double Spectograph Lick Observatory Technical Report 66 (University of California Observatories/Lick Observatory, 1994).
Chonis, T. S., Hill, G. J., Lee, H., Tuttle, S. E. & Vattiat, B. L. LRS2: the new facility low resolution integral field spectrograph for the Hobby–Eberly telescope. InProc. SPIE Astronomical Telescopes and Instrumentation Vol. 9147 (eds Ramsay, S. K., McLean, I. S. & Takami, H.) 91470A (SPIE, 2014).
Zeimann, G.Panacea source code (accessed 24 June 2020); https://github.com/grzeimann/Panacea (2019).
Elias, J. H. et al. Design of the Gemini near-infrared spectrograph. In Proc. Ground-based and Airborne Instrumentation for Astronomy (eds McLean, I. S. & Iye, M.) 62694C (2006).
Mason, R. E. et al. The nuclear near-infrared spectral properties of nearby galaxies.Astrophys. J. Suppl. Ser.217, 13 (2015).
Telting, J. H. et al. FIES: the high-resolution Fiber-fed Echelle Spectrograph at the Nordic Optical Telescope.Astron. Nachr.335, 41 (2014).
Stempels, E. & Telting, J. FIEStool: automated data reduction for FIber-fed Echelle Spectrograph (FIES)Astrophysics Source Code Libraryhttp://ascl.net/1708.009 (2017).
Fűrész, G. Design and Application of High Resolution and Multiobject Spectrographs: Dynamical Studies of Open Clusters. PhD thesis, Univ. Szeged (2008).
Buchhave, L. A. et al. An abundance of small exoplanets around stars with a wide range of metallicities.Nature486, 375–377 (2012).
Stefanik, R. P., Latham, D. W. & Torres, G. Radial-velocity standard stars. InIAU Colloquium 170: Precise Stellar Radial Velocities Vol. 185 (eds Hearnshaw, J. B. & Scarfe, C. D.) 354–366 (1999).
Lépine, S. et al. A spectroscopic catalog of the brightest (J < 9) M dwarfs in the northern sky.Astron. J.145, 102 (2013).
Cubillos, P. et al. WASP-8b: characterization of a cool and eccentric exoplanet with Spitzer.Astrophys. J.768, 42 (2013).
Xu, S. & Jura, M. Spitzer observations of white dwarfs: the missing planetary debris around DZ stars.Astrophys. J.745, 88 (2012).
Xu, S. et al. Infrared variability of two dusty white dwarfs.Astrophys. J.866, 108 (2018).
Blouin, S., Dufour, P., Thibeault, C. & Allard, N. F. A new generation of cool white dwarf atmosphere models. IV. Revisiting the spectral evolution of cool white dwarfs.Astrophys. J.878, 63 (2019).
Blouin, S., Dufour, P. & Allard, N. F. A new generation of cool white dwarf atmosphere models. I. Theoretical framework and applications to DZ stars.Astrophys. J.863, 184 (2018).
Kowalski, P. M. Infrared absorption of dense helium and its importance in the atmospheres of cool white dwarfs.Astron. Astrophys.566, L8 (2014).
Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accurate masses and radii of single stars with TESS and Gaia.Astron. J.155, 22 (2018).
Eggleton, P.Evolutionary Processes in Binary and Multiple Stars (Cambridge Univ. Press, 2006).
Zapolsky, H. S. & Salpeter, E. E. The mass–radius relation for cold spheres of low mass.Astrophys. J.158, 809 (1969).
Mestel, L. On the theory of white dwarf stars. I. The energy sources of white dwarfs.Mon. Not. R. Astron. Soc.112, 583 (1952).
van Horn, H. M. Cooling of white dwarfs. InInternational Astronomical Union Symp.No. 42: White Dwarfs (ed. Luyten, W. J.) 97–115 (Reidel, 1971).
Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius.Astrophys. J.804, 64 (2015); erratum819, 87 (2016).
Mann, A. W. et al. How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 Solar masses.Astrophys. J.871, 63 (2019).
Stassun, K. G. et al. The revised TESS input catalog and candidate target list.Astron. J.158, 138 (2019).
Pearce, L. A.Linear Orbits for the Impatient (accessed 24 June 2020); https://github.com/logan-pearce/LOFTI (2019).
Pearce, L. A. et al. Orbital parameter determination for wide stellar binary systems in the age of Gaia.Astrophys. J.894, 115 (2020).
Blunt, S. et al. Orbits for the Impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets.Astron. J.153, 229 (2017).
Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates.Publ. Astron. Soc. Pacif.122, 935 (2010).
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches.Astrophys. J. Lett.580, 171–175 (2002).
Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary fitting suite in IDL.Publ. Astron. Soc. Pacif.125, 83–112 (2013).
Gianninas, A., Strickland, B. D., Kilic, M. & Bergeron, P. Limb-darkening coefficients for eclipsing white dwarfs.Astrophys. J.766, 3 (2013).
Claret, A. et al. Gravity and limb-darkening coefficients for compact stars: DA, DB, and DBA eclipsing white dwarfs.Astron. Astrophys.634, A93 (2020).
Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems.Astron. Astrophys.529, A75 (2011).
Seager, S. & Mallén-Ornelas, G. A unique solution of planet and star parameters from an extrasolar planet transit light curve.Astrophys. J.585, 1038–1055 (2003).
Lucy, L. B. & Sweeney, M. A. Spectroscopic binaries with circular orbits.Astron. J.76, 544–556 (1971).
Goodman, J. & Weare, J. Ensemble samplers with affine invariance.Comm. App. Math. Comp. Sci.5, 65–80 (2010).
Kopal, Z.Close Binary Systems (Chapman & Hall, 1959).
Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws.Mon. Not. R. Astron. Soc.435, 2152–2160 (2013).
Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color–magnitude diagrams.Astrophys. J.689, 1327–1344 (2008).
Nelson, L. A., Rappaport, S. A. & Joss, P. C. On the nature of the companion to Van Biesbroeck 8.Nature316, 42–44 (1985).
Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. Giant planet and brown dwarf formation. InProtostars and Planets VI (eds Beuther, H. et al.) 619–642 (Univ. Arizona Press, 2014).
Bowler, B. P., Blunt, S. C. & Nielsen, E. L. Population-level eccentricity distributions of imaged exoplanets and brown dwarf companions: dynamical evidence for distinct formation channels.Astron. J.159, 63 (2020).
Phillips, M. W. et al. A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets.Astron. Astrophys.637, A38 (2020).
Miles, B. E. et al. Observations of disequilibrium CO chemistry in the coldest brown dwarfs.Astron. J.160, 63 (2020).
Morley, C. V. et al. An L band spectrum of the coldest brown dwarf.Astrophys. J.858, 97 (2018).
Morley, C. V. et al. Water clouds in Y dwarfs and exoplanets.Astrophys. J.787, 78 (2014).
Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617.Astrophys. J.788, 48 (2014).
Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0.Publ. Astron. Soc. Pacif.129, 104502 (2017).
Butters, O. W. et al. The first WASP public data release.Astron. Astrophys.520, L10 (2010).
Gizis, J. E. M-subdwarfs: spectroscopic classification and the metallicity scale.Astron. J.113, 806–822 (1997).
Lépine, S., Rich, R. M. & Shara, M. M. Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultrasubdwarfs (usdM).Astrophys. J.669, 1235–1247 (2007).
Mann, A. W., Brewer, J. M., Gaidos, E., Lépine, S. & Hilton, E. J. Prospecting in late-type dwarfs: a calibration of infrared and visible spectroscopic metallicities of late K and M dwarfs spanning 1.5 dex.Astron. J.145, 52 (2013).
Newton, E. R. et al. The Hα emission of nearby M dwarfs and its relation to stellar rotation.Astrophys. J.834, 85 (2017).
West, A. A. et al. The Sloan Digital Sky Survey data release 7 spectroscopic M dwarf catalog. I. Data.Astron. J.141, 97 (2011).
Coşkunoğlu, B. et al. Local stellar kinematics from RAVE data—I. Local standard of rest.Mon. Not. R. Astron. Soc.412, 1237–1245 (2011).
Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood.Astron. Astrophys.562, A71 (2014).
Carrillo, A., Hawkins, K., Bowler, B. P., Cochran, W. & Vanderburg, A. Know thy star, know thy planet: chemo-kinematically characterizing TESS targets.Mon. Not. R. Astron. Soc.491, 4365–4381 (2020).
Kilic, M. et al. The ages of the thin disk, thick disk, and the halo from nearby white dwarfs.Astrophys. J.837, 162 (2017).
Haywood, M., Di Matteo, P., Lehnert, M. D., Katz, D. & Gómez, A. The age structure of stellar populations in the solar vicinity. Clues of a two-phase formation history of the Milky Way disk.Astron. Astrophys.560, A109 (2013).
Xiang, M. et al. The ages and masses of a million Galactic-disk main-sequence turnoff and subgiant stars from the LAMOST Galactic Spectroscopic Surveys.Astrophys. J. Suppl. Ser.232, 2 (2017).
Sharma, S. et al. The K2-HERMES Survey: age and metallicity of the thick disc.Mon. Not. R. Astron. Soc.490, 5335–5352 (2019).
Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae.Astrophys. J.277, 355–360 (1984).
Pfahl, E., Rappaport, S. & Podsiadlowski, P. The Galactic population of low- and intermediate-mass X-ray binaries.Astrophys. J.597, 1036–1048 (2003).
Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A. Post-common-envelope binaries from SDSS. IX: Constraining the common-envelope efficiency.Astron. Astrophys.520, A86 (2010).
De Marco, O. et al. On theα formalism for the common envelope interaction.Mon. Not. R. Astron. Soc.411, 2277–2292 (2011).
Camacho, J. et al. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: comparison with the SDSS DR7 observed sample.Astron. Astrophys.566, A86 (2014).
Taam, R. E., Bodenheimer, P. & Ostriker, J. P. Double core evolution. I. A 16M☉ star with a 1M☉ neutron-star companion.Astrophys. J.222, 269–280 (1978).
Taam, R. E. & Bodenheimer, P. The common envelope evolution of massive stars. InX-Ray Binaries and Recycled Pulsars: Proc. NATO Advanced Research Workshop on X-Ray Binaries and the Formation of Binary and Millisecond Radio Pulsars (eds van den Heuvel, E. P. & Rappaport, S. A.) 281–291 (Springer Dordrecht, 1992).
Tauris, T. M. & Dewi, J. D. M. On the binding energy parameter of common envelope evolution. Dependency on the definition of the stellar core boundary during spiral-in.Astron. Astrophys.369, 170–173 (2001).
Rappaport, S. et al. Discovery of two new thermally bloated low-mass white dwarfs among the Kepler binaries.Astrophys. J.803, 82 (2015).
Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models.Astrophys. J.823, 102 (2016).
Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R. & Han, Z. The relation between white dwarf mass and orbital period in wide binary radio pulsars.Mon. Not. R. Astron. Soc.273, 731–741 (1995).
Kalomeni, B. et al. Evolution of cataclysmic variables and related binaries containing a white dwarf.Astrophys. J.833, 83 (2016).
Passy, J.-C., Mac Low, M.-M. & De Marco, O. On the survival of brown dwarfs and planets engulfed by their giant host star.Astrophys. J. Lett.759, 30 (2012).
Bear, E. & Soker, N. Evaporation of Jupiter-like planets orbiting extreme horizontal branch stars.Mon. Not. R. Astron. Soc.414, 1788–1792 (2011).
Schreiber, M. R., Gänsicke, B. T., Toloza, O., Hernandez, M.-S. & Lagos, F. Cold giant planets evaporated by hot white dwarfs.Astrophys. J.887, L4 (2019).
Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity.Astron. J.67, 591–598 (1962).
Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies.Planet. Space Sci.9, 719–759 (1962).
Stephan, A. P., Naoz, S. & Zuckerman, B. Throwing icebergs at white dwarfs.Astrophys. J. Lett.844, 16 (2017).
Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies.Mon. Not. R. Astron. Soc.304, 793–799 (1999).
Veras, D. & Fuller, J. The dynamical history of the evaporating or disrupted ice giant planet around white dwarf WD J0914+1914.Mon. Not. R. Astron. Soc.492, 6059–6066 (2019).
Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations.Nature459, 957–959 (2009).
Kozakis, T., Kaltenegger, L. & Hoard, D. W. UV surface environments and atmospheres of Earth-like planets orbiting white dwarfs.Astrophys. J.862, 69 (2018).
Bonsor, A. & Veras, D. A wide binary trigger for white dwarf pollution.Mon. Not. R. Astron. Soc.454, 53–63 (2015).
Chang, Y. C. A study of the orientation of the orbit-planes of 16 visual binaries having determinate inclinations.Astron. J.40, 11–15 (1929).
Agati, J. L. et al. Are the orbital poles of binary stars in the solar neighbourhood anisotropically distributed?Astron. Astrophys.574, A6 (2015).
Heintz, W. D. A statistical study of binary stars.J. Roy. Astron. Soc. Can.63, 275 (1969).
Adams, F. C. & Bloch, A. M. Evolution of planetary orbits with stellar mass loss and tidal dissipation.Astrophys. J.777, L30 (2013).
Rasio, F. A., Tout, C. A., Lubow, S. H. & Livio, M. Tidal decay of close planetary orbits.Astrophys. J.470, 1187 (1996).
Payne, M. J., Veras, D., Holman, M. J. & Gänsicke, B. T. Liberating exomoons in white dwarf planetary systems.Mon. Not. R. Astron. Soc.457, 217–231 (2016).
Bromley, B. C., Kenyon, S. J., Geller, M. J. & Brown, W. R. Binary disruption by massive black holes: hypervelocity stars, S stars, and tidal disruption events.Astrophys. J.749, L42 (2012).
Faber, J. A., Rasio, F. A. & Willems, B. Tidal interactions and disruptions of giant planets on highly eccentric orbits.Icarus175, 248–262 (2005).
Mainetti, D. et al. The fine line between total and partial tidal disruption events.Astron. Astrophys.600, A124 (2017).
Kreidberg, L. Exoplanet atmosphere measurements from transmission spectroscopy and other planet star combined light observations. InHandbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 2083–2105 (2018).
Stevenson, K. B. Quantifying and predicting the presence of clouds in exoplanet atmospheres.Astrophys. J.817, L16 (2016).
Loeb, A. & Gaudi, B. S. Periodic flux variability of stars due to the reflex Doppler effect induced by planetary companions.Astrophys. J. Lett.588, 117–120 (2003).
van Kerkwijk, M. H. et al. Observations of Doppler boosting in Kepler light curves.Astrophys. J.715, 51–58 (2010).
Rauer, H. et al. The PLATO 2.0 mission.Exp. Astron.38, 249–330 (2014).
Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at:https://www.arxiv.org/abs/1612.05560 (2016).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS).Astron. J.131, 1163–1183 (2006).
Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release (Cutri+ 2013).VizieR Online Data Catalog II/328 (accessed 5 October 2019);http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/328
Acknowledgements
We thank S. Lepine for providing the archival spectrum of G 229-20 A, and P. Berlind and J. Irwin for collecting and extracting velocities from the TRES spectrum. We thank B.-O. Demory for comments on the manuscript, and F. Rasio, D. Veras, P. Gao, B. Kaiser, W. Torres, J. Irwin, J. J. Hermes, J. Eastman, A. Shporer and K. Hawkins for conversations. A.V.’s work was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. I.J.M.C. acknowledges support from the NSF through grant AST-1824644, and from NASA through Caltech/JPL grant RSA-1610091. T.D. acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. D.D. acknowledges support from NASA through Caltech/JPL grant RSA-1006130 and through the TESS Guest Investigator programme, grant 80NSSC19K1727. S.B. acknowledges support from the Laboratory Directed Research and Development programme of Los Alamos National Laboratory under project number 20190624PRD2. C.M. and B.Z. acknowledge support from NSF grants SPG-1826583 and SPG-1826550. A.V. was a NASA Sagan Fellow; J.C.B. is a 51 Pegasi b Fellow; L.A.P. is an NSF Graduate Research Fellow; A.C. is a Large Synoptic Survey Telescope Corporation Data Science Fellow; T.D. is a Kavli Fellow; and C.X.H. is a Juan Carlos Torres Fellow. Resources supporting this work were provided by the NASA High-End Computing (HEC) programme through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This work is partially based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This article is partly based on observations made with the MuSCAT2 instrument, developed by ABC, at Telescopio Carlos Sánchez operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide. This work is partly supported by JSPS KAKENHI, grant numbers JP17H04574, JP18H01265 and JP18H05439, and JST PRESTO grant number JPMJPR1775. This research has made use of NASA’s Astrophysics Data System, the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program, and the SIMBAD database, operated at CDS, Strasbourg, France. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work is partially based on observations obtained at the International Gemini Observatory, a program of NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the Indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.
Author information
Authors and Affiliations
Department of Astronomy, University of Wisconsin-Madison, Madison, WI, USA
Andrew Vanderburg
Department of Astronomy, The University of Texas at Austin, Austin, TX, USA
Andrew Vanderburg, Caroline V. Morley & Andreia Carrillo
Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
Saul A. Rappaport, George R. Ricker, Roland K. Vanderspek, Sara Seager, David Berardo, Tansu Daylan, Ana Glidden, Natalia M. Guerrero, Xueying Guo, Chelsea X. Huang & Liang Yu
NSF’s NOIRLab/Gemini Observatory, Hilo, HI, USA
Siyi Xu
Department of Physics and Astronomy, University of Kansas, Lawrence, KS, USA
Ian J. M. Crossfield
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
Juliette C. Becker
Hereford Arizona Observatory, Hereford, AZ, USA
Bruce Gary
Instituto de Astrofísica de Canarias (IAC), Tenerife, Spain
Felipe Murgas, Enric Palle, Hannu Parviainen, Akihiko Fukui & Norio Narita
Departamento Astrofísica, Universidad de La Laguna (ULL), Tenerife, Spain
Felipe Murgas, Enric Palle & Hannu Parviainen
Los Alamos National Laboratory, Los Alamos, NM, USA
Simon Blouin
Raemor Vista Observatory, Sierra Vista, AZ, USA
Thomas G. Kaye
Laboratory for Space Research, The University of Hong Kong, Hong Kong, China
Thomas G. Kaye
Center for Astrophysics and Space Sciences, University of California, San Diego, San Diego, CA, USA
Carl Melis
Center for Space and Habitability, University of Bern, Bern, Switzerland
Brett M. Morris & Kevin Heng
Max Planck Institute for Astronomy, Heidelberg, Germany
Laura Kreidberg
Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA
Laura Kreidberg, Warren R. Brown, David W. Latham, Karen A. Collins & John A. Lewis
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Varoujan Gorjian & Farisa Morales
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Andrew W. Mann
Steward Observatory, University of Arizona, Tucson, AZ, USA
Logan A. Pearce
Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
Elisabeth R. Newton
Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA
Ben Zuckerman & Beth Klein
Department of Physics and Astronomy, Bishop’s University, Sherbrooke, Quebec, Canada
Lorne Nelson
Hobby–Eberly Telescope, University of Texas, Austin, Austin, TX, USA
Greg Zeimann
DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark
René Tronsgaard, Lars A. Buchhave & Andreea I. Henriksen
Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
Sara Seager & Ana Glidden
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
Sara Seager
Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA
Joshua N. Winn
NASA Ames Research Center, Moffett Field, CA, USA
Jon M. Jenkins, Douglas A. Caldwell, Jack J. Lissauer, Mark E. Rose & Jeffrey C. Smith
Physics Department, University of Michigan, Ann Arbor, MI, USA
Fred C. Adams
Astronomy Department, University of Michigan, Ann Arbor, MI, USA
Fred C. Adams
Départment de Physique, Université de Montréal, Montreal, Quebec, Canada
Björn Benneke & Patrick Dufour
Institut de Recherche sur les Exoplanètes (iREx), Université de Montréal, Montreal, Quebec, Canada
Björn Benneke & Patrick Dufour
SETI Institute, Mountain View, CA, USA
Douglas A. Caldwell & Jeffrey C. Smith
Caltech/IPAC-NASA Exoplanet Science Institute, Pasadena, CA, USA
Jessie L. Christiansen
Exoplanets and Stellar Astrophysics Laboratory (Code 667), NASA Goddard Space Flight Center, Greenbelt, MD, USA
Knicole D. Colón
Noqsi Aerospace, Billerica, MA, USA
John Doty
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, USA
Alexandra E. Doyle
Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
Diana Dragomir
Department of Astronomy, University of California, Berkeley, Berkeley, CA, USA
Courtney Dressing
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
Akihiko Fukui
Carl Sagan Institute, Cornell University, Ithaca, NY, USA
Lisa Kaltenegger
Department of Astronomy and Space Sciences, Ithaca, NY, USA
Lisa Kaltenegger
Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, CA, USA
Stephen R. Kane
Department of Physics and Astronomy, Moorpark College, Moorpark, CA, USA
Farisa Morales
Astrobiology Center, Tokyo, Japan
Norio Narita
PRESTO, JST, Tokyo, Japan
Norio Narita
National Astronomical Observatory of Japan, Tokyo, Japan
Norio Narita
Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
Norio Narita
Department of Physics, Lehigh University, Bethlehem, PA, USA
Joshua Pepper
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
Keivan G. Stassun
Department of Physics, Fisk University, Nashville, TN, USA
Keivan G. Stassun
ExxonMobil Upstream Integrated Solutions, Spring, TX, USA
Liang Yu
- Andrew Vanderburg
Search author on:PubMed Google Scholar
- Saul A. Rappaport
Search author on:PubMed Google Scholar
- Siyi Xu
Search author on:PubMed Google Scholar
- Ian J. M. Crossfield
Search author on:PubMed Google Scholar
- Juliette C. Becker
Search author on:PubMed Google Scholar
- Bruce Gary
Search author on:PubMed Google Scholar
- Felipe Murgas
Search author on:PubMed Google Scholar
- Simon Blouin
Search author on:PubMed Google Scholar
- Thomas G. Kaye
Search author on:PubMed Google Scholar
- Enric Palle
Search author on:PubMed Google Scholar
- Carl Melis
Search author on:PubMed Google Scholar
- Brett M. Morris
Search author on:PubMed Google Scholar
- Laura Kreidberg
Search author on:PubMed Google Scholar
- Varoujan Gorjian
Search author on:PubMed Google Scholar
- Caroline V. Morley
Search author on:PubMed Google Scholar
- Andrew W. Mann
Search author on:PubMed Google Scholar
- Hannu Parviainen
Search author on:PubMed Google Scholar
- Logan A. Pearce
Search author on:PubMed Google Scholar
- Elisabeth R. Newton
Search author on:PubMed Google Scholar
- Andreia Carrillo
Search author on:PubMed Google Scholar
- Ben Zuckerman
Search author on:PubMed Google Scholar
- Lorne Nelson
Search author on:PubMed Google Scholar
- Greg Zeimann
Search author on:PubMed Google Scholar
- Warren R. Brown
Search author on:PubMed Google Scholar
- René Tronsgaard
Search author on:PubMed Google Scholar
- Beth Klein
Search author on:PubMed Google Scholar
- George R. Ricker
Search author on:PubMed Google Scholar
- Roland K. Vanderspek
Search author on:PubMed Google Scholar
- David W. Latham
Search author on:PubMed Google Scholar
- Sara Seager
Search author on:PubMed Google Scholar
- Joshua N. Winn
Search author on:PubMed Google Scholar
- Jon M. Jenkins
Search author on:PubMed Google Scholar
- Fred C. Adams
Search author on:PubMed Google Scholar
- Björn Benneke
Search author on:PubMed Google Scholar
- David Berardo
Search author on:PubMed Google Scholar
- Lars A. Buchhave
Search author on:PubMed Google Scholar
- Douglas A. Caldwell
Search author on:PubMed Google Scholar
- Jessie L. Christiansen
Search author on:PubMed Google Scholar
- Karen A. Collins
Search author on:PubMed Google Scholar
- Knicole D. Colón
Search author on:PubMed Google Scholar
- Tansu Daylan
Search author on:PubMed Google Scholar
- John Doty
Search author on:PubMed Google Scholar
- Alexandra E. Doyle
Search author on:PubMed Google Scholar
- Diana Dragomir
Search author on:PubMed Google Scholar
- Courtney Dressing
Search author on:PubMed Google Scholar
- Patrick Dufour
Search author on:PubMed Google Scholar
- Akihiko Fukui
Search author on:PubMed Google Scholar
- Ana Glidden
Search author on:PubMed Google Scholar
- Natalia M. Guerrero
Search author on:PubMed Google Scholar
- Xueying Guo
Search author on:PubMed Google Scholar
- Kevin Heng
Search author on:PubMed Google Scholar
- Andreea I. Henriksen
Search author on:PubMed Google Scholar
- Chelsea X. Huang
Search author on:PubMed Google Scholar
- Lisa Kaltenegger
Search author on:PubMed Google Scholar
- Stephen R. Kane
Search author on:PubMed Google Scholar
- John A. Lewis
Search author on:PubMed Google Scholar
- Jack J. Lissauer
Search author on:PubMed Google Scholar
- Farisa Morales
Search author on:PubMed Google Scholar
- Norio Narita
Search author on:PubMed Google Scholar
- Joshua Pepper
Search author on:PubMed Google Scholar
- Mark E. Rose
Search author on:PubMed Google Scholar
- Jeffrey C. Smith
Search author on:PubMed Google Scholar
- Keivan G. Stassun
Search author on:PubMed Google Scholar
- Liang Yu
Search author on:PubMed Google Scholar
Contributions
A.V. led the TESS proposals, identified the planet candidate, organized observations, performed the transit and flux limit analysis, and wrote the majority of the manuscript. S.A.R. helped to organize observations, performed independent data analysis, and wrote portions of the manuscript. S.X. helped to organize observations, obtained and analysed the Gemini data, measured fluxes from the Spitzer data, and helped to guide the strategy of the manuscript. I.J.M.C., L. Kreidberg, V.G., B.B., D.B., J.L.C., D.D., C.D., X.G., S.R.K., F. Morales and L.Y. acquired and produced a light curve from the Spitzer data. S.A.R., J.C.B., L.N., B.Z., F.C.A. and J.J.L. investigated the formation of the WD 1856 system. B.G., F. Murgas, T.G.K., E.P., H.P., A.F. and N.N. acquired follow-up photometry. S.B., P.D. and K.G.S. determined the parameters of the white dwarf, and A.W.M. and E.R.N. studied the M-dwarf companions. C.M., G.Z., W.R.B., R.T., B.K., L.A.B., A.E.D. and A.I.H. acquired spectra of the white dwarf and/or M-dwarf companions. B.M.M., K.H. and T.D. performed an independent analysis of the TESS data, and J.A.L. performed an independent analysis of the white dwarf SED. C.V.M. provided expertise on brown dwarf models, and L. Kaltenegger investigated the system’s implications. L.A.P. determined parameters for the binary M-dwarf orbits and white dwarf/M-dwarf orbits, A.C. investigated the system’s galactic kinematics. G.R.R., R.K.V., D.W.L., S.S., J.N.W., J.M.J., D.A.C., K.A.C., K.D.C., J.D., A.G., N.M.G., C.X.H., J.P., M.E.R. and J.C.S. are members of the TESS mission team.
Corresponding author
Correspondence toAndrew Vanderburg.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review informationNature thanks Artie Hatzes, Steven Parsons and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Archival imaging of WD 1856.
a, From the Palomar Observatory Sky Survey on a photographic plate with a blue-sensitive emulsion.b, From the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey in the i band.c, From the Pan-STARRS survey in the i band, zoomed out to show the co-moving M-dwarf pair (labelled G 229-20).d, Coadded TESS image from sector 14. The photometric apertures for the three sectors of TESS observations (14, 15 and 19) are shown as red-, purple- and blue-coloured outlines, respectively. The present-day location of WD 1856 is shown with a red cross in all images.
Extended Data Fig. 2 All transit observations of WD 1856.
From top to bottom, we show the light curves (arbitrarily offset for visual clarity) from TESS; data from several private telescopes in Arizona (operated by B.G. and T.G.K.) with odd and even-numbered transits shown separately; simultaneous light curves in four colours from MuSCAT2; a light curve from the GTC, and a light curve from Spitzer. The individual two-minute-cadence TESS flux measurements are shown as grey points, and the rose-coloured points are averages of the brightness in roughly 30 s in orbital phase. The TESS data have been corrected for dilution from nearby stars so that the transit depth matches that of the GTC data.
Extended Data Fig. 3 Spectral energy distribution of WD 1856. Photometric measurements from Pan-STARRS148, 2MASS149, WISE150 and Spitzer are shown as blue, orange, dark red and pink points, respectively.
The formal 1σ (standard deviation) photometric uncertainties on the Pan-STARRS, WISE, and Spitzer points are smaller than the symbol size. Four different SED models are shown as solid curves: a pure hydrogen atmosphere model (red), a 50% hydrogen, 50% helium model (blue), a pure helium model (gold), and a blackbody curve (black). None of the SED models capture all of the SED’s features, but all four yield mostly consistent effective temperatures and stellar parameters.
Extended Data Fig. 4 Spectrum of WD 1856 near the Hα line.
Our summed Hobby–Eberly/LRS2 spectrum (black connected points) is shown in comparison with three atmosphere models: a pure hydrogen model (red), a 50% hydrogen, 50% helium model (blue), and a pure helium model (gold). We disfavour a pure hydrogen atmosphere on the basis of our non-detection of an Hα feature in our LRS2 spectra, but otherwise remain uncertain about the precise composition of the envelope of WD 1856.
Extended Data Fig. 5 Posterior probability distributions of transit parameters.
This ‘corner-plot’ shows correlations between pairs of parameters in our MCMC transit fit (with circular orbits enforced) and histograms of the marginalized posterior probability distributions for each parameter. For clarity, we have plotted correlations with the inclination anglei instead of the fit parameter cosi and subtract the median time of transit (tt). The orbital inclinationi, scaled semimajor axisa/R⁎, and the planet–star radius ratioRp/R⁎ are strongly correlated, owing to the grazing transit geometry, but constrained by the prior on the stellar density. We do not include rows for the GTC and Spitzer photometric jitter terms because these are nuisance parameters that showed no correlation with the other physical parameters.
Extended Data Fig. 6 Posterior probability distributions of transit parameters when eccentric orbits are allowed.
This ‘corner-plot’ shows correlations between pairs of parameters in our MCMC transit fit (allowing eccentric orbits) and histograms of the marginalized posterior probability distributions for each parameter. This plot shows a subset of the parameters that correlate with the orbital eccentricity. For clarity, we have plotted correlations with the eccentricitye, argument of periastronw and orbital inclinationi instead of the fit parameters\(\sqrt{e}\cos \,\omega \),\(\sqrt{e}\sin \,\omega \) andδ.
Extended Data Fig. 7 Hα equivalent width for G 229-20 A/B compared to other nearby M dwarfs.
The histogram shows the Hα equivalent widths for a large sample of M dwarfs with similar spectral types from the Sloan Digital Sky Survey103. G 229-20 A/B (shown as a blue arrow) has a lower than average Hα equivalent width, but falls well within the distribution of field M dwarfs.
Extended Data Fig. 8 Theoretical relationships between the star’s radius and the mass of its core.
We show MIST120 evolution tracks in the radius–core mass plane for solar composition models with masses ranging from 1M☉–2.8M☉. The RGB phase is clearly identifiable for core masses between 0.2M☉ and 0.47M☉, whereas the thermal pulses on the AGB are readily recognized at higher core masses of≳0.5M☉. The lime-green curve is the analytic expression given by equation (8). The vertical lines for each star mark the point where the envelope has been exhausted by the AGB wind.
Extended Data Fig. 9 The minimum value of the efficiency parameterαλCE required for WD 1856 b to form via common-envelope evolution as a function of the progenitor stellar mass.
The two dashed curves show the minimumαλCE values from our analytic calculation (equation (11)) required for a 15MJ object to eject the primary star’s envelope. The purple dashed curve is taken directly from equation (11), and the brown dashed curve results if the progenitor star has lost 0.1M☉ in a stellar wind by the time of the common envelope. The three solid curves show the minimumαλCE computed directly from MIST tracks in three different situations: before the star reaches the AGB (red), before more than 30% of the star’s envelope mass has been lost (black), and at any point in the star’s evolution, regardless of the mass lost (blue). Stars in the grey region at low masses evolve too slowly for the system to have left the main sequence more than 5.85 Gyr ago and are not viable solutions. For values ofαλCE > 1 (horizontal grey line), one must invoke the internal energy of the star to help to unbind the envelope during the common-envelope phase. Before mass is lost during the AGB phase, it is difficult for WD 1856 b to eject the common envelope, but it is possible that WD 1856 b could have ejected its progenitor’s envelope if the common-envelope phase began after the progenitor reached the AGB. We have smoothed the lower two curves to remove some unphysical scatter that is probably due to numerical artefacts in the model grids.
Supplementary information
Supplementary Data
This file contains a comma separated value file with spectroscopic data on the M-dwarf companions.
Rights and permissions
About this article
Cite this article
Vanderburg, A., Rappaport, S.A., Xu, S.et al. A giant planet candidate transiting a white dwarf.Nature585, 363–367 (2020). https://doi.org/10.1038/s41586-020-2713-y
Received:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
A swarm of dusty objects in orbit around the central star of planetary nebula WeSb 1
- Jan Budaj
- Klaus Bernhard
- James Munday
Nature Astronomy (2025)
Science with a Small Two-Band UV-Photometry Mission II: Observations of Stars and Stellar Systems
- Jiří Krtička
- Jan Benáček
- Norbert Werner
Space Science Reviews (2024)
Simulations of common-envelope evolution in binary stellar systems: physical models and numerical techniques
- Friedrich K. Röpke
- Orsola De Marco
Living Reviews in Computational Astrophysics (2023)
Astrophysics with the Laser Interferometer Space Antenna
- Pau Amaro-Seoane
- Jeff Andrews
- Alejandro Vigna-Gómez
Living Reviews in Relativity (2023)
A Jovian analogue orbiting a white dwarf star
- J. W. Blackman
- J. P. Beaulieu
- J. B. Marquette
Nature (2021)
Comments
Commenting on this article is now closed.
Jason Roberts
I don't know if I missed it, but can this mean White Dwarfs could harbour earth like planets in their habitable zone? Albeit a close, short habitable zone it would need to orbit an exhausted star.


