Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Genetics
  • Review Article
  • Published:

Transcriptomics in the era of long-read sequencing

Nature Reviews Genetics (2025)Cite this article

Subjects

Abstract

Transcriptome sequencing revolutionized the analysis of gene expression, providing an unbiased approach to gene detection and quantification that enabled the discovery of novel isoforms, alternative splicing events and fusion transcripts. However, although short-read sequencing technologies have surpassed the limited dynamic range of previous technologies such as microarrays, they have limitations, for example, in resolving full-length transcripts and complex isoforms. Over the past 5 years, long-read sequencing technologies have matured considerably, with improvements in instrumentation and analytical methods, enabling their application to RNA sequencing (RNA-seq). Benchmarking studies are beginning to identify the strengths and limitations of long-read RNA-seq, although there remains a need for comprehensive resources to guide newcomers through the intricacies of this approach. In this Review, we provide a comprehensive overview of the long-read RNA-seq workflow, from library preparation and sequencing challenges to core data processing, downstream analyses and emerging developments. We present an extensive inventory of experimental and analytical methods and discuss current challenges and prospects.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of long-read transcriptomics, applications and computational analyses.
Fig. 2: Commercial and non-commercial library preparation methods.
Fig. 3: Approaches for transcript identification and quantification using long-read RNA sequencing data.
Fig. 4: Downstream analysis and emerging applications for long-read RNA-seq studies.

Similar content being viewed by others

References

  1. Conesa, A. et al. A survey of best practices for RNA-seq data analysis.Genome Biol.17, 13 (2016).This review provides an overview of short-reads transcriptomics experimental design and bioinformatic analysis.

    Article PubMed PubMed Central  Google Scholar 

  2. Tilgner, H. et al. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events.Nat. Biotechnol.33, 736–742 (2015).

    Article PubMed PubMed Central CAS  Google Scholar 

  3. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation.Nat. Methods7, 1009–1015 (2010).

    Article PubMed PubMed Central CAS  Google Scholar 

  4. Park, E., Pan, Z., Zhang, Z., Lin, L. & Xing, Y. The expanding landscape of alternative splicing variation in human populations.Am. J. Hum. Genet.102, 11–26 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  5. Duke, J. L. et al. Determining performance characteristics of an NGS-based HLA typing method for clinical applications.Hladnikia87, 141–152 (2016).

    CAS  Google Scholar 

  6. Sirupurapu, V., Safonova, Y. & Pevzner, P. A. Gene prediction in the immunoglobulin loci.Genome Res.32, 1152–1169 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  7. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome.Nat. Biotechnol.31, 1009–1014 (2013).

    Article PubMed PubMed Central CAS  Google Scholar 

  8. Soneson, C. et al. A comprehensive examination of nanopore native RNA sequencing for characterization of complex transcriptomes.Nat. Commun.10, 3359 (2019).

    Article PubMed PubMed Central  Google Scholar 

  9. Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.F1000Research6, 100 (2017).

    Article PubMed PubMed Central  Google Scholar 

  10. Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain.Nat. Commun.12, 463 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  11. Patowary, A. et al. Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms.Science384, eadh7688 (2024).

    Article PubMed CAS  Google Scholar 

  12. Chen, Y. et al. Gene fusion detection and characterization in long-read cancer transcriptome sequencing data with FusionSeeker.Cancer Res.83, 28–33 (2023).

    Article PubMed CAS  Google Scholar 

  13. Hou, R., Hon, C.-C. & Huang, Y. CamoTSS: analysis of alternative transcription start sites for cellular phenotypes and regulatory patterns from 5’ scRNA-seq data.Nat. Commun.14, 7240 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  14. Wright, D. J. et al. Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes.BMC Genomics23, 42 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  15. Anvar, S. Y. et al. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.Genome Biol.19, 46 (2018).

    Article PubMed PubMed Central  Google Scholar 

  16. Zhang, Z., Bae, B., Cuddleston, W. H. & Miura, P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing.Nat. Commun.14, 5506 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  17. Zhang, S.-J. et al. Isoform evolution in primates through independent combination of alternative RNA processing events.Mol. Biol. Evol.34, 2453–2468 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  18. Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing.Nature608, 353–359 (2022).This study reported the discovery of thousands of novel isoforms in a well-annotated organism and GTEx benchmarking.

    Article PubMed PubMed Central CAS  Google Scholar 

  19. Zhang, R. et al. A high-resolution single-molecule sequencing-basedArabidopsis transcriptome using novel methods of Iso-seq analysis.Genome Biol.23, 149 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  20. Tang, A. D. et al. Detecting haplotype-specific transcript variation in long reads with FLAIR2.Genome Biol.25, 173 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  21. Gao, Y. et al. Quantitative profiling ofN-methyladenosine at single-base resolution in stem-differentiating xylem ofPopulus trichocarpa using Nanopore direct RNA sequencing.Genome Biol.22, 22 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  22. Jenjaroenpun, P. et al. Decoding the epitranscriptional landscape from native RNA sequences.Nucleic Acids Res.49, e7 (2021).

    Article PubMed CAS  Google Scholar 

  23. Method of the year 2022: long-read sequencing.Nat. Methods20, 1 (2023).

  24. Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis.Genome Biol.21, 30 (2020).

    Article PubMed PubMed Central  Google Scholar 

  25. Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation.Nat. Biotechnol.42, 582–586 (2024).

    Article PubMed  Google Scholar 

  26. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications.Nat. Biotechnol.39, 1348–1365 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  27. Dong, X. et al. The long and the short of it: unlocking nanopore long-read RNA sequencing data with short-read differential expression analysis tools.NAR Genom. Bioinform.3, lqab028 (2021).

    Article PubMed PubMed Central  Google Scholar 

  28. Mahmoud, M. et al. Utility of long-read sequencing for All of Us.Nat. Commun.15, 837 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  29. Joglekar, A. et al. Single-cell long-read sequencing-based mapping reveals specialized splicing patterns in developing and adult mouse and human brain.Nat. Neurosci.27, 1051–1063 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  30. Fu, Y. et al.Single cell and Spatial Alternative Splicing Analysis with Long Read Sequencing. Preprint athttps://www.researchsquare.com/article/rs-2674892/v1 (2023).

  31. Volden, R. et al. Identifying and quantifying isoforms from accurate full-length transcriptome sequencing reads with Mandalorion.Genome Biol.24, 167 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  32. Prjibelski, A. D. et al. Accurate isoform discovery with IsoQuant using long reads.Nat. Biotechnol.41, 915–918 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  33. Chen, Y. et al. Context-aware transcript quantification from long-read RNA-seq data with Bambu.Nat. Methods20, 1187–1195 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  34. Loving, R. et al. Long-read sequencing transcriptome quantification with lr-kallisto. Preprint atbioRxivhttps://doi.org/10.1101/2024.07.19.604364 (2024).

  35. Hu, Y. et al. LIQA: long-read isoform quantification and analysis.Genome Biol.22, 182 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  36. Hu, Y., Gouru, A. & Wang, K. DELongSeq for efficient detection of differential isoform expression from long-read RNA-seq data.NAR Genom. Bioinform.5, lqad019 (2023).

    Article PubMed PubMed Central  Google Scholar 

  37. Lienhard, M. et al. IsoTools: a flexible workflow for long-read transcriptome sequencing analysis.Bioinformatics39, btad364 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  38. Carbonell-Sala, S. et al. CapTrap-seq: a platform-agnostic and quantitative approach for high-fidelity full-length RNA sequencing.Nat. Commun.15, 5278 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  39. Su, Y. et al. Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data.Nat. Commun.15, 3972 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  40. Pardo-Palacios, F. J. et al. Systematic assessment of long-read RNA-seq methods for transcript identification and quantification.Nat. Methods21, 1349–1363 (2024).This publication is a benchmark study of library preparation, sequencing platform, transcript identification and quantification for long-read RNA sequencing.

    Article PubMed PubMed Central CAS  Google Scholar 

  41. Wang, L. et al. Measure transcript integrity using RNA-seq data.BMC Bioinform.17, 58 (2016).

    Article  Google Scholar 

  42. Gallego Romero, I., Pai, A. A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on transcript quantification.BMC Biol.12, 42 (2014).

    Article PubMed PubMed Central  Google Scholar 

  43. Prawer, Y. D. J., Gleeson, J., De Paoli-Iseppi, R. & Clark, M. B. Pervasive effects of RNA degradation on nanopore direct RNA sequencing.NAR Genom. Bioinform.5, lqad060 (2023).

    Article PubMed PubMed Central  Google Scholar 

  44. Schroeder, A. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements.BMC Mol. Biol.7, 3 (2006).

    Article PubMed PubMed Central  Google Scholar 

  45. Gleeson, J. et al. Accurate expression quantification from nanopore direct RNA sequencing with NanoCount.Nucleic Acids Res.50, e19 (2022).

    Article PubMed CAS  Google Scholar 

  46. Pardo-Palacios, F. J. et al. SQANTI3: curation of long-read transcriptomes for accurate identification of known and novel isoforms.Nat. Methods21, 793–797 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  47. Pacific Biosciences.Application Note:Kinnex Full-Length RNA Kit for Isoform Sequencing. Available athttps://www.pacb.com/wp-content/uploads/Application-note-Kinnex-full-length-RNA-kit-for-isoform-sequencing.pdf (2023).

  48. Oxford Nanopore Technologies.The Value of Full-Length Transcripts Without Bias. Available athttps://a.storyblok.com/f/196663/x/8badf93497/rna-sequencing-white-paper.pdf (2019).

  49. Chen, Y. et al. A systematic benchmark of nanopore long read RNA sequencing for transcript level analysis in human cell lines. Preprint atbioRxivhttps://doi.org/10.1101/2021.04.21.440736 (2021).This preprint benchmarks different methods for ONT library preparation, isoform detection and quantification.

  50. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores.Nat. Methods15, 201–206 (2018).This study showed that nanopore RNA sequencing detects both the RNA molecules and their modifications.

    Article PubMed CAS  Google Scholar 

  51. Begik, O., Mattick, J. S. & Novoa, E. M. Exploring the epitranscriptome by native RNA sequencing.RNA28, 1430–1439 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  52. Lucas, M. C. & Novoa, E. M. Long-read sequencing in the era of epigenomics and epitranscriptomics.Nat. Methods20, 25–29 (2023).

    Article PubMed CAS  Google Scholar 

  53. Rhoads, A. & Au, K. F. PacBio sequencing and its applications.Genomics Proteom. Bioinform.13, 278–289 (2015).

    Article  Google Scholar 

  54. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome.Nat. Biotechnol.37, 1155–1162 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  55. Liu-Wei, W. et al. Sequencing accuracy and systematic errors of nanopore direct RNA sequencing.BMC Genomics25, 528 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  56. Volden, R. et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA.Proc. Natl Acad. Sci. USA115, 9726–9731 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  57. Volden, R. & Vollmers, C. Single-cell isoform analysis in human immune cells.Genome Biol.23, 47 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  58. Wang, F. et al. TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing.Nat. Commun.14, 4760 (2023).

    Article PubMed PubMed Central  Google Scholar 

  59. Sheynkman, G. M. et al. ORF Capture-Seq as a versatile method for targeted identification of full-length isoforms.Nat. Commun.11, 2326 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  60. Legnini, I., Alles, J., Karaiskos, N., Ayoub, S. & Rajewsky, N. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control.Nat. Methods16, 879–886 (2019).

    Article PubMed CAS  Google Scholar 

  61. Begik, O. et al. Nano3P-seq: transcriptome-wide analysis of gene expression and tail dynamics using end-capture nanopore cDNA sequencing.Nat. Methods20, 75–85 (2023).

    Article PubMed CAS  Google Scholar 

  62. Kuo, R. I. et al. Illuminating the dark side of the human transcriptome with long read transcript sequencing.BMC Genomics21, 751 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  63. Verwilt, J., Mestdagh, P. & Vandesompele, J. Artifacts and biases of the reverse transcription reaction in RNA sequencing.RNA29, 889–897 (2023).This review discusses the impact of RT on RNA-seq experiments.

    Article PubMed PubMed Central CAS  Google Scholar 

  64. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome.Nat. Methods16, 1297–1305 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  65. Kong, Y., Mead, E. A. & Fang, G. Navigating the pitfalls of mapping DNA and RNA modifications.Nat. Rev. Genet.24, 363–381 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  66. Bamford, R. A. et al. An atlas of expressed transcripts in the prenatal and postnatal human cortex. Preprint atbioRxivhttps://doi.org/10.1101/2024.05.24.595768 (2024).

  67. Aguzzoli Heberle, B. et al. Mapping medically relevant RNA isoform diversity in the aged human frontal cortex with deep long-read RNA-seq.Nat. Biotechnol.https://doi.org/10.1038/s41587-024-02245-9 (2024).

  68. Wang, J. et al. Direct RNA sequencing coupled with adaptive sampling enriches RNAs of interest in the transcriptome.Nat. Commun.15, 481 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  69. Keil, N., Monzó, C., McIntyre, L. & Conesa, A. SQANTI-reads: a tool for the quality assessment of long read data in multi-sample lrRNA-seq experiments.Genome Res.https://doi.org/10.1101/gr.280021.124 (2025).

  70. Dong, X. et al. Benchmarking long-read RNA-sequencing analysis tools using in silico mixtures.Nat. Methods20, 1810–1821 (2023).

    Article PubMed CAS  Google Scholar 

  71. Gonzaludo, N. et al. Assessment of read depth requirements for gene and isoform discovery: a comparative study of long-read and short-read RNA sequencing data in human heart and brain. Available athttps://www.pacb.com/wp-content/uploads/2024-eshg-RNA-isoform-human-heart-brain-short-and-long-read-sequencing-poster.pdf (2024).

  72. Wang, L. et al. Iso-Seq enables discovery of novel isoform variants in human retina at single cell resolution. Preprint atbioRxivhttps://doi.org/10.1101/2024.08.08.607267 (2024).

  73. Zhang, W. et al. Full-length RNA transcript sequencing traces brain isoform diversity in house mouse natural populations.Genome Res.34, 2118–2132 (2024).

    Article PubMed CAS  Google Scholar 

  74. Monzó, C., Frankish, A. & Conesa, A. Notable challenges posed by long-read sequencing for the study of transcriptional diversity and genome annotation.Genome Res.https://doi.org/10.1101/gr.279865.124 (2025).

  75. Karin, B. R. et al. Highly-multiplexed and efficient long-amplicon PacBio and Nanopore sequencing of hundreds of full mitochondrial genomes.BMC Genomics24, 229 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  76. Gordon, S. P. et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing.PLoS ONE10, e0132628 (2015).

    Article PubMed PubMed Central  Google Scholar 

  77. Hoang, N. V. et al. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.BMC Genomics18, 395 (2017).

    Article PubMed PubMed Central  Google Scholar 

  78. Ding, C. et al. Short-read and long-read full-length transcriptome of mouse neural stem cells across neurodevelopmental stages.Sci. Data9, 69 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  79. Paul, L. et al. SIRVs: spike-in RNA variants as external isoform controls in RNA-sequencing. Preprint atbioRxivhttps://doi.org/10.1101/080747 (2016).

  80. External RNA Controls Consortium. Proposed methods for testing and selecting the ERCC external RNA controls.BMC Genomics6, 150 (2005).

    Article PubMed Central  Google Scholar 

  81. Hardwick, S. A. et al. Spliced synthetic genes as internal controls in RNA sequencing experiments.Nat. Methods13, 792–798 (2016).

    Article PubMed CAS  Google Scholar 

  82. Baid, G. et al. DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer.Nat. Biotechnol.41, 232–238 (2023).

    PubMed CAS  Google Scholar 

  83. Hall, M. B. et al. Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data.eLife13, RP98300 (2024).

    Article PubMed PubMed Central  Google Scholar 

  84. Li, H. Minimap2: pairwise alignment for nucleotide sequences.Bioinformatics34, 3094–3100 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  85. Sahlin, K. & Mäkinen, V. Accurate spliced alignment of long RNA sequencing reads.Bioinformatics37, 4643–4651 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  86. Marić, J., Sovic, I., Križanović, K., Nagarajan, N. & Šikić, M. Graphmap2 — splice-aware RNA-seq mapper for long reads. Preprint atbioRxivhttps://doi.org/10.1101/720458 (2019).

  87. Liu, B. et al. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index.Genome Biol.20, 274 (2019).

    Article PubMed PubMed Central  Google Scholar 

  88. Parker, M. T., Knop, K., Barton, G. J. & Simpson, G. G. 2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.Genome Biol.22, 72 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  89. Chao, K.-H., Mao, A., Salzberg, S. L. & Pertea, M. Splam: a deep-learning-based splice site predictor that improves spliced alignments.Genome Biol.25, 243 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  90. Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads.BMC Bioinform.20, 405 (2019).

    Article  Google Scholar 

  91. Newman, J. R. B., Concannon, P., Tardaguila, M., Conesa, A. & McIntyre, L. M. Event Analysis: using transcript events to improve estimates of abundance in RNA-seq data.G38, 2923–2940 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  92. Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns.Nat. Commun.11, 1438 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  93. Kabza, M. et al. Accurate long-read transcript discovery and quantification at single-cell, pseudo-bulk and bulk resolution with Isosceles.Nat. Commun.15, 7316 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  94. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2.Genome Biol.20, 278 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  95. Gao, Y. et al. ESPRESSO: robust discovery and quantification of transcript isoforms from error-prone long-read RNA-seq data.Sci. Adv.9, eabq5072 (2023).

    Article PubMed PubMed Central  Google Scholar 

  96. Wyman, D. et al. A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification. Preprint atbioRxivhttps://doi.org/10.1101/672931 (2019).

  97. Tian, L. et al. Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing.Genome Biol.22, 310 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  98. Orabi, B. et al. Freddie: annotation-independent detection and discovery of transcriptomic alternative splicing isoforms using long-read sequencing.Nucleic Acids Res.51, e11 (2023).

    Article PubMed CAS  Google Scholar 

  99. Wang, Y., Hu, Z., Ye, N. & Yin, H. IsoSplitter: identification and characterization of alternative splicing sites without a reference genome.RNA27, 868–875 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  100. Nip, K. M. et al. Reference-free assembly of long-read transcriptome sequencing data with RNA-Bloom2.Nat. Commun.14, 2940 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  101. Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D.rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data.Gigascience8, giz100 (2019).

    Article PubMed PubMed Central  Google Scholar 

  102. Pacific Biosciences.Iso-Seq: Scalable De Novo Isoform Discovery from PacBio HiFi Reads. Available athttps://isoseq.how/ (2023).

  103. de la Rubia, I. et al. RATTLE: reference-free reconstruction and quantification of transcriptomes from Nanopore sequencing.Genome Biol.23, 153 (2022).

    Article PubMed PubMed Central  Google Scholar 

  104. Petri, A. J. & Sahlin, K. isONform: reference-free transcriptome reconstruction from Oxford Nanopore data.Bioinformatics39, i222–i231 (2023).

    Article PubMed PubMed Central  Google Scholar 

  105. Jousheghani, Z. Z. & Patro, R. Oarfish: enhanced probabilistic modeling leads to improved accuracy in long read transcriptome quantification. Preprint atbioRxivhttps://doi.org/10.1101/2024.02.28.582591 (2024).

  106. Fukasawa, Y., Ermini, L., Wang, H., Carty, K. & Cheung, M.-S. LongQC: a quality control tool for third generation sequencing long read data.G310, 1193–1196 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  107. Leger, A. & Leonardi, T. pycoQC, interactive quality control for Oxford Nanopore Sequencing.J. Open Source Softw.4, 1236 (2019).

    Article  Google Scholar 

  108. De Coster, W. & Rademakers, R. NanoPack2: population-scale evaluation of long-read sequencing data.Bioinformatics39, btad311 (2023).

    Article PubMed PubMed Central  Google Scholar 

  109. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report.Bioinformatics32, 3047–3048 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  110. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.Bioinformatics31, 3210–3212 (2015).

    Article PubMed  Google Scholar 

  111. Wang, Y. IsoSeqSim: Iso-Seq reads simulator for PacBio and ONT full-length isoform sequencing technologies.GitHubhttps://github.com/yunhaowang/IsoSeqSim (2022).

  112. Hafezqorani, S. et al. Trans-NanoSim characterizes and simulates nanopore RNA-sequencing data.Gigascience9, giaa061 (2020).

    Article PubMed PubMed Central  Google Scholar 

  113. Mestre-Tomás, J., Liu, T., Pardo-Palacios, F. & Conesa, A. SQANTI-SIM: a simulator of controlled transcript novelty for lrRNA-seq benchmark.Genome Biol.24, 286 (2023).

    Article PubMed PubMed Central  Google Scholar 

  114. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.15, 550 (2014).

    Article PubMed PubMed Central  Google Scholar 

  115. Robinson, M. D., McCarthy, D. J. & Smyth, G. K.edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics26, 139–140 (2010).

    Article PubMed CAS  Google Scholar 

  116. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.43, e47 (2015).

    Article PubMed PubMed Central  Google Scholar 

  117. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts.Genome Biol.15, R29 (2014).

    Article PubMed PubMed Central  Google Scholar 

  118. Xia, Y. et al. TAGET: a toolkit for analyzing full-length transcripts from long-read sequencing.Nat. Commun.14, 5935 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  119. de la Fuente, L. et al. tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing.Genome Biol.21, 119 (2020).

    Article PubMed PubMed Central  Google Scholar 

  120. Karlebach, G. et al. HBA-DEALS: accurate and simultaneous identification of differential expression and splicing using hierarchical Bayesian analysis.Genome Biol.21, 171 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  121. Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data.Genome Res.22, 2008–2017 (2012).

    Article PubMed PubMed Central CAS  Google Scholar 

  122. Maglott, D. R., Katz, K. S., Sicotte, H. & Pruitt, K. D. NCBI’s LocusLink and RefSeq.Nucleic Acids Res.28, 126–128 (2000).

    Article PubMed PubMed Central CAS  Google Scholar 

  123. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.Nucleic Acids Res.44, D733–D745 (2016).

    Article PubMed  Google Scholar 

  124. Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE.Genome Biol.7, S4.1–S4.9 (2006).

    Article PubMed  Google Scholar 

  125. Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023.Nucleic Acids Res.51, D942–D949 (2023).

    Article PubMed CAS  Google Scholar 

  126. Lawniczak, M. K. N. et al. Standards recommendations for the Earth BioGenome Project.Proc. Natl Acad. Sci. USA119, e21156399118 (2022).

    Article  Google Scholar 

  127. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species.Nature592, 737–746 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  128. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life.Proc. Natl Acad. Sci. USA115, 4325–4333 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  129. Peng, S. et al. Long-read RNA sequencing improves the annotation of the equine transcriptome. Preprint atbioRxivhttps://doi.org/10.1101/2022.06.07.495038 (2022).

  130. Xia, E. et al. The tea plant reference genome and improved gene annotation using long-read and paired-end sequencing data.Sci. Data6, 122 (2019).

    Article PubMed PubMed Central  Google Scholar 

  131. Shields, E. J. et al. Genome annotation with long RNA reads reveals new patterns of gene expression and improves single-cell analyses in an ant brain.BMC Biol.19, 254 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  132. Yandell, M. & Ence, D. A beginner’s guide to eukaryotic genome annotation.Nat. Rev. Genet.13, 329–342 (2012).

    Article PubMed CAS  Google Scholar 

  133. Scalzitti, N., Jeannin-Girardon, A., Collet, P., Poch, O. & Thompson, J. D. A benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms.BMC Genomics21, 293 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  134. Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel.Bioinformatics19, ii215–ii225 (2003).

    Article PubMed  Google Scholar 

  135. Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources.BMC Bioinform.7, 62 (2006).

    Article  Google Scholar 

  136. Korf, I. Gene finding in novel genomes.BMC Bioinform.5, 59 (2004).

    Article  Google Scholar 

  137. Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P.Curr. Protoc. Bioinform.48, 4.11.1–4.11.39 (2014).

    Article  Google Scholar 

  138. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding.Bioinformatics24, 637–644 (2008).

    Article PubMed CAS  Google Scholar 

  139. Paniagua, A. et al. Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq.Genome Res.https://doi.org/10.1101/gr.279864.124 (2024).

  140. Ren, T. et al. The clinical implication of SS18–SSX fusion gene in synovial sarcoma.Br. J. Cancer109, 2279–2285 (2013).

    Article PubMed PubMed Central CAS  Google Scholar 

  141. Wang, Z. et al. Significance of the TMPRSS2:ERG gene fusion in prostate cancer.Mol. Med. Rep.16, 5450–5458 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  142. Sundaresh, A. & Williams, O. Mechanism of ETV6-RUNX1 Leukemia.Adv. Exp. Med. Biol.962, 201–216 (2017).

    Article PubMed CAS  Google Scholar 

  143. Liu, Q. et al. LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing.BMC Genomics21, 793 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  144. Davidson, N. M. et al. JAFFAL: detecting fusion genes with long-read transcriptome sequencing.Genome Biol.23, 10 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  145. Karaoglanoglu, F., Chauve, C. & Hach, F. Genion, an accurate tool to detect gene fusion from long transcriptomics reads.BMC Genomics23, 129 (2022).

    Article PubMed PubMed Central  Google Scholar 

  146. Masuda, K., Sota, Y. & Matsuda, H. Detecting fusion genes in long-read transcriptome sequencing data with FUGAREC.IPSJ Trans. Bioinform.17, 1–9 (2024).

    Article  Google Scholar 

  147. Qin, Q. et al. CTAT-LR-fusion: accurate fusion transcript identification from long and short read isoform sequencing at bulk or single cell resolution. Preprint atbioRxivhttps://doi.org/10.1101/2024.02.24.581862 (2024).

  148. Felton, C. A., Tang, A. D., Knisbacher, B. A., Wu, C. J. & Brooks, A. N. Detection of alternative isoforms of gene fusions from long-read RNA-seq with FLAIR-fusion. Preprint atbioRxivhttps://doi.org/10.1101/2022.08.01.502364 (2022).

  149. Boutet, E. et al. UniProtKB/Swiss-Prot, the manually annotated section of the Uniprot KnowledgeBase: how to use the entry view.Methods Mol. Biol.1374, 23–54 (2016).

    Article PubMed CAS  Google Scholar 

  150. Mistry, J. et al. Pfam: the protein families database in 2021.Nucleic Acids Res.49, D412–D419 (2021).

    Article PubMed CAS  Google Scholar 

  151. Paysan-Lafosse, T. et al. InterPro in 2022.Nucleic Acids Res.51, D418–D427 (2023).

    Article PubMed CAS  Google Scholar 

  152. Milacic, M. et al. The Reactome Pathway Knowledgebase 2024.Nucleic Acids Res.52, D672–D678 (2024).

    Article PubMed CAS  Google Scholar 

  153. Gene Ontology Consortium et al. The Gene Ontology knowledgebase in 2023.Genetics224, iyad031 (2023).

    Article  Google Scholar 

  154. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.51, D587–D592 (2023).

    Article PubMed CAS  Google Scholar 

  155. Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families.Nucleic Acids Res.49, D192–D200 (2021).

    Article PubMed CAS  Google Scholar 

  156. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function.Nucleic Acids Res.47, D155–D162 (2019).

    Article PubMed CAS  Google Scholar 

  157. Rodriguez, J. M. et al. APPRIS: selecting functionally important isoforms.Nucleic Acids Res.50, D54–D59 (2022).

    Article PubMed CAS  Google Scholar 

  158. Chen, T.-W. et al. FunctionAnnotator, a versatile and efficient web tool for non-model organism annotation.Sci. Rep.7, 10430 (2017).

    Article PubMed PubMed Central  Google Scholar 

  159. Ferrer-Bonsoms, J. A. et al. ISOGO: functional annotation of protein-coding splice variants.Sci. Rep.10, 1069 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  160. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl Acad. Sci. USA102, 15545–15550 (2005).

    Article PubMed PubMed Central CAS  Google Scholar 

  161. Tranchevent, L.-C. et al. Identification of protein features encoded by alternative exons using Exon Ontology.Genome Res.27, 1087–1097 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  162. Louadi, Z. et al. DIGGER: exploring the functional role of alternative splicing in protein interactions.Nucleic Acids Res.49, D309–D318 (2021).

    Article PubMed CAS  Google Scholar 

  163. Lorenzi, C. et al. IRFinder-S: a comprehensive suite to discover and explore intron retention.Genome Biol.22, 307 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  164. Vitting-Seerup, K. & Sandelin, A. IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences.Bioinformatics35, 4469–4471 (2019).

    Article PubMed CAS  Google Scholar 

  165. Gal-Oz, S. T., Haiat, N., Eliyahu, D., Shani, G. & Shay, T. DoChaP: the domain change presenter.Nucleic Acids Res.49, W162–W168 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  166. Louadi, Z. et al. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases.Genome Biol.22, 327 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  167. Tilgner, H., Grubert, F., Sharon, D. & Snyder, M. P. Defining a personal, allele-specific, and single-molecule long-read transcriptome.Proc. Natl Acad. Sci. USA111, 9869–9874 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  168. Liao, W.-W. et al. A draft human pangenome reference.Nature617, 312–324 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  169. Keane, T. M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation.Nature477, 289–294 (2011).

    Article PubMed PubMed Central CAS  Google Scholar 

  170. de Jong, T. V. et al. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats.Cell Genom.4, 100527 (2024).

    Article PubMed PubMed Central  Google Scholar 

  171. Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis.Genome Biol.16, 195 (2015).

    Article PubMed PubMed Central  Google Scholar 

  172. Sibbesen, J. A. et al. Haplotype-aware pantranscriptome analyses using spliced pangenome graphs.Nat. Methods20, 239–247 (2023).

    Article PubMed CAS  Google Scholar 

  173. Quinones-Valdez, G., Amoah, K. & Xiao, X. Long-read RNA-seq demarcatescis- andtrans-directed alternative RNA splicing. Preprint atbioRxivhttps://doi.org/10.1101/2024.06.14.599101v1 (2024).

  174. Nassar, L. R. et al. The UCSC Genome Browser database: 2023 update.Nucleic Acids Res.51, D1188–D1195 (2023).

    Article PubMed CAS  Google Scholar 

  175. Robinson, J. T. et al. Integrative genomics viewer.Nat. Biotechnol.29, 24–26 (2011).

    Article PubMed PubMed Central CAS  Google Scholar 

  176. Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.Bioinformatics35, 2193–2198 (2019).

    Article PubMed CAS  Google Scholar 

  177. Ferguson, J. M. & Smith, M. A. SquiggleKit: a toolkit for manipulating nanopore signal data.Bioinformatics35, 5372–5373 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  178. Bruno, A., Aury, J.-M. & Engelen, S. BoardION: real-time monitoring of Oxford Nanopore sequencing instruments.BMC Bioinform.22, 245 (2021).

    Article  Google Scholar 

  179. Reese, F. & Mortazavi, A. Swan: a library for the analysis and visualization of long-read transcriptomes.Bioinformatics37, 1322–1323 (2021).

    Article PubMed CAS  Google Scholar 

  180. Gustavsson, E. K., Zhang, D., Reynolds, R. H., Garcia-Ruiz, S. & Ryten, M. ggtranscript: an R package for the visualization and interpretation of transcript isoforms using ggplot2.Bioinformatics38, 3844–3846 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  181. Stein, A. N., Joglekar, A., Poon, C.-L. & Tilgner, H. U. ScisorWiz: visualizing differential isoform expression in single-cell long-read data.Bioinformatics38, 3474–3476 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  182. Sethi, A. J., Acera Mateos, P., Hayashi, R., Shirokikh, N. & Eyras, E. R2Dtool: integration and visualization of isoform-resolved RNA features.Bioinformatics40, btae495 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  183. DeMario, S., Xu, K., He, K. & Chanfreau, G. F. Nanoblot: an R-package for visualization of RNA isoforms from long-read RNA-sequencing data.RNA29, 1099–1107 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  184. Razaghi, R. et al. Modbamtools: analysis of single-molecule epigenetic data for long-range profiling, heterogeneity, and clustering. Preprint atbioRxivhttps://doi.org/10.1101/2022.07.07.499188 (2022).

  185. Cheetham, S. W., Kindlova, M. & Ewing, A. D. Methylartist: tools for visualizing modified bases from nanopore sequence data.Bioinformatics38, 3109–3112 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  186. Su, S. et al. NanoMethViz: an R/Bioconductor package for visualizing long-read methylation data.PLoS Comput. Biol.17, e1009524 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  187. Yang, L. et al. NanoTrans: an integrated computational framework for comprehensive transcriptome analysis with Nanopore direct RNA sequencing.J. Genet. Genomics51, 1300–1309 (2024).

    Article PubMed CAS  Google Scholar 

  188. Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications.Nat. Rev. Genet.25, 104–122 (2024).

    Article PubMed CAS  Google Scholar 

  189. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore.Nat. Biotechnol.39, 1394–1402 (2021).

    Article PubMed CAS  Google Scholar 

  190. Abebe, J. S. et al. DRUMMER-rapid detection of RNA modifications through comparative nanopore sequencing.Bioinformatics38, 3113–3115 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  191. Hendra, C. et al. Detection of m6A from direct RNA sequencing using a multiple instance learning framework.Nat. Methods19, 1590–1598 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  192. Qin, H. et al. DENA: training an authentic neural network model using Nanopore sequencing data ofArabidopsis transcripts for detection and quantification ofN-methyladenosine on RNA.Genome Biol.23, 25 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  193. Hassan, D., Acevedo, D., Daulatabad, S. V., Mir, Q. & Janga, S. C. Penguin: a tool for predicting pseudouridine sites in direct RNA nanopore sequencing data.Methods203, 478–487 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  194. Chan, A., Naarmann-de Vries, I. S., Scheitl, C. P. M., Höbartner, C. & Dieterich, C. Detecting mA at single-molecular resolution via direct RNA sequencing and realistic training data.Nat. Commun.15, 3323 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  195. Huang, S., Wylder, A. C. & Pan, T. Simultaneous nanopore profiling of mRNA mA and pseudouridine reveals translation coordination.Nat. Biotechnol.42, 1831–1835 (2024).

    Article PubMed CAS  Google Scholar 

  196. Wu, Y. et al. Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing.Nat. Commun.15, 4049 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  197. Teng, H., Stoiber, M., Bar-Joseph, Z. & Kingsford, C. Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning framework.Genome Res.34, 1987–1999 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  198. Cruciani, S. et al. De novo basecalling of RNA modifications at single molecule and nucleotide resolution.Genome Biol.26, 38 (2025).

    Article PubMed PubMed Central CAS  Google Scholar 

  199. Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data.Nat. Methods12, 733–735 (2015).

    Article PubMed CAS  Google Scholar 

  200. Stoiber, M. et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. Preprint atbioRxivhttps://doi.org/10.1101/094672 (2016).

  201. Gamaarachchi, H. et al. GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis.BMC Bioinform.21, 343 (2020).

    Article CAS  Google Scholar 

  202. Kovaka, S. et al. Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment. Preprint atbioRxivhttps://doi.org/10.1101/2024.03.05.583511 (2024).

  203. Alfonzo, J. D. et al. A call for direct sequencing of full-length RNAs to identify all modifications.Nat. Genet.53, 1113–1116 (2021).

    Article PubMed CAS  Google Scholar 

  204. Cozzuto, L., Delgado-Tejedor, A., Hermoso Pulido, T., Novoa, E. M. & Ponomarenko, J. Nanopore direct RNA sequencing data processing and analysis using masterofpores.Methods Mol. Biol.2624, 185–205 (2023).

    Article PubMed CAS  Google Scholar 

  205. Maestri, S. et al. Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing.Brief. Bioinform.25, 2 (2024).

    Article  Google Scholar 

  206. Eckmann, C. R., Rammelt, C. & Wahle, E. Control of poly(A) tail length.Wiley Interdiscip. Rev. RNA2, 348–361 (2011).

    Article PubMed CAS  Google Scholar 

  207. Krause, M. et al. tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing.RNA25, 1229–1241 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  208. 10× Genomics and Oxford Nanopore Technologies.Application Note:Alternative Transcript Isoform Detection with Single Cell and Spatial Resolution. Available athttps://nanoporetech.com/resource-centre/alternative-transcript-isoform-detection-with-single-cell-and-spatial-resolution (2022).

  209. Joglekar, A., Foord, C., Jarroux, J., Pollard, S. & Tilgner, H. U. From words to complete phrases: insight into single-cell isoforms using short and long reads.Transcription14, 92–104 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  210. Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. High throughput error corrected Nanopore single cell transcriptome sequencing.Nat. Commun.11, 4025 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  211. Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes.Nat. Commun.10, 3120 (2019).

    Article PubMed PubMed Central  Google Scholar 

  212. Byrne, A. et al. Single-cell long-read targeted sequencing reveals transcriptional variation in ovarian cancer.Nat. Commun.15, 6916 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  213. Shiau, C.-K. et al. High throughput single cell long-read sequencing analyses of same-cell genotypes and phenotypes in human tumors.Nat. Commun.14, 4124 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  214. You, Y. et al. Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE.Genome Biol.24, 66 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  215. Shi, Z.-X. et al. High-throughput and high-accuracy single-cell RNA isoform analysis using PacBio circular consensus sequencing.Nat. Commun.14, 2631 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  216. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution.Science363, 1463–1467 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  217. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.Cell185, 1777–1792.e21 (2022).

    Article PubMed CAS  Google Scholar 

  218. Ren, Y. et al. Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas.Nat. Commun.14, 1028 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  219. Lebrigand, K. et al. The spatial landscape of gene expression isoforms in tissue sections.Nucleic Acids Res.51, e47 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  220. Wissink, E. M., Vihervaara, A., Tippens, N. D. & Lis, J. T. Nascent RNA analyses: tracking transcription and its regulation.Nat. Rev. Genet.20, 705–723 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  221. Long, Y., Jia, J., Mo, W., Jin, X. & Zhai, J. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing.Nat. Protoc.16, 4355–4381 (2021).

    Article PubMed CAS  Google Scholar 

  222. Oesterreich, F. C. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II.Cell165, 372–381 (2016).

    Article PubMed PubMed Central  Google Scholar 

  223. Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3′ end cleavage during mammalian erythropoiesis.Mol. Cell81, 998–1012.e7 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  224. Herzel, L., Straube, K. & Neugebauer, K. M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.Genome Res.28, 1008–1019 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  225. Sousa-Luís, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts.Mol. Cell81, 1935–1950.e6 (2021).

    Article PubMed PubMed Central  Google Scholar 

  226. Prudêncio, P., Savisaar, R., Rebelo, K., Martinho, R. G. & Carmo-Fonseca, M. Transcription and splicing dynamics during earlyDrosophila development.RNA28, 139–161 (2022).

    Article PubMed PubMed Central  Google Scholar 

  227. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores.Mol. Cell77, 985–998.e8 (2020).

    Article PubMed CAS  Google Scholar 

  228. Maier, K. C., Gressel, S., Cramer, P. & Schwalb, B. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms.Genome Res.30, 1332–1344 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  229. Jagannatha, P. et al. Long-read Ribo-STAMP simultaneously measures transcription and translation with isoform resolution.Genome Res.279176, 124 (2024).

    Google Scholar 

  230. Adamopoulos, P. G. et al. Hybrid-seq deciphers the complex transcriptional profile of the human DNA repair associated gene.RNA Biol.20, 281–295 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  231. Grealey, J. et al. The carbon footprint of bioinformatics.Mol. Biol. Evol.39, msac034 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  232. Hewel, C. et al. Direct RNA sequencing enables improved transcriptome assessment and tracking of RNA modifications for medical applications. Preprint atbioRxivhttps://doi.org/10.1101/2024.07.25.605188 (2024).

  233. Reese, F. et al. The ENCODE4 long-read RNA-seq collection reveals distinct classes of transcript structure diversity. Preprint atbioRxivhttps://doi.org/10.1101/2023.05.15.540865 (2023).

Download references

Acknowledgements

The authors’ work has been funded by the European Union Marie Skłodowska-Curie Actions Postdoctoral Fellowship (HORIZON-MSCA-2023-PF-01-01 grant agreement project 101149931), the European Union Marie Skłodowska-Curie Actions Doctoral Network project LongTREC (HORIZON-MSCA-2021-DN-01 grant agreement project 101072892) and the Spanish Science Ministry, grant number PID2020-119537RB-I00.

Author information

Author notes
  1. These authors contributed equally: Carolina Monzó, Tianyuan Liu.

Authors and Affiliations

  1. Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Valencia, Spain

    Carolina Monzó, Tianyuan Liu & Ana Conesa

Authors
  1. Carolina Monzó

    You can also search for this author inPubMed Google Scholar

  2. Tianyuan Liu

    You can also search for this author inPubMed Google Scholar

  3. Ana Conesa

    You can also search for this author inPubMed Google Scholar

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence toCarolina Monzó orAna Conesa.

Ethics declarations

Competing interests

A.C. has received in-kind funding from Pacific Biosciences for library preparation and sequencing. A.C. and T.L. collaborate with Oxford Nanopore in the Marie Skłodowska-Curie Actions Doctoral Network project LongTREC. C.M. declares no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Jonathan Göke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CycloneSEQ:https://en.mgitech.cn/

Dorado:https://github.com/nanoporetech/dorado

LyRic:https://github.com/guigolab/LyRic

nf-core/nanoseq:https://nf-co.re/nanoseq/3.1.0/

NVIDIA:https://nvidia.com/en-us/case-studies/long-read-sequencing/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp