- Article
- Published:
Widespread drying of European peatlands in recent centuries
- Graeme T. Swindles ORCID:orcid.org/0000-0001-8039-17901,2,3,
- Paul J. Morris ORCID:orcid.org/0000-0002-1145-14781,
- Donal J. Mullan2,
- Richard J. Payne4,
- Thomas P. Roland5,
- Matthew J. Amesbury ORCID:orcid.org/0000-0002-4667-003X5,6,
- Mariusz Lamentowicz ORCID:orcid.org/0000-0003-0429-15307,
- T. Edward Turner1,
- Angela Gallego-Sala ORCID:orcid.org/0000-0002-7483-77735,
- Thomas Sim ORCID:orcid.org/0000-0001-8604-99961,
- Iestyn D. Barr ORCID:orcid.org/0000-0002-9066-87388,
- Maarten Blaauw ORCID:orcid.org/0000-0002-5680-15152,
- Antony Blundell1,
- Frank M. Chambers9,
- Dan J. Charman ORCID:orcid.org/0000-0003-3464-45365,
- Angelica Feurdean10,11,
- Jennifer M. Galloway12,13,
- Mariusz Gałka14,
- Sophie M. Green5,
- Katarzyna Kajukało7,
- Edgar Karofeld15,
- Atte Korhola6,
- Łukasz Lamentowicz7,
- Peter Langdon16,
- Katarzyna Marcisz7,
- Dmitri Mauquoy17,
- Yuri A. Mazei18,
- Michelle M. McKeown19,
- Edward A. D. Mitchell ORCID:orcid.org/0000-0003-0358-506X20,21,
- Elena Novenko22,23,
- Gill Plunkett ORCID:orcid.org/0000-0003-1014-34542,
- Helen M. Roe2,
- Kristian Schoning24,
- Ülle Sillasoo25,
- Andrey N. Tsyganov ORCID:orcid.org/0000-0002-5660-843218,26,
- Marjolein van der Linden27,
- Minna Väliranta ORCID:orcid.org/0000-0003-0129-72406 &
- …
- Barry Warner28
Nature Geosciencevolume 12, pages922–928 (2019)Cite this article
10kAccesses
231Citations
331Altmetric
Abstract
Climate warming and human impacts are thought to be causing peatlands to dry, potentially converting them from sinks to sources of carbon. However, it is unclear whether the hydrological status of peatlands has moved beyond their natural envelope. Here we show that European peatlands have undergone substantial, widespread drying during the last ~300 years. We analyse testate amoeba-derived hydrological reconstructions from 31 peatlands across Britain, Ireland, Scandinavia and Continental Europe to examine changes in peatland surface wetness during the last 2,000 years. We find that 60% of our study sites were drier during the period 1800–2000 ce than they have been for the last 600 years, 40% of sites were drier than they have been for 1,000 years and 24% of sites were drier than they have been for 2,000 years. This marked recent transition in the hydrology of European peatlands is concurrent with compound pressures including climatic drying, warming and direct human impacts on peatlands, although these factors vary among regions and individual sites. Our results suggest that the wetness of many European peatlands may now be moving away from natural baselines. Our findings highlight the need for effective management and restoration of European peatlands.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data that support the findings of this study are provided in Supplementary Section7.
References
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum.Geophys. Res. Lett.37, L13402 (2010).
Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming.Nat. Clim. Change8, 907–913 (2018).
Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool.Carbon Manag.5, 81–91 (2014).
Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis.CATENA160, 134–140 (2018).
Clymo, R. S., Turunen, J. & Tolonen, K. Carbon accumulation in peatland.Oikos81, 368 (1998).
Holden, J. Peatland hydrology and carbon release: why small-scale process matters.Phil. Trans. R. Soc. A363, 28912913 (2005).
Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience.Annu. Rev. Environ. Resour.41, 35–57 (2016).
Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic.Nature460, 616–619 (2009).
Ise, T., Dunn, A. L., Wofsy, S. C. & Moorcroft, P. R. High sensitivity of peat decomposition to climate change through water-table feedback.Nat. Geosci.1, 763–766 (2008).
Gill, A. L. et al. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.Glob. Change Biol.23, 5398–5411 (2017).
Limpens, J. et al. Peatlands and the carbon cycle: from local processes to global implications—a synthesis.Biogeosciences5, 1475–1491 (2008).
Panagos, P., Hiederer, R., Van Liedekerke, M. & Bampa, F. Estimating soil organic carbon in Europe based on data collected through an European network.Ecol. Indic.24, 439–450 (2013).
Waddington, J. M. et al. Hydrological feedbacks in northern peatlands.Ecohydrology8, 113–127 (2015).
Swindles, G. T. et al. Centennial-scale climate change in Ireland during the Holocene.Earth Sci. Rev.126, 300–320 (2013).
Amesbury, M. J. et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology.Quat. Sci. Rev.152, 132–151 (2016).
Charman, D. J., Blundell, A., Chiverrell, R. C., Hendon, D. & Langdon, P. G. Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain.Quat. Sci. Rev.25, 336–350 (2006).
Marcisz, K. et al. Long-term hydrological dynamics and fire history during the last 2000 years in CE Europe reconstructed from a high-resolution peat archive.Quat. Sci. Rev.112, 138–152 (2015).
Charman, D. J. Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions.Holocene17, 217–227 (2007).
Galloway, J. N. Nitrogen cycles: past, present, and future.Biogeochemistry70, 153–226 (2004).
Berendse, F. et al. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production inSphagnum bogs.Glob. Change Biol.7, 591–598 (2001).
Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs.Proc. Natl Acad. Sci. USA103, 19386–19389 (2006).
Juutinen, E. et al. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue Bog.Ecosystems13, 874–887 (2010).
McEvedy, C. & Jones, R.Atlas of World Population History (Penguin, 1978).
Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992.Glob. Biogeochem. Cycles13, 997–1027 (1999).
Jacob, D. et al. Climate impacts in Europe under +1.5 °C global warming.Earth’s Future6, 264–285 (2018).
Jassey, V. E. J. et al. Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration.Glob. Change Biol.24, 972–986 (2018).
Lamentowicz, M. et al. Unveiling tipping points in long-term ecological records fromSphagnum-dominated peatlands.Biol. Lett.15, 20190043 (2019).
Gałka, M. et al. Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high resolution multi-proxy peat archive.Holocene25, 421–434 (2015).
Gogo, S. et al. Invasion of aSphagnum-peatland byBetula spp andMolinia caerulea impacts organic matter biochemistry. Implications for carbon and nutrient cycling.Biogeochemistry106, 53–69 (2011).
Turner, T. E. et al. Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change.Quat. Sci. Rev.84, 65–85 (2014).
Parry, L. E., Holden, J. & Chapman, P. J. Restoration of blanket peatlands.J. Environ. Manag.133, 193–205 (2014).
Compo, G. P. et al. The twentieth century reanalysis project.Q. J. R. Meteorol. Soc.137, 1–28 (2011).
Blundell, A., Charman, D. J. & Barber, K. Multiproxy late Holocene peat records from Ireland: towards a regional palaeoclimate curve.J. Quat. Sci.23, 59–71 (2008).
Mauquoy, D., Yeloff, D., Van Geel, B., Charman, D. J. & Blundell, A. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene.J. Quat. Sci.23, 745–763 (2008).
Swindles, G. T., Blundell, A., Roe, H. M. & Hall, V. A. A 4500-year proxy climate record from peatlands in the North of Ireland: the identification of widespread summer ‘drought phases’?Quat. Sci. Rev.29, 1577–1589 (2010).
Langdon, P. G., Brown, A. G., Caseldine, C. J., Blockley, S. P. & Stuijts, I. Regional climate change from peat stratigraphy for the mid- to late Holocene in Central Ireland.Quat. Int.268, 145–155 (2012).
Blundell, A., Holden, J. & Turner, T.E. Generating multi-proxy Holocene palaeoenvironmental records from blanket peatlands.Palaeogeogr. Palaeoclimatol. Palaeoecol.443, 216–229 (2016).
Lamentowicz, M. et al. Reconstructing climate change and ombrotrophic bog development during the last 4000 years in northern Poland using biotic proxies, stable isotopes and trait-based approach.Palaeogeogr. Palaeoclimatol. Palaeoecol.418, 261–277 (2015).
van der Linden, M., Broekens, P., Vickery, E., Charman, D. & van Geel, B. Vegetation history and human impact during the last 300 years recorded in a German peat deposit.Rev. Palaeobot. Palynol.152, 158–175 (2008).
Sjögren, P. & Lamentowicz, M. Human and climatic impact on mires: a case study of les Amburnex mire, Swiss Jura Mountains.Veg. Hist. Archaeobot.17, 185–197 (2008).
Gałka, M. et al. Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high-resolution multi-proxy peat archive.Holocene25, 421–434 (2015).
Kajukało, K., Fiałkiewicz-Kozieł, B., Gałka, M., Kołaczek, P. & Lamentowicz, M. Abrupt ecological changes in the last 800 years inferred from a mountainous bog using testate amoebae traits and multi-proxy data.Eur. J. Protistol.55, 165–180 (2016).
Lamentowicz, M., Tobolski, K. & Mitchell, E. A. D. Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland.Holocene17, 1185–1196 (2007).
van der Knaap, W. O. et al. A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps.Quat. Sci. Rev.30, 3467–3480 (2011).
Gałka, M. et al. Unveiling exceptional Baltic bog ecohydrology, autogenic succession andclimate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae.Quat. Sci. Rev.156, 90–106 (2017).
Mitchell, E. A. D. et al. The palaeoecological history of the Praz-Rodet bog (Swiss Jura) based on pollen, plant macrofossils and testate amoebae (Protozoa).Holocene11, 65–80 (2001).
Lamentowicz, M. et al. Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine.Boreas38, 214–229 (2009).
Lamentowicz, M. et al. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive.Stud. Quaternaria28, 3–16 (2011).
Feurdean, A. et al. Last Millennium hydro-climate variability in Central–Eastern Europe (Northern Carpathians, Romania.Holocene25, 1179–1192 (2015)..
van der Linden, M., Vickery, E., Charman, D. & van Geel, B. Effects of human impact and climate change during the last 350 years recorded in a Swedish raised bog deposit.Palaeogeogr. Palaeoclimatol. Palaeoecol.262, 1–31 (2008).
Schoning, K., Charman, D. J. & Wastegård, S. Reconstructed water tables from two ombrotrophic mires in eastern Sweden compared with instrumental meteorological data.Holocene15, 111–118 (2005).
Väliranta, M. et al. High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach.Holocene17, 1093–1107 (2007).
van der Linden, M., Barke, J., Vickery, E., Charman, D. & van Geel, B. Late Holocene human impact and climate change recorded in a north Swedish peat deposit.Palaeogeogr. Palaeoclimatol. Palaeoecol.258, 1–27 (2008).
Väliranta, M. et al. Reconstructing peatland water tables using transfer functions for plant macrofossils and testate amoebae: a methodological comparison.Quat. Int.268, 34–43 (2012).
Swindles, G. T. et al. The long-term fate of permafrost peatlands under rapid climate warming.Sci. Rep.5, 17951 (2015).
Gałka, M. et al. Vegetation succession, carbon accumulation and hydrological change in subarctic peatlands, Abisko, Northern Sweden.Permafr. Periglac. Process.28, 589–604 (2017).
Woodland, W. A., Charman, D. J. & Sims, P. C. Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae.Holocene8, 261–273 (1998).
Booth, R. K. Testate amoebae as proxies for mean annual water-table depth inSphagnum-dominated peatlands of North America.J. Quat. Sci.23, 43–57 (2008).
Payne, R. J., Mitchell, E. A. D., Nguyen-Viet, H. & Gilbert, D. Can pollution bias peatland paleoclimate reconstruction?Quat. Res.78, 170–173 (2012).
Swindles, G. T. et al. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data.Quat. Sci. Rev.120, 107–117 (2015).
Swindles, G. T., Charman, D. J., Roe, H. M. & Sansum, P. A. Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: implications for Holocene palaeoclimate studies.J. Paleolimnol.42, 123–140 (2009).
R Core TeamR: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017);http://www.R-project.org/
Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process.Bayesian Anal.6, 457–474 (2011).
Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots.J. Am. Stat. Assoc.74, 829–836 (1979).
Killick, R. & EckleyI. A. changepoint: an R package for changepoint analysis.J. Stat. Softw.58, 1–19 (2015).
Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost.J. Am. Stat. Assoc.107, 1590–1598 (2012).
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500.Science303, 1499–1503 (2004).
Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation.Clim. Dynam.26, 387–405 (2006).
Acknowledgements
We thank all the organizations that have funded the data used in this analysis: Academy of Finland (grant no. 296423); Department for Employment and Learning (Northern Ireland); European Commission (Fifth Framework); INTERACT (European Community’s Seventh Framework Programme); Irish Discovery Programme; Leverhulme Trust; National Science Centre (Poland); Natural Environment Research Council (UK); Natural Sciences and Engineering Research Council of Canada; Netherlands Organization for Scientific Research; Polish National Science Centre (grant no. 2015/17/B/ST10/01656); Quaternary Research Association; Russian Science Foundation (grant no. 19-14-00102); Swiss Contribution to the enlarged European Union; Swiss Federal Office for Education and Science; Swiss National Science Foundation; World University Network; Wüthrich Fund (University of Neuchâtel); and Yorkshire Water. T.G.S. is funded by the Leeds–York Natural Environment Research Council (NERC) Doctoral Training Partnership (grant no. NE/L002574/1). T.E.T. acknowledges NERC Doctoral Training Grant no. NE/G52398X/1. For J.M.G., this paper represents a contribution from Natural Resources Canada (NRCan contribution number/Numéro de contribution de RNCan, 20190079). G.T.S. acknowledges financial support from the Dutch Foundation for the Conservation of Irish Bogs. We thank L. Brown and A. Baird (University of Leeds) for constructive comments on the manuscript. This is a contribution to the PAGES C-PEAT group. PAGES is supported by the US National Science Foundation and the Swiss Academy of Sciences. We dedicate this work to co-author Richard J. Payne who was tragically killed while climbing Nanda Devi in the Garhwal Himalayas whilst the manuscript was in review.
Author information
Authors and Affiliations
School of Geography, University of Leeds, Leeds, UK
Graeme T. Swindles, Paul J. Morris, T. Edward Turner, Thomas Sim & Antony Blundell
School of Natural and Built Environment, Queen’s University Belfast, Belfast, UK
Graeme T. Swindles, Donal J. Mullan, Maarten Blaauw, Gill Plunkett & Helen M. Roe
Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
Graeme T. Swindles
Department of Environment and Geography, University of York, York, UK
Richard J. Payne
Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
Thomas P. Roland, Matthew J. Amesbury, Angela Gallego-Sala, Dan J. Charman & Sophie M. Green
Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
Matthew J. Amesbury, Atte Korhola & Minna Väliranta
Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Mariusz Lamentowicz, Katarzyna Kajukało, Łukasz Lamentowicz & Katarzyna Marcisz
School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
Iestyn D. Barr
Centre for Environmental Change and Quaternary Research, School of Natural and Social Sciences, University of Gloucestershire, Cheltenham, UK
Frank M. Chambers
Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
Angelica Feurdean
Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
Angelica Feurdean
Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
Jennifer M. Galloway
Geological Survey of Canada/Commission géologique du Canada, Calgary, Alberta, Canada
Jennifer M. Galloway
Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
Mariusz Gałka
Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
Edgar Karofeld
School of Geography and Environmental Science, University of Southampton, Southampton, UK
Peter Langdon
School of Geosciences, The University of Aberdeen, Aberdeen, UK
Dmitri Mauquoy
Department of General Ecology and Hydrobiology, Lomonosov Moscow State University, Moscow, Russia
Yuri A. Mazei & Andrey N. Tsyganov
Manaaki Whenua–Landcare Research, Lincoln, New Zealand
Michelle M. McKeown
Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
Edward A. D. Mitchell
Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland
Edward A. D. Mitchell
Department of Physical Geography and Landscape Science, Lomonosov Moscow State University, Moscow, Russia
Elena Novenko
Institute of Geography, Russian Academy of Science, Moscow, Russia
Elena Novenko
Geological Survey of Sweden, Uppsala, Sweden
Kristian Schoning
Vaida Elementary School, Vaida, Estonia
Ülle Sillasoo
Department of Zoology and Ecology, Penza State University, Penza, Russia
Andrey N. Tsyganov
BIAX Consult, Zaandam, the Netherlands
Marjolein van der Linden
Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
Barry Warner
- Graeme T. Swindles
Search author on:PubMed Google Scholar
- Paul J. Morris
Search author on:PubMed Google Scholar
- Donal J. Mullan
Search author on:PubMed Google Scholar
- Richard J. Payne
Search author on:PubMed Google Scholar
- Thomas P. Roland
Search author on:PubMed Google Scholar
- Matthew J. Amesbury
Search author on:PubMed Google Scholar
- Mariusz Lamentowicz
Search author on:PubMed Google Scholar
- T. Edward Turner
Search author on:PubMed Google Scholar
- Angela Gallego-Sala
Search author on:PubMed Google Scholar
- Thomas Sim
Search author on:PubMed Google Scholar
- Iestyn D. Barr
Search author on:PubMed Google Scholar
- Maarten Blaauw
Search author on:PubMed Google Scholar
- Antony Blundell
Search author on:PubMed Google Scholar
- Frank M. Chambers
Search author on:PubMed Google Scholar
- Dan J. Charman
Search author on:PubMed Google Scholar
- Angelica Feurdean
Search author on:PubMed Google Scholar
- Jennifer M. Galloway
Search author on:PubMed Google Scholar
- Mariusz Gałka
Search author on:PubMed Google Scholar
- Sophie M. Green
Search author on:PubMed Google Scholar
- Katarzyna Kajukało
Search author on:PubMed Google Scholar
- Edgar Karofeld
Search author on:PubMed Google Scholar
- Atte Korhola
Search author on:PubMed Google Scholar
- Łukasz Lamentowicz
Search author on:PubMed Google Scholar
- Peter Langdon
Search author on:PubMed Google Scholar
- Katarzyna Marcisz
Search author on:PubMed Google Scholar
- Dmitri Mauquoy
Search author on:PubMed Google Scholar
- Yuri A. Mazei
Search author on:PubMed Google Scholar
- Michelle M. McKeown
Search author on:PubMed Google Scholar
- Edward A. D. Mitchell
Search author on:PubMed Google Scholar
- Elena Novenko
Search author on:PubMed Google Scholar
- Gill Plunkett
Search author on:PubMed Google Scholar
- Helen M. Roe
Search author on:PubMed Google Scholar
- Kristian Schoning
Search author on:PubMed Google Scholar
- Ülle Sillasoo
Search author on:PubMed Google Scholar
- Andrey N. Tsyganov
Search author on:PubMed Google Scholar
- Marjolein van der Linden
Search author on:PubMed Google Scholar
- Minna Väliranta
Search author on:PubMed Google Scholar
- Barry Warner
Search author on:PubMed Google Scholar
Contributions
G.T.S. designed the study. G.T.S., P.J.M., D.J.M., R.J.P., T.P.R, M.J.A., M.L., T.E.T, A.G.S. and T.S. compiled site-based data and performed analyses. All other authors provided data or carried out a minor component of data compilation or analysis. G.T.S., P.J.M. and D.J.M. carried out the composite data analysis and wrote the manuscript, with input from all authors.
Corresponding author
Correspondence toGraeme T. Swindles.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Primary handling editor(s): James Super, Melissa Plail.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–6.
Supplementary Dataset 1
Literature-based analysis.
Supplementary Dataset 2
Water-table reconstruction datasets.
Rights and permissions
About this article
Cite this article
Swindles, G.T., Morris, P.J., Mullan, D.J.et al. Widespread drying of European peatlands in recent centuries.Nat. Geosci.12, 922–928 (2019). https://doi.org/10.1038/s41561-019-0462-z
Received:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Tardigrade communities in pristine, drained and restored pine mire forests
- Hennariikka Mäenpää
- Merja Elo
- Sara Calhim
BMC Ecology and Evolution (2025)
Recovery of Sphagnum from drought is controlled by species-specific moisture thresholds
- Ben Keane
- Emma L. Shuttleworth
- Gareth D. Clay
Scientific Reports (2025)
Climate–human interactions influence widespread peatland subsidence and soil carbon stock vulnerability in China
- Zhenshan Xue
- Ruxu Li
- Rongyang Zhang
Communications Earth & Environment (2025)
Change of greenhouse gas emissions and botanical diversity of peatlands during the last century: a regional study from Northern Germany
- Tjark Martens
- Joachim Schrautzer
Regional Environmental Change (2025)
Assessing the Value of Testate Amoebae and their Functional Traits in Detecting Climate Change-Induced Peatland Drying
- Olivia Kuuri-Riutta
- Brunella Palacios Ganoza
- Eeva-Stiina Tuittila
Microbial Ecology (2025)


