Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Entangling logical qubits with lattice surgery

Naturevolume 589pages220–224 (2021)Cite this article

Subjects

Abstract

The development of quantum computing architectures from early designs and current noisy devices to fully fledged quantum computers hinges on achieving fault tolerance using quantum error correction1,2,3,4. However, these correction capabilities come with an overhead for performing the necessary fault-tolerant logical operations on logical qubits (qubits that are encoded in ensembles of physical qubits and protected by error-correction codes)5,6,7,8. One of the most resource-efficient ways to implement logical operations is lattice surgery9,10,11, where groups of physical qubits, arranged on lattices, can be merged and split to realize entangling gates and teleport logical information. Here we report the experimental realization of lattice surgery between two qubits protected via a topological error-correction code in a ten-qubit ion-trap quantum information processor. In this system, we can carry out the necessary quantum non-demolition measurements through a series of local and entangling gates, as well as measurements on auxiliary qubits. In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation between them. The demonstration of these operations—fundamental building blocks for quantum computation—through lattice surgery represents a step towards the efficient realization of fault-tolerant quantum computation.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental surface-code lattice surgery.
Fig. 2: Surface code state teleportation with lattice surgery.
Fig. 3: Teleportation of quantum information via LS.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available athttps://doi.org/10.5281/zenodo.4081412.

Code availability

All codes used for data analysis are available from the corresponding authors upon reasonable request.

References

  1. Preskill, J. inIntroduction to Quantum Computation (eds Lo, H.-K., Popescu, S. & Spiller, T. P.) Ch. 8, 213–269 (World Scientific, 1997).

  2. Devitt, S. J., Munro, W. J. & Nemoto, K. Quantum error correction for beginners.Rep. Prog. Phys.76, 076001 (2013).

    Article ADS PubMed  Google Scholar 

  3. Terhal, B. M. Quantum error correction for quantum memories.Rev. Mod. Phys.87, 307–346 (2015).

    Article ADS MathSciNet  Google Scholar 

  4. Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation.Nature549, 172–179 (2017); correction559, E6 (2018).

    Article ADS CAS PubMed  Google Scholar 

  5. Gottesmann, D.Stabilizer Codes and Quantum Error Correction. Ph.D. thesis, Caltech (1997).

  6. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations.Nature402, 390–393 (1999).

    Article ADS CAS  Google Scholar 

  7. Eisert, J., Jacobs, K., Papadopoulos, P. & Plenio, M. B. Optimal local implementation of nonlocal quantum gates.Phys. Rev. A62, 052317 (2000).

    Article ADS  Google Scholar 

  8. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas.Phys. Rev. A71, 022316 (2005).

    Article ADS MathSciNet MATH  Google Scholar 

  9. Poulsen Nautrup, H., Friis, N. & Briegel, H. J. Fault-tolerant interface between quantum memories and quantum processors.Nat. Commun.8, 1321 (2017).

    Article ADS PubMed PubMed Central  Google Scholar 

  10. Gutiérrez, M., Müller, M. & Bermúdez, A. Transversality and lattice surgery: exploring realistic routes toward coupled logical qubits with trapped-ion quantum processors.Phys. Rev. A99, 022330 (2019).

    Article ADS  Google Scholar 

  11. Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery.New J. Phys.14, 123011 (2012).

    Article ADS MathSciNet MATH  Google Scholar 

  12. Chiaverini, J. et al. Realization of quantum error correction.Nature432, 602–605 (2004).

    Article ADS CAS PubMed  Google Scholar 

  13. Boulant, N., Viola, L., Fortunato, E. M. & Cory, D. G. Experimental implementation of a concatenated quantum error-correcting code.Phys. Rev. Lett.94, 130501 (2005).

    Article ADS PubMed  Google Scholar 

  14. Zhang, J., Gangloff, D., Moussa, O. & Laamme, R. Experimental quantum error correction with high fidelity.Phys. Rev. A84, 034303 (2011).

    Article ADS  Google Scholar 

  15. Wootton, J. R. & Loss, D. Repetition code of 15 qubits.Phys. Rev. A97, 052313 (2018).

    Article ADS CAS  Google Scholar 

  16. Bell, B. A. et al. Experimental demonstration of a graph state quantum error-correction code.Nat. Commun.5, 3658 (2014).

    Article ADS CAS PubMed  Google Scholar 

  17. Takita, M., Cross, A. W., Córcoles, A. D., Chow, J. M. & Gambetta, J. M. Experimental demonstration of fault-tolerant state preparation with superconducting qubits.Phys. Rev. Lett.119, 180501 (2017).

    Article ADS PubMed  Google Scholar 

  18. Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit.Nature519, 66–69 (2015).

    Article ADS CAS PubMed  Google Scholar 

  19. Linke, N. M. et al. Fault-tolerant quantum error detection.Sci. Adv.3, e1701074 (2017).

    Article ADS PubMed PubMed Central  Google Scholar 

  20. Andersen, C. K. et al. Repeated quantum error detection in a surface code.Nat. Phys.16, 875–880 (2020).

    Article CAS  Google Scholar 

  21. Aoki, T. et al. Quantum error correction beyond qubits.Nat. Phys.5, 541–546 (2009).

    Article CAS  Google Scholar 

  22. Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits.Nature482, 382–385 (2012).

    Article ADS CAS PubMed  Google Scholar 

  23. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register.Nature506, 204–207 (2014).

    Article ADS CAS PubMed  Google Scholar 

  24. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits.Nature536, 441–445 (2016).

    Article ADS CAS PubMed  Google Scholar 

  25. Stricker, R. et al. Experimental deterministic correction of qubit loss.Nature585, 207–210 (2020).

    Article PubMed  Google Scholar 

  26. Zhang, J., Laflamme, R. & Suter, D. Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code.Phys. Rev. Lett.109, 100503 (2012).

    Article ADS PubMed  Google Scholar 

  27. Nigg, D. et al. Quantum computations on a topologically encoded qubit.Science345, 302–305 (2014).

    Article ADS MathSciNet CAS MATH PubMed  Google Scholar 

  28. Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance.Nature508, 500–503 (2014).

    Article ADS CAS PubMed  Google Scholar 

  29. Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator.Nat. Commun.8, 94 (2017).

    Article ADS PubMed PubMed Central  Google Scholar 

  30. Gong, M. et al. Experimental verification of five-qubit quantum error correction with superconducting qubits. Preprint athttp://arXiv.org/abs/1907.04507 (2019).

  31. Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit.Nat. Phys.15, 503–508 (2019).

    Article CAS  Google Scholar 

  32. Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits.Nature561, 368–373 (2018).

    Article ADS CAS PubMed  Google Scholar 

  33. Harper, R. & Flammia, S. T. Fault-tolerant logical gates in the IBM quantum experience.Phys. Rev. Lett.122, 080504 (2019).

    Article ADS CAS PubMed  Google Scholar 

  34. Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory.J. Math. Phys.43, 4452–4505 (2002).

    Article ADS MathSciNet MATH  Google Scholar 

  35. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation.Phys. Rev. A86, 032324 (2012).

    Article ADS  Google Scholar 

  36. Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer.Sci. Adv.3, e1601540 (2017).

    Article ADS PubMed PubMed Central  Google Scholar 

  37. Jones, N. C. et al. Layered architecture for quantum computing.Phys. Rev. X2, 031007 (2012).

    Google Scholar 

  38. Herr, D., Nori, F. & Devitt, S. J. Optimization of lattice surgery is NP-hard.npj Quantum Inf.3, 35 (2017).

    Article ADS  Google Scholar 

  39. Häner, T., Steiger, D. S., Svore, K. & Troyer, M. A software methodology for compiling quantum programs.Quantum Sci. Technol.3, 020501 (2018).

    Article ADS  Google Scholar 

  40. Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery.Quantum3, 128 (2019).

    Article  Google Scholar 

  41. Nautrup, H. P., Delfosse, N., Dunjko, V., Briegel, H. J. & Friis, N. Optimizing quantum error correction codes with reinforcement learning.Quantum3, 215 (2019).

    Article  Google Scholar 

  42. Raussendorf, R. & Briegel, H. J. A one-way quantum computer.Phys. Rev. Lett.86, 5188–5191 (2001).

    Article ADS CAS PubMed  Google Scholar 

  43. Lanyon, B. P. et al. Measurement-based quantum computation with trapped ions.Phys. Rev. Lett.111, 210501 (2013).

    Article ADS CAS PubMed  Google Scholar 

  44. Wang, D. S., Fowler, A. G. & Hollenberg, L. C. L. Surface code quantum computing with error rates over 1%.Phys. Rev. A83, 020302(R) (2011).

    Article ADS  Google Scholar 

  45. Schindler, P. et al. A quantum information processor with trapped ions.New J. Phys.15, 123012 (2013).

    Article ADS  Google Scholar 

  46. Ejtemaee, S. & Haljan, P. C. 3D Sisyphus cooling of trapped ions.Phys. Rev. Lett.119, 043001 (2017).

    Article ADS CAS PubMed  Google Scholar 

  47. Friis, N. et al. Observation of entangled states of a fully controlled 20-qubit system.Phys. Rev. X8, 021012 (2018).

    CAS  Google Scholar 

  48. Erhard, A. et al. Characterizing large-scale quantum computers via cycle benchmarking.Nat. Commun.10, 5347 (2019).

    Article ADS PubMed PubMed Central  Google Scholar 

  49. Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment.Nat. Rev. Phys.1, 72–87 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Austrian Science Fund (FWF) through SFB BeyondC (grant F71). H.P.N. and H.J.B. acknowledge support from FWF project DK-ALM (grant W1259-N27). H.J.B. was also supported by the Ministerium für Wissenschaft, Forschung, und Kunst Baden-Württemberg (AZ:33-7533.-30-10/41/1). N.F. acknowledges support from the FWF through project P 31339-N27. A.E., M.M., L.P., R.S., M.R., P.S., T.M. and R.B. acknowledge funding by the US Army Research Office (ARO) through grant no. W911NF-14-1-0103. We also acknowledge funding by the Austrian Research Promotion Agency (FFG) contract 872766, and by the EU H2020-FETFLAG-2018-03 under grant agreement no. 820495. M.S. and V.N. acknowledge funding by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via US ARO grant no. W911NF-16-1-0070. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 801110 and the Austrian Federal Ministry of Education, Science and Research (BMBWF). We acknowledge support from the IQI GmbH. All statements of fact, opinions or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of the funding agencies.

Author information

Author notes
  1. These authors contributed equally: Alexander Erhard, Hendrik Poulsen Nautrup

Authors and Affiliations

  1. Institute for Experimental Physics, University of Innsbruck, Innsbruck, Austria

    Alexander Erhard, Michael Meth, Lukas Postler, Roman Stricker, Martin Ringbauer, Philipp Schindler, Rainer Blatt & Thomas Monz

  2. Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria

    Hendrik Poulsen Nautrup, Hans J. Briegel & Nicolai Friis

  3. Institute for Quantum Electronics, ETH Zürich, Zurich, Switzerland

    Martin Stadler & Vlad Negnevitsky

  4. Fachbereich Philosophie, Universität Konstanz, Konstanz, Germany

    Hans J. Briegel

  5. Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck, Austria

    Rainer Blatt

  6. Institute for Quantum Optics and Quantum Information – IQOQI Vienna, Austrian Academy of Sciences, Vienna, Austria

    Nicolai Friis

  7. Alpine Quantum Technologies GmbH, Innsbruck, Austria

    Thomas Monz

Authors
  1. Alexander Erhard
  2. Hendrik Poulsen Nautrup
  3. Michael Meth
  4. Lukas Postler
  5. Roman Stricker
  6. Martin Stadler
  7. Vlad Negnevitsky
  8. Martin Ringbauer
  9. Philipp Schindler
  10. Hans J. Briegel
  11. Rainer Blatt
  12. Nicolai Friis
  13. Thomas Monz

Contributions

A.E., H.P.N., P.S. and N.F. wrote the manuscript and A.E., H.P.N., M.M., L.P., R.S., M.R., P.S., H.J.B., R.B., N.F. and T.M. provided revisions. A.E., H.P.N., P.S. and N.F. developed the research based on discussions with H.J.B., R.B. and T.M. H.P.N. and N.F. developed the theory. A.E. and P.S. performed the experiments. A.E., M.M., L.P., R.S., M.S., V.N., M.R., P.S., R.B. and T.M. contributed to the experimental setup. A.E., H.P.N., M.M., L.P., R.S., M.R., P.S., H.J.B., R.B., N.F. and T.M. contributed to discussions of the results and the manuscript.

Corresponding authors

Correspondence toNicolai Friis orThomas Monz.

Ethics declarations

Competing interests

T.M. and R.B. are founding members of Alpine Quantum Technologies GmbH.

Additional information

Peer review informationNature thanks Rodney Van Meter, Theodore Yoder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Standard surface code of distance 3.

The standard surface code is defined on a square lattice with (data) qubits located on vertices. Stabilizers are associated with faces and boundaries. Aquamarine faces and boundaries indicateZ-type stabilizers, as in equation (6). Red faces and boundaries indicateX-type stabilizers, as in equation (5). The surface code with boundaries encodes a single logical qubit defined by its logical Pauli-X and Pauli-Z operators. These operators are defined on paths connecting opposite boundaries of the lattice and act as products ofX- andZ-operators, respectively, along the paths. Here, two representative logical operators are drawn as products of Pauli-operators within the dashed rectangles. Red indicates Pauli-X operators and green indicates Pauli-Z operators. The two operators anti-commute at the crossing drawn in yellow.

Extended Data Fig. 2 Fault-tolerant logic gates with lattice surgery.

Lattice surgery (LS) enables measurement-based implementations of logic gates and logical state teleportation. LS operations are logical joint measurements of the form\({M}_{P\mathop{P}\limits^{ \sim }}=({\mathbb{I}}\pm P\mathop{P}\limits^{ \sim })/2\) where\(P,\mathop{P}\limits^{ \sim }\) are Pauli operators. Moreover, the protocols make use of single-qubit measurements of the formMP = (\({\mathbb{I}}\) ± P)/2. Thick lines indicate logical qubits in the circuit model and double lines represent classical bits indicating measurement outcomesmi = 0, 1. Pauli corrections need to be applied which are conditioned on the measurement outcomes as\({P}_{{\rm{L}}}^{{m}_{i}}\). The symbol represents an XOR-gate between classical bits.a, Measurement-based implementation of a logical CNOT-gate between arbitrary control and target qubits requiring an auxiliary qubit in the |+L state.b, Measurement-based teleportation protocol for state teleportation between two logical qubits usingX-type LS.c, Measurement-based implementation of a logical Hadamard gateH based on the teleportation protocol.

Extended Data Fig. 3 Surface code lattice surgery in theory.

Surface code LS betweenZ-type andX-type boundaries implementing logical joint measurements\({M}_{{\rm{XX}}}^{\pm }=({\mathbb{I}}\pm {X}_{{\rm{L}}}^{{\rm{A}}}{X}_{{\rm{L}}}^{{\rm{B}}})/2\) (a) and\({M}_{{\rm{ZZ}}}^{\pm }=({\mathbb{I}}\pm {Z}_{{\rm{L}}}^{{\rm{A}}}{Z}_{{\rm{L}}}^{{\rm{B}}})/2\) (b), respectively.A, Encoded. The two initial surface codes are defined on 2 × 2 lattices whereX-stabilizers are associated with orange faces andZ-stabilizers with aquamarine faces in accordance with equation (1). Logical operators are products of Pauli operators connecting opposite boundaries as in equation (2).a,Z-type encoded. The two surface codes are arranged such that they are aligned along theirZ-type boundary.b, X-type encoded. The surface codes are aligned along theirX-type boundary.B, Merged. Treating the two codes as a single (asymmetric) surface code, (merging) stabilizers along the boundaries are measured. The merged code encodes a single logical qubit corresponding to the logical Pauli operators\({X}_{{\rm{L}}}^{{\rm{M}}},{Z}_{{\rm{L}}}^{{\rm{M}}}\).a,Z-type merged. Merging stabilizers (indicated in red) are chosen such that their product is\({X}_{{\rm{L}}}^{{\rm{A}}}{X}_{{\rm{L}}}^{{\rm{B}}}\).b,X-type merged. Merging stabilizers (indicated in green) are chosen such that their product is\({Z}_{{\rm{L}}}^{{\rm{A}}}{Z}_{{\rm{L}}}^{{\rm{B}}}\).C, Split. In order to split the merged code while preserving the eigenstate of the joint logical operator, the boundary stabilizers of the original code are measured. These operators anti-commute with the merging stabilizers and thus project onto the individual codes. Since the boundary operators commute with individual logical operators, the resulting state remains an eigenstate of the joint logical operator.a,Z-type split. MeasuringZ-stabilizers along the boundary (indicated in green) preserves the eigenstate of\({X}_{{\rm{L}}}^{{\rm{A}}}{X}_{{\rm{L}}}^{{\rm{B}}}\) while projecting onto the individual codes.b,X-type split. MeasuringX-stabilizers along the boundary (indicated in red) preserves the eigenstate of\({Z}_{{\rm{L}}}^{{\rm{A}}}{Z}_{{\rm{L}}}^{{\rm{B}}}\) while projecting onto the individual codes.

Extended Data Fig. 4 ExperimentalX-type surface code lattice surgery.

Bell state generation via lattice surgery along theX-type boundary between two surface code qubits through a logical joint measurement\({M}_{{\rm{ZZ}}}^{+}\propto {\mathbb{I}}+{Z}_{{\rm{L}}}^{{\rm{A}}}{Z}_{{\rm{L}}}^{{\rm{B}}}\). Post-selected measurements are presented in light coloured bars.A, Encoded. Two logical qubits (a) are encoded with average stabilizer values (b) of|Si| = 0.813(4). We observe raw and post-selected state fidelities (c) of \( {\mathcal F} (|{0}_{{\rm{L}}}^{{\rm{A}}}\rangle )=93.3(5)|98.7(2){\rm{ \% }}\) for logical qubit A and\( {\mathcal F} (|{0}_{{\rm{L}}}^{{\rm{B}}}\rangle )=92.4(5)|97.9(3){\rm{ \% }}\) for logical qubit B.B, Merged. The two separated logical qubits are merged (a) into a single logical qubit by measuring the stabilizer\({S}_{7}^{{\rm{M}}}\) using auxiliary qubit A1 as syndrome qubit. Thereby, the code space is extended in the vertical direction and the new logical operator\({X}_{{\rm{L}}}^{{\rm{M}}}={X}_{{\rm{L}}}^{{\rm{A}}}{X}_{{\rm{L}}}^{{\rm{B}}}\) is formed. As the data show, the stabilizer\({S}_{7}^{{\rm{M}}}\) is indeed created. The average stabilizer values (b) are|Si| = 0.719(5) and logical state fidelities (c) are\( {\mathcal F} (|{+}_{{\rm{L}}}^{{\rm{M}}}\rangle )=76.2(8)|93.1(6){\rm{ \% }}\).C, Split. The single logical qubit is again split into two logical qubits (a) along the same boundary they have been initially merged through. We measure the stabilizer\(\bar{S}{}_{6}^{{\rm{M}}}\) by using auxiliary qubit A2 as syndrome qubit to perform the splitting and obtain average stabilizer values (b) of|Si| = 0.763(5). The fidelity (c) of the generated state to the logical Bell state is\( {\mathcal F} (|{\psi }_{{\rm{L}}}^{+}\rangle )=63.9(2.8)|78.0(2.7){\rm{ \% }}\). Note that measuring the merging stabilizer\({S}_{7}^{{\rm{M}}}\) = \({Z}_{{\rm{L}}}^{{\rm{A}}}{Z}_{{\rm{L}}}^{{\rm{B}}}\) directly projects onto a joint eigenstate of the logicalZ-operators such that the splitting becomes redundant. Nevertheless, the general procedure as described in Methods requires the measurement ofX-stabilizers along the boundary which is why it is still included here.

Supplementary information

Supplementary Information

This file contains additional details on the performed experiment.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erhard, A., Poulsen Nautrup, H., Meth, M.et al. Entangling logical qubits with lattice surgery.Nature589, 220–224 (2021). https://doi.org/10.1038/s41586-020-03079-6

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp