- Review Article
- Published:
Transcriptomics in the era of long-read sequencing
- Carolina Monzó ORCID:orcid.org/0000-0002-5043-81451 na1,
- Tianyuan Liu ORCID:orcid.org/0000-0002-8561-62391 na1 &
- Ana Conesa ORCID:orcid.org/0000-0001-9597-311X1
Nature Reviews Genetics (2025)Cite this article
13kAccesses
130Altmetric
Abstract
Transcriptome sequencing revolutionized the analysis of gene expression, providing an unbiased approach to gene detection and quantification that enabled the discovery of novel isoforms, alternative splicing events and fusion transcripts. However, although short-read sequencing technologies have surpassed the limited dynamic range of previous technologies such as microarrays, they have limitations, for example, in resolving full-length transcripts and complex isoforms. Over the past 5 years, long-read sequencing technologies have matured considerably, with improvements in instrumentation and analytical methods, enabling their application to RNA sequencing (RNA-seq). Benchmarking studies are beginning to identify the strengths and limitations of long-read RNA-seq, although there remains a need for comprehensive resources to guide newcomers through the intricacies of this approach. In this Review, we provide a comprehensive overview of the long-read RNA-seq workflow, from library preparation and sequencing challenges to core data processing, downstream analyses and emerging developments. We present an extensive inventory of experimental and analytical methods and discuss current challenges and prospects.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Conesa, A. et al. A survey of best practices for RNA-seq data analysis.Genome Biol.17, 13 (2016).This review provides an overview of short-reads transcriptomics experimental design and bioinformatic analysis.
Tilgner, H. et al. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events.Nat. Biotechnol.33, 736–742 (2015).
Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation.Nat. Methods7, 1009–1015 (2010).
Park, E., Pan, Z., Zhang, Z., Lin, L. & Xing, Y. The expanding landscape of alternative splicing variation in human populations.Am. J. Hum. Genet.102, 11–26 (2018).
Duke, J. L. et al. Determining performance characteristics of an NGS-based HLA typing method for clinical applications.Hladnikia87, 141–152 (2016).
Sirupurapu, V., Safonova, Y. & Pevzner, P. A. Gene prediction in the immunoglobulin loci.Genome Res.32, 1152–1169 (2022).
Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome.Nat. Biotechnol.31, 1009–1014 (2013).
Soneson, C. et al. A comprehensive examination of nanopore native RNA sequencing for characterization of complex transcriptomes.Nat. Commun.10, 3359 (2019).
Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.F1000Research6, 100 (2017).
Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain.Nat. Commun.12, 463 (2021).
Patowary, A. et al. Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms.Science384, eadh7688 (2024).
Chen, Y. et al. Gene fusion detection and characterization in long-read cancer transcriptome sequencing data with FusionSeeker.Cancer Res.83, 28–33 (2023).
Hou, R., Hon, C.-C. & Huang, Y. CamoTSS: analysis of alternative transcription start sites for cellular phenotypes and regulatory patterns from 5’ scRNA-seq data.Nat. Commun.14, 7240 (2023).
Wright, D. J. et al. Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes.BMC Genomics23, 42 (2022).
Anvar, S. Y. et al. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.Genome Biol.19, 46 (2018).
Zhang, Z., Bae, B., Cuddleston, W. H. & Miura, P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing.Nat. Commun.14, 5506 (2023).
Zhang, S.-J. et al. Isoform evolution in primates through independent combination of alternative RNA processing events.Mol. Biol. Evol.34, 2453–2468 (2017).
Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing.Nature608, 353–359 (2022).This study reported the discovery of thousands of novel isoforms in a well-annotated organism and GTEx benchmarking.
Zhang, R. et al. A high-resolution single-molecule sequencing-basedArabidopsis transcriptome using novel methods of Iso-seq analysis.Genome Biol.23, 149 (2022).
Tang, A. D. et al. Detecting haplotype-specific transcript variation in long reads with FLAIR2.Genome Biol.25, 173 (2024).
Gao, Y. et al. Quantitative profiling ofN-methyladenosine at single-base resolution in stem-differentiating xylem ofPopulus trichocarpa using Nanopore direct RNA sequencing.Genome Biol.22, 22 (2021).
Jenjaroenpun, P. et al. Decoding the epitranscriptional landscape from native RNA sequences.Nucleic Acids Res.49, e7 (2021).
Method of the year 2022: long-read sequencing.Nat. Methods20, 1 (2023).
Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis.Genome Biol.21, 30 (2020).
Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation.Nat. Biotechnol.42, 582–586 (2024).
Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications.Nat. Biotechnol.39, 1348–1365 (2021).
Dong, X. et al. The long and the short of it: unlocking nanopore long-read RNA sequencing data with short-read differential expression analysis tools.NAR Genom. Bioinform.3, lqab028 (2021).
Mahmoud, M. et al. Utility of long-read sequencing for All of Us.Nat. Commun.15, 837 (2024).
Joglekar, A. et al. Single-cell long-read sequencing-based mapping reveals specialized splicing patterns in developing and adult mouse and human brain.Nat. Neurosci.27, 1051–1063 (2024).
Fu, Y. et al.Single cell and Spatial Alternative Splicing Analysis with Long Read Sequencing. Preprint athttps://www.researchsquare.com/article/rs-2674892/v1 (2023).
Volden, R. et al. Identifying and quantifying isoforms from accurate full-length transcriptome sequencing reads with Mandalorion.Genome Biol.24, 167 (2023).
Prjibelski, A. D. et al. Accurate isoform discovery with IsoQuant using long reads.Nat. Biotechnol.41, 915–918 (2023).
Chen, Y. et al. Context-aware transcript quantification from long-read RNA-seq data with Bambu.Nat. Methods20, 1187–1195 (2023).
Loving, R. et al. Long-read sequencing transcriptome quantification with lr-kallisto. Preprint atbioRxivhttps://doi.org/10.1101/2024.07.19.604364 (2024).
Hu, Y. et al. LIQA: long-read isoform quantification and analysis.Genome Biol.22, 182 (2021).
Hu, Y., Gouru, A. & Wang, K. DELongSeq for efficient detection of differential isoform expression from long-read RNA-seq data.NAR Genom. Bioinform.5, lqad019 (2023).
Lienhard, M. et al. IsoTools: a flexible workflow for long-read transcriptome sequencing analysis.Bioinformatics39, btad364 (2023).
Carbonell-Sala, S. et al. CapTrap-seq: a platform-agnostic and quantitative approach for high-fidelity full-length RNA sequencing.Nat. Commun.15, 5278 (2024).
Su, Y. et al. Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data.Nat. Commun.15, 3972 (2024).
Pardo-Palacios, F. J. et al. Systematic assessment of long-read RNA-seq methods for transcript identification and quantification.Nat. Methods21, 1349–1363 (2024).This publication is a benchmark study of library preparation, sequencing platform, transcript identification and quantification for long-read RNA sequencing.
Wang, L. et al. Measure transcript integrity using RNA-seq data.BMC Bioinform.17, 58 (2016).
Gallego Romero, I., Pai, A. A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on transcript quantification.BMC Biol.12, 42 (2014).
Prawer, Y. D. J., Gleeson, J., De Paoli-Iseppi, R. & Clark, M. B. Pervasive effects of RNA degradation on nanopore direct RNA sequencing.NAR Genom. Bioinform.5, lqad060 (2023).
Schroeder, A. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements.BMC Mol. Biol.7, 3 (2006).
Gleeson, J. et al. Accurate expression quantification from nanopore direct RNA sequencing with NanoCount.Nucleic Acids Res.50, e19 (2022).
Pardo-Palacios, F. J. et al. SQANTI3: curation of long-read transcriptomes for accurate identification of known and novel isoforms.Nat. Methods21, 793–797 (2024).
Pacific Biosciences.Application Note:Kinnex Full-Length RNA Kit for Isoform Sequencing. Available athttps://www.pacb.com/wp-content/uploads/Application-note-Kinnex-full-length-RNA-kit-for-isoform-sequencing.pdf (2023).
Oxford Nanopore Technologies.The Value of Full-Length Transcripts Without Bias. Available athttps://a.storyblok.com/f/196663/x/8badf93497/rna-sequencing-white-paper.pdf (2019).
Chen, Y. et al. A systematic benchmark of nanopore long read RNA sequencing for transcript level analysis in human cell lines. Preprint atbioRxivhttps://doi.org/10.1101/2021.04.21.440736 (2021).This preprint benchmarks different methods for ONT library preparation, isoform detection and quantification.
Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores.Nat. Methods15, 201–206 (2018).This study showed that nanopore RNA sequencing detects both the RNA molecules and their modifications.
Begik, O., Mattick, J. S. & Novoa, E. M. Exploring the epitranscriptome by native RNA sequencing.RNA28, 1430–1439 (2022).
Lucas, M. C. & Novoa, E. M. Long-read sequencing in the era of epigenomics and epitranscriptomics.Nat. Methods20, 25–29 (2023).
Rhoads, A. & Au, K. F. PacBio sequencing and its applications.Genomics Proteom. Bioinform.13, 278–289 (2015).
Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome.Nat. Biotechnol.37, 1155–1162 (2019).
Liu-Wei, W. et al. Sequencing accuracy and systematic errors of nanopore direct RNA sequencing.BMC Genomics25, 528 (2024).
Volden, R. et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA.Proc. Natl Acad. Sci. USA115, 9726–9731 (2018).
Volden, R. & Vollmers, C. Single-cell isoform analysis in human immune cells.Genome Biol.23, 47 (2022).
Wang, F. et al. TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing.Nat. Commun.14, 4760 (2023).
Sheynkman, G. M. et al. ORF Capture-Seq as a versatile method for targeted identification of full-length isoforms.Nat. Commun.11, 2326 (2020).
Legnini, I., Alles, J., Karaiskos, N., Ayoub, S. & Rajewsky, N. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control.Nat. Methods16, 879–886 (2019).
Begik, O. et al. Nano3P-seq: transcriptome-wide analysis of gene expression and tail dynamics using end-capture nanopore cDNA sequencing.Nat. Methods20, 75–85 (2023).
Kuo, R. I. et al. Illuminating the dark side of the human transcriptome with long read transcript sequencing.BMC Genomics21, 751 (2020).
Verwilt, J., Mestdagh, P. & Vandesompele, J. Artifacts and biases of the reverse transcription reaction in RNA sequencing.RNA29, 889–897 (2023).This review discusses the impact of RT on RNA-seq experiments.
Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome.Nat. Methods16, 1297–1305 (2019).
Kong, Y., Mead, E. A. & Fang, G. Navigating the pitfalls of mapping DNA and RNA modifications.Nat. Rev. Genet.24, 363–381 (2023).
Bamford, R. A. et al. An atlas of expressed transcripts in the prenatal and postnatal human cortex. Preprint atbioRxivhttps://doi.org/10.1101/2024.05.24.595768 (2024).
Aguzzoli Heberle, B. et al. Mapping medically relevant RNA isoform diversity in the aged human frontal cortex with deep long-read RNA-seq.Nat. Biotechnol.https://doi.org/10.1038/s41587-024-02245-9 (2024).
Wang, J. et al. Direct RNA sequencing coupled with adaptive sampling enriches RNAs of interest in the transcriptome.Nat. Commun.15, 481 (2024).
Keil, N., Monzó, C., McIntyre, L. & Conesa, A. SQANTI-reads: a tool for the quality assessment of long read data in multi-sample lrRNA-seq experiments.Genome Res.https://doi.org/10.1101/gr.280021.124 (2025).
Dong, X. et al. Benchmarking long-read RNA-sequencing analysis tools using in silico mixtures.Nat. Methods20, 1810–1821 (2023).
Gonzaludo, N. et al. Assessment of read depth requirements for gene and isoform discovery: a comparative study of long-read and short-read RNA sequencing data in human heart and brain. Available athttps://www.pacb.com/wp-content/uploads/2024-eshg-RNA-isoform-human-heart-brain-short-and-long-read-sequencing-poster.pdf (2024).
Wang, L. et al. Iso-Seq enables discovery of novel isoform variants in human retina at single cell resolution. Preprint atbioRxivhttps://doi.org/10.1101/2024.08.08.607267 (2024).
Zhang, W. et al. Full-length RNA transcript sequencing traces brain isoform diversity in house mouse natural populations.Genome Res.34, 2118–2132 (2024).
Monzó, C., Frankish, A. & Conesa, A. Notable challenges posed by long-read sequencing for the study of transcriptional diversity and genome annotation.Genome Res.https://doi.org/10.1101/gr.279865.124 (2025).
Karin, B. R. et al. Highly-multiplexed and efficient long-amplicon PacBio and Nanopore sequencing of hundreds of full mitochondrial genomes.BMC Genomics24, 229 (2023).
Gordon, S. P. et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing.PLoS ONE10, e0132628 (2015).
Hoang, N. V. et al. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.BMC Genomics18, 395 (2017).
Ding, C. et al. Short-read and long-read full-length transcriptome of mouse neural stem cells across neurodevelopmental stages.Sci. Data9, 69 (2022).
Paul, L. et al. SIRVs: spike-in RNA variants as external isoform controls in RNA-sequencing. Preprint atbioRxivhttps://doi.org/10.1101/080747 (2016).
External RNA Controls Consortium. Proposed methods for testing and selecting the ERCC external RNA controls.BMC Genomics6, 150 (2005).
Hardwick, S. A. et al. Spliced synthetic genes as internal controls in RNA sequencing experiments.Nat. Methods13, 792–798 (2016).
Baid, G. et al. DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer.Nat. Biotechnol.41, 232–238 (2023).
Hall, M. B. et al. Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data.eLife13, RP98300 (2024).
Li, H. Minimap2: pairwise alignment for nucleotide sequences.Bioinformatics34, 3094–3100 (2018).
Sahlin, K. & Mäkinen, V. Accurate spliced alignment of long RNA sequencing reads.Bioinformatics37, 4643–4651 (2021).
Marić, J., Sovic, I., Križanović, K., Nagarajan, N. & Šikić, M. Graphmap2 — splice-aware RNA-seq mapper for long reads. Preprint atbioRxivhttps://doi.org/10.1101/720458 (2019).
Liu, B. et al. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index.Genome Biol.20, 274 (2019).
Parker, M. T., Knop, K., Barton, G. J. & Simpson, G. G. 2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.Genome Biol.22, 72 (2021).
Chao, K.-H., Mao, A., Salzberg, S. L. & Pertea, M. Splam: a deep-learning-based splice site predictor that improves spliced alignments.Genome Biol.25, 243 (2024).
Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads.BMC Bioinform.20, 405 (2019).
Newman, J. R. B., Concannon, P., Tardaguila, M., Conesa, A. & McIntyre, L. M. Event Analysis: using transcript events to improve estimates of abundance in RNA-seq data.G38, 2923–2940 (2018).
Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns.Nat. Commun.11, 1438 (2020).
Kabza, M. et al. Accurate long-read transcript discovery and quantification at single-cell, pseudo-bulk and bulk resolution with Isosceles.Nat. Commun.15, 7316 (2024).
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2.Genome Biol.20, 278 (2019).
Gao, Y. et al. ESPRESSO: robust discovery and quantification of transcript isoforms from error-prone long-read RNA-seq data.Sci. Adv.9, eabq5072 (2023).
Wyman, D. et al. A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification. Preprint atbioRxivhttps://doi.org/10.1101/672931 (2019).
Tian, L. et al. Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing.Genome Biol.22, 310 (2021).
Orabi, B. et al. Freddie: annotation-independent detection and discovery of transcriptomic alternative splicing isoforms using long-read sequencing.Nucleic Acids Res.51, e11 (2023).
Wang, Y., Hu, Z., Ye, N. & Yin, H. IsoSplitter: identification and characterization of alternative splicing sites without a reference genome.RNA27, 868–875 (2021).
Nip, K. M. et al. Reference-free assembly of long-read transcriptome sequencing data with RNA-Bloom2.Nat. Commun.14, 2940 (2023).
Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D.rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data.Gigascience8, giz100 (2019).
Pacific Biosciences.Iso-Seq: Scalable De Novo Isoform Discovery from PacBio HiFi Reads. Available athttps://isoseq.how/ (2023).
de la Rubia, I. et al. RATTLE: reference-free reconstruction and quantification of transcriptomes from Nanopore sequencing.Genome Biol.23, 153 (2022).
Petri, A. J. & Sahlin, K. isONform: reference-free transcriptome reconstruction from Oxford Nanopore data.Bioinformatics39, i222–i231 (2023).
Jousheghani, Z. Z. & Patro, R. Oarfish: enhanced probabilistic modeling leads to improved accuracy in long read transcriptome quantification. Preprint atbioRxivhttps://doi.org/10.1101/2024.02.28.582591 (2024).
Fukasawa, Y., Ermini, L., Wang, H., Carty, K. & Cheung, M.-S. LongQC: a quality control tool for third generation sequencing long read data.G310, 1193–1196 (2020).
Leger, A. & Leonardi, T. pycoQC, interactive quality control for Oxford Nanopore Sequencing.J. Open Source Softw.4, 1236 (2019).
De Coster, W. & Rademakers, R. NanoPack2: population-scale evaluation of long-read sequencing data.Bioinformatics39, btad311 (2023).
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report.Bioinformatics32, 3047–3048 (2016).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.Bioinformatics31, 3210–3212 (2015).
Wang, Y. IsoSeqSim: Iso-Seq reads simulator for PacBio and ONT full-length isoform sequencing technologies.GitHubhttps://github.com/yunhaowang/IsoSeqSim (2022).
Hafezqorani, S. et al. Trans-NanoSim characterizes and simulates nanopore RNA-sequencing data.Gigascience9, giaa061 (2020).
Mestre-Tomás, J., Liu, T., Pardo-Palacios, F. & Conesa, A. SQANTI-SIM: a simulator of controlled transcript novelty for lrRNA-seq benchmark.Genome Biol.24, 286 (2023).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.15, 550 (2014).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K.edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics26, 139–140 (2010).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.43, e47 (2015).
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts.Genome Biol.15, R29 (2014).
Xia, Y. et al. TAGET: a toolkit for analyzing full-length transcripts from long-read sequencing.Nat. Commun.14, 5935 (2023).
de la Fuente, L. et al. tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing.Genome Biol.21, 119 (2020).
Karlebach, G. et al. HBA-DEALS: accurate and simultaneous identification of differential expression and splicing using hierarchical Bayesian analysis.Genome Biol.21, 171 (2020).
Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data.Genome Res.22, 2008–2017 (2012).
Maglott, D. R., Katz, K. S., Sicotte, H. & Pruitt, K. D. NCBI’s LocusLink and RefSeq.Nucleic Acids Res.28, 126–128 (2000).
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.Nucleic Acids Res.44, D733–D745 (2016).
Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE.Genome Biol.7, S4.1–S4.9 (2006).
Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023.Nucleic Acids Res.51, D942–D949 (2023).
Lawniczak, M. K. N. et al. Standards recommendations for the Earth BioGenome Project.Proc. Natl Acad. Sci. USA119, e21156399118 (2022).
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species.Nature592, 737–746 (2021).
Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life.Proc. Natl Acad. Sci. USA115, 4325–4333 (2018).
Peng, S. et al. Long-read RNA sequencing improves the annotation of the equine transcriptome. Preprint atbioRxivhttps://doi.org/10.1101/2022.06.07.495038 (2022).
Xia, E. et al. The tea plant reference genome and improved gene annotation using long-read and paired-end sequencing data.Sci. Data6, 122 (2019).
Shields, E. J. et al. Genome annotation with long RNA reads reveals new patterns of gene expression and improves single-cell analyses in an ant brain.BMC Biol.19, 254 (2021).
Yandell, M. & Ence, D. A beginner’s guide to eukaryotic genome annotation.Nat. Rev. Genet.13, 329–342 (2012).
Scalzitti, N., Jeannin-Girardon, A., Collet, P., Poch, O. & Thompson, J. D. A benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms.BMC Genomics21, 293 (2020).
Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel.Bioinformatics19, ii215–ii225 (2003).
Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources.BMC Bioinform.7, 62 (2006).
Korf, I. Gene finding in novel genomes.BMC Bioinform.5, 59 (2004).
Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P.Curr. Protoc. Bioinform.48, 4.11.1–4.11.39 (2014).
Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding.Bioinformatics24, 637–644 (2008).
Paniagua, A. et al. Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq.Genome Res.https://doi.org/10.1101/gr.279864.124 (2024).
Ren, T. et al. The clinical implication of SS18–SSX fusion gene in synovial sarcoma.Br. J. Cancer109, 2279–2285 (2013).
Wang, Z. et al. Significance of the TMPRSS2:ERG gene fusion in prostate cancer.Mol. Med. Rep.16, 5450–5458 (2017).
Sundaresh, A. & Williams, O. Mechanism of ETV6-RUNX1 Leukemia.Adv. Exp. Med. Biol.962, 201–216 (2017).
Liu, Q. et al. LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing.BMC Genomics21, 793 (2020).
Davidson, N. M. et al. JAFFAL: detecting fusion genes with long-read transcriptome sequencing.Genome Biol.23, 10 (2022).
Karaoglanoglu, F., Chauve, C. & Hach, F. Genion, an accurate tool to detect gene fusion from long transcriptomics reads.BMC Genomics23, 129 (2022).
Masuda, K., Sota, Y. & Matsuda, H. Detecting fusion genes in long-read transcriptome sequencing data with FUGAREC.IPSJ Trans. Bioinform.17, 1–9 (2024).
Qin, Q. et al. CTAT-LR-fusion: accurate fusion transcript identification from long and short read isoform sequencing at bulk or single cell resolution. Preprint atbioRxivhttps://doi.org/10.1101/2024.02.24.581862 (2024).
Felton, C. A., Tang, A. D., Knisbacher, B. A., Wu, C. J. & Brooks, A. N. Detection of alternative isoforms of gene fusions from long-read RNA-seq with FLAIR-fusion. Preprint atbioRxivhttps://doi.org/10.1101/2022.08.01.502364 (2022).
Boutet, E. et al. UniProtKB/Swiss-Prot, the manually annotated section of the Uniprot KnowledgeBase: how to use the entry view.Methods Mol. Biol.1374, 23–54 (2016).
Mistry, J. et al. Pfam: the protein families database in 2021.Nucleic Acids Res.49, D412–D419 (2021).
Paysan-Lafosse, T. et al. InterPro in 2022.Nucleic Acids Res.51, D418–D427 (2023).
Milacic, M. et al. The Reactome Pathway Knowledgebase 2024.Nucleic Acids Res.52, D672–D678 (2024).
Gene Ontology Consortium et al. The Gene Ontology knowledgebase in 2023.Genetics224, iyad031 (2023).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.51, D587–D592 (2023).
Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families.Nucleic Acids Res.49, D192–D200 (2021).
Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function.Nucleic Acids Res.47, D155–D162 (2019).
Rodriguez, J. M. et al. APPRIS: selecting functionally important isoforms.Nucleic Acids Res.50, D54–D59 (2022).
Chen, T.-W. et al. FunctionAnnotator, a versatile and efficient web tool for non-model organism annotation.Sci. Rep.7, 10430 (2017).
Ferrer-Bonsoms, J. A. et al. ISOGO: functional annotation of protein-coding splice variants.Sci. Rep.10, 1069 (2020).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl Acad. Sci. USA102, 15545–15550 (2005).
Tranchevent, L.-C. et al. Identification of protein features encoded by alternative exons using Exon Ontology.Genome Res.27, 1087–1097 (2017).
Louadi, Z. et al. DIGGER: exploring the functional role of alternative splicing in protein interactions.Nucleic Acids Res.49, D309–D318 (2021).
Lorenzi, C. et al. IRFinder-S: a comprehensive suite to discover and explore intron retention.Genome Biol.22, 307 (2021).
Vitting-Seerup, K. & Sandelin, A. IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences.Bioinformatics35, 4469–4471 (2019).
Gal-Oz, S. T., Haiat, N., Eliyahu, D., Shani, G. & Shay, T. DoChaP: the domain change presenter.Nucleic Acids Res.49, W162–W168 (2021).
Louadi, Z. et al. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases.Genome Biol.22, 327 (2021).
Tilgner, H., Grubert, F., Sharon, D. & Snyder, M. P. Defining a personal, allele-specific, and single-molecule long-read transcriptome.Proc. Natl Acad. Sci. USA111, 9869–9874 (2014).
Liao, W.-W. et al. A draft human pangenome reference.Nature617, 312–324 (2023).
Keane, T. M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation.Nature477, 289–294 (2011).
de Jong, T. V. et al. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats.Cell Genom.4, 100527 (2024).
Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis.Genome Biol.16, 195 (2015).
Sibbesen, J. A. et al. Haplotype-aware pantranscriptome analyses using spliced pangenome graphs.Nat. Methods20, 239–247 (2023).
Quinones-Valdez, G., Amoah, K. & Xiao, X. Long-read RNA-seq demarcatescis- andtrans-directed alternative RNA splicing. Preprint atbioRxivhttps://doi.org/10.1101/2024.06.14.599101v1 (2024).
Nassar, L. R. et al. The UCSC Genome Browser database: 2023 update.Nucleic Acids Res.51, D1188–D1195 (2023).
Robinson, J. T. et al. Integrative genomics viewer.Nat. Biotechnol.29, 24–26 (2011).
Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.Bioinformatics35, 2193–2198 (2019).
Ferguson, J. M. & Smith, M. A. SquiggleKit: a toolkit for manipulating nanopore signal data.Bioinformatics35, 5372–5373 (2019).
Bruno, A., Aury, J.-M. & Engelen, S. BoardION: real-time monitoring of Oxford Nanopore sequencing instruments.BMC Bioinform.22, 245 (2021).
Reese, F. & Mortazavi, A. Swan: a library for the analysis and visualization of long-read transcriptomes.Bioinformatics37, 1322–1323 (2021).
Gustavsson, E. K., Zhang, D., Reynolds, R. H., Garcia-Ruiz, S. & Ryten, M. ggtranscript: an R package for the visualization and interpretation of transcript isoforms using ggplot2.Bioinformatics38, 3844–3846 (2022).
Stein, A. N., Joglekar, A., Poon, C.-L. & Tilgner, H. U. ScisorWiz: visualizing differential isoform expression in single-cell long-read data.Bioinformatics38, 3474–3476 (2022).
Sethi, A. J., Acera Mateos, P., Hayashi, R., Shirokikh, N. & Eyras, E. R2Dtool: integration and visualization of isoform-resolved RNA features.Bioinformatics40, btae495 (2024).
DeMario, S., Xu, K., He, K. & Chanfreau, G. F. Nanoblot: an R-package for visualization of RNA isoforms from long-read RNA-sequencing data.RNA29, 1099–1107 (2023).
Razaghi, R. et al. Modbamtools: analysis of single-molecule epigenetic data for long-range profiling, heterogeneity, and clustering. Preprint atbioRxivhttps://doi.org/10.1101/2022.07.07.499188 (2022).
Cheetham, S. W., Kindlova, M. & Ewing, A. D. Methylartist: tools for visualizing modified bases from nanopore sequence data.Bioinformatics38, 3109–3112 (2022).
Su, S. et al. NanoMethViz: an R/Bioconductor package for visualizing long-read methylation data.PLoS Comput. Biol.17, e1009524 (2021).
Yang, L. et al. NanoTrans: an integrated computational framework for comprehensive transcriptome analysis with Nanopore direct RNA sequencing.J. Genet. Genomics51, 1300–1309 (2024).
Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications.Nat. Rev. Genet.25, 104–122 (2024).
Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore.Nat. Biotechnol.39, 1394–1402 (2021).
Abebe, J. S. et al. DRUMMER-rapid detection of RNA modifications through comparative nanopore sequencing.Bioinformatics38, 3113–3115 (2022).
Hendra, C. et al. Detection of m6A from direct RNA sequencing using a multiple instance learning framework.Nat. Methods19, 1590–1598 (2022).
Qin, H. et al. DENA: training an authentic neural network model using Nanopore sequencing data ofArabidopsis transcripts for detection and quantification ofN-methyladenosine on RNA.Genome Biol.23, 25 (2022).
Hassan, D., Acevedo, D., Daulatabad, S. V., Mir, Q. & Janga, S. C. Penguin: a tool for predicting pseudouridine sites in direct RNA nanopore sequencing data.Methods203, 478–487 (2022).
Chan, A., Naarmann-de Vries, I. S., Scheitl, C. P. M., Höbartner, C. & Dieterich, C. Detecting mA at single-molecular resolution via direct RNA sequencing and realistic training data.Nat. Commun.15, 3323 (2024).
Huang, S., Wylder, A. C. & Pan, T. Simultaneous nanopore profiling of mRNA mA and pseudouridine reveals translation coordination.Nat. Biotechnol.42, 1831–1835 (2024).
Wu, Y. et al. Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing.Nat. Commun.15, 4049 (2024).
Teng, H., Stoiber, M., Bar-Joseph, Z. & Kingsford, C. Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning framework.Genome Res.34, 1987–1999 (2024).
Cruciani, S. et al. De novo basecalling of RNA modifications at single molecule and nucleotide resolution.Genome Biol.26, 38 (2025).
Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data.Nat. Methods12, 733–735 (2015).
Stoiber, M. et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. Preprint atbioRxivhttps://doi.org/10.1101/094672 (2016).
Gamaarachchi, H. et al. GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis.BMC Bioinform.21, 343 (2020).
Kovaka, S. et al. Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment. Preprint atbioRxivhttps://doi.org/10.1101/2024.03.05.583511 (2024).
Alfonzo, J. D. et al. A call for direct sequencing of full-length RNAs to identify all modifications.Nat. Genet.53, 1113–1116 (2021).
Cozzuto, L., Delgado-Tejedor, A., Hermoso Pulido, T., Novoa, E. M. & Ponomarenko, J. Nanopore direct RNA sequencing data processing and analysis using masterofpores.Methods Mol. Biol.2624, 185–205 (2023).
Maestri, S. et al. Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing.Brief. Bioinform.25, 2 (2024).
Eckmann, C. R., Rammelt, C. & Wahle, E. Control of poly(A) tail length.Wiley Interdiscip. Rev. RNA2, 348–361 (2011).
Krause, M. et al. tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing.RNA25, 1229–1241 (2019).
10× Genomics and Oxford Nanopore Technologies.Application Note:Alternative Transcript Isoform Detection with Single Cell and Spatial Resolution. Available athttps://nanoporetech.com/resource-centre/alternative-transcript-isoform-detection-with-single-cell-and-spatial-resolution (2022).
Joglekar, A., Foord, C., Jarroux, J., Pollard, S. & Tilgner, H. U. From words to complete phrases: insight into single-cell isoforms using short and long reads.Transcription14, 92–104 (2023).
Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. High throughput error corrected Nanopore single cell transcriptome sequencing.Nat. Commun.11, 4025 (2020).
Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes.Nat. Commun.10, 3120 (2019).
Byrne, A. et al. Single-cell long-read targeted sequencing reveals transcriptional variation in ovarian cancer.Nat. Commun.15, 6916 (2024).
Shiau, C.-K. et al. High throughput single cell long-read sequencing analyses of same-cell genotypes and phenotypes in human tumors.Nat. Commun.14, 4124 (2023).
You, Y. et al. Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE.Genome Biol.24, 66 (2023).
Shi, Z.-X. et al. High-throughput and high-accuracy single-cell RNA isoform analysis using PacBio circular consensus sequencing.Nat. Commun.14, 2631 (2023).
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution.Science363, 1463–1467 (2019).
Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.Cell185, 1777–1792.e21 (2022).
Ren, Y. et al. Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas.Nat. Commun.14, 1028 (2023).
Lebrigand, K. et al. The spatial landscape of gene expression isoforms in tissue sections.Nucleic Acids Res.51, e47 (2023).
Wissink, E. M., Vihervaara, A., Tippens, N. D. & Lis, J. T. Nascent RNA analyses: tracking transcription and its regulation.Nat. Rev. Genet.20, 705–723 (2019).
Long, Y., Jia, J., Mo, W., Jin, X. & Zhai, J. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing.Nat. Protoc.16, 4355–4381 (2021).
Oesterreich, F. C. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II.Cell165, 372–381 (2016).
Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3′ end cleavage during mammalian erythropoiesis.Mol. Cell81, 998–1012.e7 (2021).
Herzel, L., Straube, K. & Neugebauer, K. M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.Genome Res.28, 1008–1019 (2018).
Sousa-Luís, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts.Mol. Cell81, 1935–1950.e6 (2021).
Prudêncio, P., Savisaar, R., Rebelo, K., Martinho, R. G. & Carmo-Fonseca, M. Transcription and splicing dynamics during earlyDrosophila development.RNA28, 139–161 (2022).
Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores.Mol. Cell77, 985–998.e8 (2020).
Maier, K. C., Gressel, S., Cramer, P. & Schwalb, B. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms.Genome Res.30, 1332–1344 (2020).
Jagannatha, P. et al. Long-read Ribo-STAMP simultaneously measures transcription and translation with isoform resolution.Genome Res.279176, 124 (2024).
Adamopoulos, P. G. et al. Hybrid-seq deciphers the complex transcriptional profile of the human DNA repair associated gene.RNA Biol.20, 281–295 (2023).
Grealey, J. et al. The carbon footprint of bioinformatics.Mol. Biol. Evol.39, msac034 (2022).
Hewel, C. et al. Direct RNA sequencing enables improved transcriptome assessment and tracking of RNA modifications for medical applications. Preprint atbioRxivhttps://doi.org/10.1101/2024.07.25.605188 (2024).
Reese, F. et al. The ENCODE4 long-read RNA-seq collection reveals distinct classes of transcript structure diversity. Preprint atbioRxivhttps://doi.org/10.1101/2023.05.15.540865 (2023).
Acknowledgements
The authors’ work has been funded by the European Union Marie Skłodowska-Curie Actions Postdoctoral Fellowship (HORIZON-MSCA-2023-PF-01-01 grant agreement project 101149931), the European Union Marie Skłodowska-Curie Actions Doctoral Network project LongTREC (HORIZON-MSCA-2021-DN-01 grant agreement project 101072892) and the Spanish Science Ministry, grant number PID2020-119537RB-I00.
Author information
These authors contributed equally: Carolina Monzó, Tianyuan Liu.
Authors and Affiliations
Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Valencia, Spain
Carolina Monzó, Tianyuan Liu & Ana Conesa
- Carolina Monzó
You can also search for this author inPubMed Google Scholar
- Tianyuan Liu
You can also search for this author inPubMed Google Scholar
- Ana Conesa
You can also search for this author inPubMed Google Scholar
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Correspondence toCarolina Monzó orAna Conesa.
Ethics declarations
Competing interests
A.C. has received in-kind funding from Pacific Biosciences for library preparation and sequencing. A.C. and T.L. collaborate with Oxford Nanopore in the Marie Skłodowska-Curie Actions Doctoral Network project LongTREC. C.M. declares no competing interests.
Peer review
Peer review information
Nature Reviews Genetics thanks Jonathan Göke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
CycloneSEQ:https://en.mgitech.cn/
Dorado:https://github.com/nanoporetech/dorado
LyRic:https://github.com/guigolab/LyRic
nf-core/nanoseq:https://nf-co.re/nanoseq/3.1.0/
NVIDIA:https://nvidia.com/en-us/case-studies/long-read-sequencing/
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Monzó, C., Liu, T. & Conesa, A. Transcriptomics in the era of long-read sequencing.Nat Rev Genet (2025). https://doi.org/10.1038/s41576-025-00828-z
Accepted:
Published:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative