Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Geoscience
  • Article
  • Published:

Widespread drying of European peatlands in recent centuries

Nature Geosciencevolume 12pages922–928 (2019)Cite this article

Subjects

Abstract

Climate warming and human impacts are thought to be causing peatlands to dry, potentially converting them from sinks to sources of carbon. However, it is unclear whether the hydrological status of peatlands has moved beyond their natural envelope. Here we show that European peatlands have undergone substantial, widespread drying during the last ~300 years. We analyse testate amoeba-derived hydrological reconstructions from 31 peatlands across Britain, Ireland, Scandinavia and Continental Europe to examine changes in peatland surface wetness during the last 2,000 years. We find that 60% of our study sites were drier during the period 1800–2000 ce than they have been for the last 600 years, 40% of sites were drier than they have been for 1,000 years and 24% of sites were drier than they have been for 2,000 years. This marked recent transition in the hydrology of European peatlands is concurrent with compound pressures including climatic drying, warming and direct human impacts on peatlands, although these factors vary among regions and individual sites. Our results suggest that the wetness of many European peatlands may now be moving away from natural baselines. Our findings highlight the need for effective management and restoration of European peatlands.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Standardized WTD data from each site classified into three broad geographic regions (Britain and Ireland; Scandinavia and Baltics; Continental Europe).
Fig. 2: Compiled standardized water-table data from all sites and the three broad geographic regions (Britain and Ireland; Scandinavia and Baltics; Continental Europe).
Fig. 3: Comparison of peatland and climatic datasets.
Fig. 4: Matrix indicating the type and level (major, moderate, minor, none known) of human impacts on each study site.

Similar content being viewed by others

Data availability

The data that support the findings of this study are provided in Supplementary Section7.

References

  1. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum.Geophys. Res. Lett.37, L13402 (2010).

    Google Scholar 

  2. Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming.Nat. Clim. Change8, 907–913 (2018).

    Article  Google Scholar 

  3. Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool.Carbon Manag.5, 81–91 (2014).

    Article  Google Scholar 

  4. Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis.CATENA160, 134–140 (2018).

    Article  Google Scholar 

  5. Clymo, R. S., Turunen, J. & Tolonen, K. Carbon accumulation in peatland.Oikos81, 368 (1998).

    Article  Google Scholar 

  6. Holden, J. Peatland hydrology and carbon release: why small-scale process matters.Phil. Trans. R. Soc. A363, 28912913 (2005).

    Article  Google Scholar 

  7. Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience.Annu. Rev. Environ. Resour.41, 35–57 (2016).

    Article  Google Scholar 

  8. Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic.Nature460, 616–619 (2009).

    Article  Google Scholar 

  9. Ise, T., Dunn, A. L., Wofsy, S. C. & Moorcroft, P. R. High sensitivity of peat decomposition to climate change through water-table feedback.Nat. Geosci.1, 763–766 (2008).

    Article  Google Scholar 

  10. Gill, A. L. et al. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.Glob. Change Biol.23, 5398–5411 (2017).

    Article  Google Scholar 

  11. Limpens, J. et al. Peatlands and the carbon cycle: from local processes to global implications—a synthesis.Biogeosciences5, 1475–1491 (2008).

    Article  Google Scholar 

  12. Panagos, P., Hiederer, R., Van Liedekerke, M. & Bampa, F. Estimating soil organic carbon in Europe based on data collected through an European network.Ecol. Indic.24, 439–450 (2013).

    Article  Google Scholar 

  13. Waddington, J. M. et al. Hydrological feedbacks in northern peatlands.Ecohydrology8, 113–127 (2015).

    Article  Google Scholar 

  14. Swindles, G. T. et al. Centennial-scale climate change in Ireland during the Holocene.Earth Sci. Rev.126, 300–320 (2013).

    Article  Google Scholar 

  15. Amesbury, M. J. et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology.Quat. Sci. Rev.152, 132–151 (2016).

    Article  Google Scholar 

  16. Charman, D. J., Blundell, A., Chiverrell, R. C., Hendon, D. & Langdon, P. G. Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain.Quat. Sci. Rev.25, 336–350 (2006).

    Article  Google Scholar 

  17. Marcisz, K. et al. Long-term hydrological dynamics and fire history during the last 2000 years in CE Europe reconstructed from a high-resolution peat archive.Quat. Sci. Rev.112, 138–152 (2015).

    Article  Google Scholar 

  18. Charman, D. J. Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions.Holocene17, 217–227 (2007).

    Article  Google Scholar 

  19. Galloway, J. N. Nitrogen cycles: past, present, and future.Biogeochemistry70, 153–226 (2004).

    Article  Google Scholar 

  20. Berendse, F. et al. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production inSphagnum bogs.Glob. Change Biol.7, 591–598 (2001).

    Article  Google Scholar 

  21. Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs.Proc. Natl Acad. Sci. USA103, 19386–19389 (2006).

    Article  Google Scholar 

  22. Juutinen, E. et al. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue Bog.Ecosystems13, 874–887 (2010).

    Article  Google Scholar 

  23. McEvedy, C. & Jones, R.Atlas of World Population History (Penguin, 1978).

  24. Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992.Glob. Biogeochem. Cycles13, 997–1027 (1999).

    Article  Google Scholar 

  25. Jacob, D. et al. Climate impacts in Europe under +1.5 °C global warming.Earth’s Future6, 264–285 (2018).

    Article  Google Scholar 

  26. Jassey, V. E. J. et al. Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration.Glob. Change Biol.24, 972–986 (2018).

    Article  Google Scholar 

  27. Lamentowicz, M. et al. Unveiling tipping points in long-term ecological records fromSphagnum-dominated peatlands.Biol. Lett.15, 20190043 (2019).

    Article  Google Scholar 

  28. Gałka, M. et al. Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high resolution multi-proxy peat archive.Holocene25, 421–434 (2015).

    Article  Google Scholar 

  29. Gogo, S. et al. Invasion of aSphagnum-peatland byBetula spp andMolinia caerulea impacts organic matter biochemistry. Implications for carbon and nutrient cycling.Biogeochemistry106, 53–69 (2011).

    Article  Google Scholar 

  30. Turner, T. E. et al. Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change.Quat. Sci. Rev.84, 65–85 (2014).

    Article  Google Scholar 

  31. Parry, L. E., Holden, J. & Chapman, P. J. Restoration of blanket peatlands.J. Environ. Manag.133, 193–205 (2014).

    Article  Google Scholar 

  32. Compo, G. P. et al. The twentieth century reanalysis project.Q. J. R. Meteorol. Soc.137, 1–28 (2011).

    Article  Google Scholar 

  33. Blundell, A., Charman, D. J. & Barber, K. Multiproxy late Holocene peat records from Ireland: towards a regional palaeoclimate curve.J. Quat. Sci.23, 59–71 (2008).

    Article  Google Scholar 

  34. Mauquoy, D., Yeloff, D., Van Geel, B., Charman, D. J. & Blundell, A. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene.J. Quat. Sci.23, 745–763 (2008).

    Article  Google Scholar 

  35. Swindles, G. T., Blundell, A., Roe, H. M. & Hall, V. A. A 4500-year proxy climate record from peatlands in the North of Ireland: the identification of widespread summer ‘drought phases’?Quat. Sci. Rev.29, 1577–1589 (2010).

    Article  Google Scholar 

  36. Langdon, P. G., Brown, A. G., Caseldine, C. J., Blockley, S. P. & Stuijts, I. Regional climate change from peat stratigraphy for the mid- to late Holocene in Central Ireland.Quat. Int.268, 145–155 (2012).

    Article  Google Scholar 

  37. Blundell, A., Holden, J. & Turner, T.E. Generating multi-proxy Holocene palaeoenvironmental records from blanket peatlands.Palaeogeogr. Palaeoclimatol. Palaeoecol.443, 216–229 (2016).

    Article  Google Scholar 

  38. Lamentowicz, M. et al. Reconstructing climate change and ombrotrophic bog development during the last 4000 years in northern Poland using biotic proxies, stable isotopes and trait-based approach.Palaeogeogr. Palaeoclimatol. Palaeoecol.418, 261–277 (2015).

    Article  Google Scholar 

  39. van der Linden, M., Broekens, P., Vickery, E., Charman, D. & van Geel, B. Vegetation history and human impact during the last 300 years recorded in a German peat deposit.Rev. Palaeobot. Palynol.152, 158–175 (2008).

    Article  Google Scholar 

  40. Sjögren, P. & Lamentowicz, M. Human and climatic impact on mires: a case study of les Amburnex mire, Swiss Jura Mountains.Veg. Hist. Archaeobot.17, 185–197 (2008).

    Article  Google Scholar 

  41. Gałka, M. et al. Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high-resolution multi-proxy peat archive.Holocene25, 421–434 (2015).

    Article  Google Scholar 

  42. Kajukało, K., Fiałkiewicz-Kozieł, B., Gałka, M., Kołaczek, P. & Lamentowicz, M. Abrupt ecological changes in the last 800 years inferred from a mountainous bog using testate amoebae traits and multi-proxy data.Eur. J. Protistol.55, 165–180 (2016).

    Article  Google Scholar 

  43. Lamentowicz, M., Tobolski, K. & Mitchell, E. A. D. Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland.Holocene17, 1185–1196 (2007).

    Article  Google Scholar 

  44. van der Knaap, W. O. et al. A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps.Quat. Sci. Rev.30, 3467–3480 (2011).

    Article  Google Scholar 

  45. Gałka, M. et al. Unveiling exceptional Baltic bog ecohydrology, autogenic succession andclimate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae.Quat. Sci. Rev.156, 90–106 (2017).

    Article  Google Scholar 

  46. Mitchell, E. A. D. et al. The palaeoecological history of the Praz-Rodet bog (Swiss Jura) based on pollen, plant macrofossils and testate amoebae (Protozoa).Holocene11, 65–80 (2001).

    Article  Google Scholar 

  47. Lamentowicz, M. et al. Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine.Boreas38, 214–229 (2009).

    Article  Google Scholar 

  48. Lamentowicz, M. et al. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive.Stud. Quaternaria28, 3–16 (2011).

    Google Scholar 

  49. Feurdean, A. et al. Last Millennium hydro-climate variability in Central–Eastern Europe (Northern Carpathians, Romania.Holocene25, 1179–1192 (2015)..

  50. van der Linden, M., Vickery, E., Charman, D. & van Geel, B. Effects of human impact and climate change during the last 350 years recorded in a Swedish raised bog deposit.Palaeogeogr. Palaeoclimatol. Palaeoecol.262, 1–31 (2008).

    Article  Google Scholar 

  51. Schoning, K., Charman, D. J. & Wastegård, S. Reconstructed water tables from two ombrotrophic mires in eastern Sweden compared with instrumental meteorological data.Holocene15, 111–118 (2005).

    Article  Google Scholar 

  52. Väliranta, M. et al. High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach.Holocene17, 1093–1107 (2007).

    Article  Google Scholar 

  53. van der Linden, M., Barke, J., Vickery, E., Charman, D. & van Geel, B. Late Holocene human impact and climate change recorded in a north Swedish peat deposit.Palaeogeogr. Palaeoclimatol. Palaeoecol.258, 1–27 (2008).

    Article  Google Scholar 

  54. Väliranta, M. et al. Reconstructing peatland water tables using transfer functions for plant macrofossils and testate amoebae: a methodological comparison.Quat. Int.268, 34–43 (2012).

    Article  Google Scholar 

  55. Swindles, G. T. et al. The long-term fate of permafrost peatlands under rapid climate warming.Sci. Rep.5, 17951 (2015).

    Article  Google Scholar 

  56. Gałka, M. et al. Vegetation succession, carbon accumulation and hydrological change in subarctic peatlands, Abisko, Northern Sweden.Permafr. Periglac. Process.28, 589–604 (2017).

    Article  Google Scholar 

  57. Woodland, W. A., Charman, D. J. & Sims, P. C. Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae.Holocene8, 261–273 (1998).

    Article  Google Scholar 

  58. Booth, R. K. Testate amoebae as proxies for mean annual water-table depth inSphagnum-dominated peatlands of North America.J. Quat. Sci.23, 43–57 (2008).

    Article  Google Scholar 

  59. Payne, R. J., Mitchell, E. A. D., Nguyen-Viet, H. & Gilbert, D. Can pollution bias peatland paleoclimate reconstruction?Quat. Res.78, 170–173 (2012).

    Article  Google Scholar 

  60. Swindles, G. T. et al. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data.Quat. Sci. Rev.120, 107–117 (2015).

    Article  Google Scholar 

  61. Swindles, G. T., Charman, D. J., Roe, H. M. & Sansum, P. A. Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: implications for Holocene palaeoclimate studies.J. Paleolimnol.42, 123–140 (2009).

    Article  Google Scholar 

  62. R Core TeamR: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017);http://www.R-project.org/

  63. Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process.Bayesian Anal.6, 457–474 (2011).

    Google Scholar 

  64. Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots.J. Am. Stat. Assoc.74, 829–836 (1979).

    Article  Google Scholar 

  65. Killick, R. & EckleyI. A. changepoint: an R package for changepoint analysis.J. Stat. Softw.58, 1–19 (2015).

    Google Scholar 

  66. Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost.J. Am. Stat. Assoc.107, 1590–1598 (2012).

    Article  Google Scholar 

  67. Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500.Science303, 1499–1503 (2004).

    Article  Google Scholar 

  68. Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation.Clim. Dynam.26, 387–405 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the organizations that have funded the data used in this analysis: Academy of Finland (grant no. 296423); Department for Employment and Learning (Northern Ireland); European Commission (Fifth Framework); INTERACT (European Community’s Seventh Framework Programme); Irish Discovery Programme; Leverhulme Trust; National Science Centre (Poland); Natural Environment Research Council (UK); Natural Sciences and Engineering Research Council of Canada; Netherlands Organization for Scientific Research; Polish National Science Centre (grant no. 2015/17/B/ST10/01656); Quaternary Research Association; Russian Science Foundation (grant no. 19-14-00102); Swiss Contribution to the enlarged European Union; Swiss Federal Office for Education and Science; Swiss National Science Foundation; World University Network; Wüthrich Fund (University of Neuchâtel); and Yorkshire Water. T.G.S. is funded by the Leeds–York Natural Environment Research Council (NERC) Doctoral Training Partnership (grant no. NE/L002574/1). T.E.T. acknowledges NERC Doctoral Training Grant no. NE/G52398X/1. For J.M.G., this paper represents a contribution from Natural Resources Canada (NRCan contribution number/Numéro de contribution de RNCan, 20190079). G.T.S. acknowledges financial support from the Dutch Foundation for the Conservation of Irish Bogs. We thank L. Brown and A. Baird (University of Leeds) for constructive comments on the manuscript. This is a contribution to the PAGES C-PEAT group. PAGES is supported by the US National Science Foundation and the Swiss Academy of Sciences. We dedicate this work to co-author Richard J. Payne who was tragically killed while climbing Nanda Devi in the Garhwal Himalayas whilst the manuscript was in review.

Author information

Authors and Affiliations

  1. School of Geography, University of Leeds, Leeds, UK

    Graeme T. Swindles, Paul J. Morris, T. Edward Turner, Thomas Sim & Antony Blundell

  2. School of Natural and Built Environment, Queen’s University Belfast, Belfast, UK

    Graeme T. Swindles, Donal J. Mullan, Maarten Blaauw, Gill Plunkett & Helen M. Roe

  3. Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada

    Graeme T. Swindles

  4. Department of Environment and Geography, University of York, York, UK

    Richard J. Payne

  5. Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK

    Thomas P. Roland, Matthew J. Amesbury, Angela Gallego-Sala, Dan J. Charman & Sophie M. Green

  6. Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland

    Matthew J. Amesbury, Atte Korhola & Minna Väliranta

  7. Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland

    Mariusz Lamentowicz, Katarzyna Kajukało, Łukasz Lamentowicz & Katarzyna Marcisz

  8. School of Science and the Environment, Manchester Metropolitan University, Manchester, UK

    Iestyn D. Barr

  9. Centre for Environmental Change and Quaternary Research, School of Natural and Social Sciences, University of Gloucestershire, Cheltenham, UK

    Frank M. Chambers

  10. Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany

    Angelica Feurdean

  11. Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania

    Angelica Feurdean

  12. Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark

    Jennifer M. Galloway

  13. Geological Survey of Canada/Commission géologique du Canada, Calgary, Alberta, Canada

    Jennifer M. Galloway

  14. Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland

    Mariusz Gałka

  15. Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia

    Edgar Karofeld

  16. School of Geography and Environmental Science, University of Southampton, Southampton, UK

    Peter Langdon

  17. School of Geosciences, The University of Aberdeen, Aberdeen, UK

    Dmitri Mauquoy

  18. Department of General Ecology and Hydrobiology, Lomonosov Moscow State University, Moscow, Russia

    Yuri A. Mazei & Andrey N. Tsyganov

  19. Manaaki Whenua–Landcare Research, Lincoln, New Zealand

    Michelle M. McKeown

  20. Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland

    Edward A. D. Mitchell

  21. Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland

    Edward A. D. Mitchell

  22. Department of Physical Geography and Landscape Science, Lomonosov Moscow State University, Moscow, Russia

    Elena Novenko

  23. Institute of Geography, Russian Academy of Science, Moscow, Russia

    Elena Novenko

  24. Geological Survey of Sweden, Uppsala, Sweden

    Kristian Schoning

  25. Vaida Elementary School, Vaida, Estonia

    Ülle Sillasoo

  26. Department of Zoology and Ecology, Penza State University, Penza, Russia

    Andrey N. Tsyganov

  27. BIAX Consult, Zaandam, the Netherlands

    Marjolein van der Linden

  28. Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada

    Barry Warner

Authors
  1. Graeme T. Swindles
  2. Paul J. Morris
  3. Donal J. Mullan
  4. Richard J. Payne
  5. Thomas P. Roland
  6. Matthew J. Amesbury
  7. Mariusz Lamentowicz
  8. T. Edward Turner
  9. Angela Gallego-Sala
  10. Thomas Sim
  11. Iestyn D. Barr
  12. Maarten Blaauw
  13. Antony Blundell
  14. Frank M. Chambers
  15. Dan J. Charman
  16. Angelica Feurdean
  17. Jennifer M. Galloway
  18. Mariusz Gałka
  19. Sophie M. Green
  20. Katarzyna Kajukało
  21. Edgar Karofeld
  22. Atte Korhola
  23. Łukasz Lamentowicz
  24. Peter Langdon
  25. Katarzyna Marcisz
  26. Dmitri Mauquoy
  27. Yuri A. Mazei
  28. Michelle M. McKeown
  29. Edward A. D. Mitchell
  30. Elena Novenko
  31. Gill Plunkett
  32. Helen M. Roe
  33. Kristian Schoning
  34. Ülle Sillasoo
  35. Andrey N. Tsyganov
  36. Marjolein van der Linden
  37. Minna Väliranta
  38. Barry Warner

Contributions

G.T.S. designed the study. G.T.S., P.J.M., D.J.M., R.J.P., T.P.R, M.J.A., M.L., T.E.T, A.G.S. and T.S. compiled site-based data and performed analyses. All other authors provided data or carried out a minor component of data compilation or analysis. G.T.S., P.J.M. and D.J.M. carried out the composite data analysis and wrote the manuscript, with input from all authors.

Corresponding author

Correspondence toGraeme T. Swindles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor(s): James Super, Melissa Plail.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–6.

Supplementary Dataset 1

Literature-based analysis.

Supplementary Dataset 2

Water-table reconstruction datasets.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swindles, G.T., Morris, P.J., Mullan, D.J.et al. Widespread drying of European peatlands in recent centuries.Nat. Geosci.12, 922–928 (2019). https://doi.org/10.1038/s41561-019-0462-z

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Humans are drying out Europe’s ancient peat bogs

NatureResearch Highlight

Advertisement

Search

Advanced search

Quick links

Nature Briefing Anthropocene

Sign up for theNature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing: Anthropocene

[8]ページ先頭

©2009-2026 Movatter.jp