Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Climate Change
  • Article
  • Published:

The quandary of detecting the signature of climate change in Antarctica

Nature Climate Changevolume 13pages1082–1088 (2023)Cite this article

Subjects

Abstract

Global warming driven by human activities is expected to be accentuated in polar regions compared with the global average, an effect called polar amplification. Yet, for Antarctica, the amplitude of warming is still poorly constrained due to short weather observations and the large decadal climate variability. Using a compilation of 78 ice core records, we provide a high-resolution reconstruction of temperatures over the past 1,000 years for seven regions of Antarctica and direct evidence of Antarctic polar amplification at regional and continental scales. We also show that the amplitude of both natural and forced variability is not captured by the CMIP5 and six model ensemble members, which could be explained in part by the Southern Annular Mode. This shows that failing to consider the feedback loops causing polar amplification could lead to an underestimation of the magnitude of anthropogenic warming and its consequences in Antarctica.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantification of the impact of climate change in Antarctica when a large amount of natural variability competes with the warming signal.
Fig. 2: Identifying the signature of climate change in Antarctica in the context of the past 1,000 years.
Fig. 3: The current climate change in Antarctica in the context of the past 1,000 years.
Fig. 4: Decadal variability recorded as a function of the observed warming trend.

Similar content being viewed by others

Data availability

The data used in this manuscript are available from the iso2k database31 and can be retrieved fromhttps://www.ncei.noaa.gov/access/paleo-search/study/29593. The datasets (Temperature T2m and Total Precipitation) from ERA5 are readily available from the European Centre for Medium-Range Weather Forecasts servers athttps://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. We used CMIP model outputs (Temperature fields), which are available athttps://esgf-node.ipsl.upmc.fr/projects/cmip6-ipsl/.

Code availability

References

  1. Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents.Nature536, 411–418 (2016).

    Article CAS  Google Scholar 

  2. Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E. & Knutti, R. Climate change now detectable from any single day of weather at global scale.Nat. Clim. Change10, 35–41 (2020).

    Article  Google Scholar 

  3. Masson-Delmotte, V. et al. InIPCC, 2021:Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2021).

  4. Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the climate of a general circulation model.J. Atmos. Sci.32, 3–15 (1975).

    Article CAS  Google Scholar 

  5. Bekryaev, R. V., Polyakov, I. V. & Alexeev, V. A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming.J. Climate23, 3888–3906 (2010).

    Article  Google Scholar 

  6. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979.Commun. Earth Environ.3, 168 (2022).

    Article  Google Scholar 

  7. Lazzara, M. A., Keller, L. M., Markle, T. & Gallagher, J. Fifty-year Amundsen–Scott South Pole station surface climatology.Atmos. Res.118, 240–259 (2012).

    Article  Google Scholar 

  8. Clem, K. R. et al. Record warming at the South Pole during the past three decades.Nat. Clim. Change10, 762–770 (2020).

    Article  Google Scholar 

  9. Gillett, N. P. et al. Attribution of polar warming to human influence.Nat. Geosci.1, 750–754 (2008).

    Article CAS  Google Scholar 

  10. Salzmann, M. The polar amplification asymmetry: role of Antarctic surface height.Earth Syst. Dyn.8, 323–336 (2017).

    Article  Google Scholar 

  11. Hahn, L. C. et al. Antarctic elevation drives hemispheric asymmetry in polar lapse rate climatology and feedback.Geophys. Res. Lett.47, e2020GL088965 (2020).

    Article  Google Scholar 

  12. Stenni, B. et al. Three-year monitoring of stable isotopes of precipitation at Concordia station, East Antarctica.Cryosphere10, 2415–2428 (2016).

    Article  Google Scholar 

  13. Nicolas, J. P. & Bromwich, D. H. New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalyses.J. Climate27, 8070–8093 (2014).

    Article  Google Scholar 

  14. England, M. R. Are multi-decadal fluctuations in Arctic and Antarctic surface temperatures a forced response to anthropogenic emissions or part of internal climate variability?Geophys. Res. Lett.48, e2020GL090631 (2021).

    Article  Google Scholar 

  15. Jones, M. E. et al. Sixty years of widespread warming in the southern middle and high latitudes (1957–2016).J. Climate32, 6875–6898 (2019).

    Article  Google Scholar 

  16. Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport.Nat. Geosci.9, 549–554 (2016).

    Article CAS  Google Scholar 

  17. Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate.Nat. Clim. Change6, 917–926 (2016).

    Article  Google Scholar 

  18. Schneider, D. P. & Steig, E. J. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability.Proc. Natl Acad. Sci. USA105, 12154–12158 (2008).

    Article CAS  Google Scholar 

  19. Dalaiden, Q., Schurer, A. P., Kirchmeier-Young, M. C., Goosse, H. & Hegerl, G. C. West Antarctic surface climate changes since the mid-20th century driven by anthropogenic forcing.Geophys. Res. Lett.49, e2022GL099543 (2022).

    Article  Google Scholar 

  20. Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year.Nature457, 459–462 (2009).

    Article CAS  Google Scholar 

  21. Von Storch, H. et al. Reconstructing past climate from noisy data.Science306, 679–682 (2004).

    Article  Google Scholar 

  22. Turner, J. et al. The SCAR READER project: toward a high-quality database of mean Antarctic meteorological observations.J. Climate17, 2890–2898 (2004).

    Article  Google Scholar 

  23. Jouzel, J. & Masson-Delmotte, V. Paleoclimates: what do we learn from deep ice cores?Wiley Interdiscip. Rev. Clim. Change1, 654–669 (2010).

    Article  Google Scholar 

  24. Jouzel, J. et al. Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores.J. Geophys. Res. Atmos.108, 4361 (2003).

  25. Klein, F. et al. Assessing the robustness of Antarctic temperature reconstructions over the past 2 millennia using pseudoproxy and data assimilation experiments.Clim. Past15, 661–684 (2019).

    Article  Google Scholar 

  26. Casado, M. et al. Archival processes of the water stable isotope signal in East Antarctic ice cores.Cryosphere12, 1745–1766 (2018).

    Article  Google Scholar 

  27. Laepple, T. et al. On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits.Cryosphere12, 169–187 (2018).

    Article  Google Scholar 

  28. Münch, T. & Laepple, T. What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores?Clim. Past14, 2053–2070 (2018).

    Article  Google Scholar 

  29. Stenni, B. et al. Antarctic climate variability on regional and continental scales over the last 2000 years.Clim. Past13, 1609–1634 (2017).

    Article  Google Scholar 

  30. Franzke, C. A novel method to test for significant trends in extreme values in serially dependent time series.Geophys. Res. Lett.40, 1391–1395 (2013).

    Article  Google Scholar 

  31. Konecky, B. L. et al. The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate.Earth Syst. Sci. Data12, 2261–2288 (2020).

  32. Goosse, H., Renssen, H., Timmermann, A. & Bradley, R. S. Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations.Quat. Sci. Rev.24, 1345–1360 (2005).

    Article  Google Scholar 

  33. Faranda, D., Freitas, J. M., Lucarini, V., Turchetti, G. & Vaienti, S. Extreme value statistics for dynamical systems with noise.Nonlinearity26, 2597–2622 (2013).

    Article  Google Scholar 

  34. Faranda, D., Alvarez-Castro, M. C., Messori, G., Rodrigues, D. & Yiou, P. The hammam effect or how a warm ocean enhances large scale atmospheric predictability.Nature Commun.10, 1316 (2019).

    Article  Google Scholar 

  35. Giamalaki, K. et al. Future intensification of extreme Aleutian low events and their climate impacts.Sci. Rep.11, 18395 (2021).

    Article CAS  Google Scholar 

  36. Rodionov, S. N. The problem of red noise in climate regime shift detection.Geophys. Res. Lett.31, L12707 (2006).

    Article  Google Scholar 

  37. Lucarini, V. et al.Extremes and Recurrence in Dynamical Systems (John Wiley & Sons, 2016).

  38. Huybers, P. & Curry, W. Links between annual, Milankovitch and continuum temperature variability.Nature441, 329–332 (2006).

    Article CAS  Google Scholar 

  39. Laepple, T. & Huybers, P. Ocean surface temperature variability: large model–data differences at decadal and longer periods.Proc. Natl Acad. Sci. USA111, 16682–16687 (2014).

    Article CAS  Google Scholar 

  40. Hébert, R., Herzschuh, U. & Laepple, T. Millennial-scale climate variability over land overprinted by ocean temperature fluctuations.Nature Geosci.15, 899–905 (2022).

  41. Hébert, R. & Lovejoy, S. Regional climate sensitivity- and historical-based projections to 2100.Geophys. Res. Lett.45, 4248–4254 (2018).

    Article  Google Scholar 

  42. Casado, M., Orsi, A. J. & Landais, A. On the limits of climate reconstruction from water stable isotopes in polar ice cores.Past Glob. Changes Mag.25, 146–147 (2017).

    Article  Google Scholar 

  43. Casado, M., Münch, T. & Laepple, T. Climatic information archived in ice cores: impact of intermittency and diffusion on the recorded isotopic signal in Antarctica.Clim. Past16, 1581–1598 (2020).

    Article  Google Scholar 

  44. Cox, P. M., Huntingford, C. & Williamson, M. S. Emergent constraint on equilibrium climate sensitivity from global temperature variability.Nature553, 319–322 (2018).

    Article CAS  Google Scholar 

  45. Schlund, M., Lauer, A., Gentine, P., Sherwood, S. C. & Eyring, V. Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?Earth Syst. Dyn.11, 1233–1258 (2020).

    Article  Google Scholar 

  46. Marshall, G. J., Fogt, R. L., Turner, J. & Clem, K. R. Can current reanalyses accurately portray changes in Southern Annular Mode structure prior to 1979?Clim. Dyn.59, 3717–3740 (2022).

    Article  Google Scholar 

  47. Jouzel, J. et al. Validity of the temperature reconstruction from water isotopes in ice cores.J. Geophys. Res. Oceans102, 26471–26487 (1997).

    Article CAS  Google Scholar 

  48. Kino, K., Okazaki, A., Cauquoin, A. & Yoshimura, K. Contribution of the Southern Annular Mode to variations in water isotopes of daily precipitation at Dome Fuji, East Antarctica.J. Geophys. Res. Atmos.126, e2021JD035397 (2021).

    Article  Google Scholar 

  49. Servettaz, A. P. M. et al. Snowfall and water stable isotope variability in East Antarctica controlled by warm synoptic events.J. Geophys. Res. Atmos.125, e2020JD032863 (2020).

    Article CAS  Google Scholar 

  50. Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere.Wiley Interdiscip. Rev. Clim. Change11, e652 (2020).

    Article  Google Scholar 

  51. Fan, T., Deser, C. & Schneider, D. P. Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950.Geophys. Res. Lett.41, 2419–2426 (2014).

    Article  Google Scholar 

  52. Steig, E. J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years.Nat. Geosci.6, 372–375 (2013).

    Article CAS  Google Scholar 

  53. Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes.Nature Rev. Earth Environ.2, 680–698 (2021).

    Article  Google Scholar 

  54. Lyu, K., Zhang, X., Church, J. A. & Hu, J. Evaluation of the interdecadal variability of sea surface temperature and sea level in the Pacific in CMIP3 and CMIP5 models.Int. J. Climatol.36, 3723–3740 (2016).

    Article  Google Scholar 

  55. O’Reilly, C. H. et al. Projections of Northern Hemisphere extratropical climate underestimate internal variability and associated uncertainty.Commun. Earth Environ.2, 194 (2021).

    Article  Google Scholar 

  56. Ellerhoff, B. et al. Contrasting state-dependent effects of natural forcing on global and local climate variability.Geophys. Res. Lett.49, e2022GL098335 (2022).

  57. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise.Nature531, 591–597 (2016).

    Article CAS  Google Scholar 

  58. Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic ice sheet.Nature585, 538–544 (2020).

    Article CAS  Google Scholar 

  59. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300.Clim. Change109, 213 (2011).

    Article CAS  Google Scholar 

  60. Reschke, M., Kunz, T. & Laepple, T. Comparing methods for analysing time scale dependent correlations in irregularly sampled time series data.Comput. Geosci.123, 65–72 (2019).

    Article  Google Scholar 

  61. Rohde, R. et al. Berkeley Earth temperature averaging process.Geoinfor. Geostat. Overview1, 2 (2013).

    Google Scholar 

  62. Osborn, T. J. & Briffa, K. R. The real color of climate change?Science306, 621–622 (2004).

    Article CAS  Google Scholar 

  63. Dansgaard, W. Stable isotopes in precipitation.Tellus16, 436–468 (1964).

    Article  Google Scholar 

  64. Lorius, C., Merlivat, L. & Hagemann, R. Variation in the mean deuterium content of precipitations in Antarctica.J. Geophys. Res.74, 7027–7031 (1969).

    Article CAS  Google Scholar 

  65. Landais, A. et al. Surface studies of water isotopes in Antarctica for quantitative interpretation of deep ice core data.C. R. Geosci.349, 139–150 (2017).

  66. Masson-Delmotte, V. et al. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling.J. Climate21, 3359–3387 (2008).

    Article  Google Scholar 

  67. Fujita, K. & Abe, O. Stable isotopes in daily precipitation at Dome Fuji, East Antarctica.Geophys. Res. Lett.33 L18503 (2006).

  68. Landais, A., Ekaykin, A., Barkan, E., Winkler, R. & Luz, B. Seasonal variations of17O-excess and d-excess in snow precipitation at Vostok station, East Antarctica.J. Glaciol.58, 725–733 (2012).

    Article CAS  Google Scholar 

  69. Touzeau, A. et al. Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters.Cryosphere10, 837–852 (2016).

    Article  Google Scholar 

  70. Küttel, M., Steig, E. J., Ding, Q., Monaghan, A. J. & Battisti, D. S. Seasonal climate information preserved in West Antarctic ice core water isotopes: relationships to temperature, large-scale circulation, and sea ice.Clim. Dyn.39, 1841–1857 (2012).

    Article  Google Scholar 

  71. Buizert, C. et al. Antarctic surface temperature and elevation during the Last Glacial Maximum.Science372, 1097–1101 (2021).

    Article CAS  Google Scholar 

  72. Guillevic, M. et al. Spatial gradients of temperature, accumulation and δ18O-ice in Greenland over a series of Dansgaard–Oeschger events.Clim. Past9, 1029–1051 (2013).

    Article  Google Scholar 

  73. Christiansen, B. & Ljungqvist, F. C. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia.Rev. Geophys.55, 40–96 (2017).

    Article  Google Scholar 

  74. Freitas, A. C. M., Freitas, J. M. & Todd, M. Hitting time statistics and extreme value theory.Probab. Theory Relat. Fields147, 675–710 (2010).

    Article  Google Scholar 

  75. Lucarini, V., Faranda, D. & Wouters, J. Universal behaviour of extreme value statistics for selected observables of dynamical systems.J. Stat. phys.147, 63–73 (2012).

    Article  Google Scholar 

  76. Moloney, N. R., Faranda, D. & Sato, Y. An overview of the extremal index.Chaos29, 22101 (2019).

    Article  Google Scholar 

  77. Süveges, M. Likelihood estimation of the extremal index.Extremes10, 41–55 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The investigations leading to these results have received funding from the DFG project CLIMAIC (M.C.). The SPACE ERC and GLACIAL LEGACY ERC projects have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 716092 and no. 772852 for R.H.). The authors acknowledge fruitful discussions with T. Laepple, J. A. Caccavo, A. Orsi and C. Agosta. This manuscript was realized in the framework of the PAGES working group CVAS.

Author information

Authors and Affiliations

  1. Laboratoire des Sciences du Climat et de l’Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, Gif-sur-Yvette, France

    Mathieu Casado, Davide Faranda & Amaelle Landais

  2. Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

    Raphaël Hébert

  3. London Mathematical Laboratory, London, UK

    Davide Faranda

  4. LMD/IPSL, Ecole Normale Superieure, PSL Research University, Paris, France

    Davide Faranda

Authors
  1. Mathieu Casado
  2. Raphaël Hébert
  3. Davide Faranda
  4. Amaelle Landais

Contributions

M.C. conceived the study and carried out the numerical surrogate data experiments. M.C. and D.F. applied the dynamical system theory to the system. M.C. and R.H. conceived the statistical and spectral approaches. M.C. led the redaction of the manuscript with the help of R.H. All the authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence toMathieu Casado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Impact of window length on trend estimates.

Iso2k stack for all of Antarctica (black), CPS reconstruction from Stenni et al,29, and for an ensemble of 50 surrogate data simulated for realistic conditions in Antarctica (decadal natural variability of 0.6 ‰2.yr, a beta of 0.6, and an amplitude of the anthropogenic warming of 0.1 ‰/dec starting 50 years prior to the end of the window over which the trend is calculated, see Supplementary SectionsS2 andS3, dark green line), as well as confidence interval for an average of 50 cores calculated from 10 000 iterations (green shading).

Extended Data Fig. 2 Simulation of the trend impact on the persistence on surrogate data without any natural variability.

change of persistence (Θ, top),δ18O (middle), and 40-year running trend (bottom) as observed in the Iso2k stack (grey individual datapoints, black, 40-year block average) and for 4 different hypotheses on the intensity of the climatic change induced trend (from 0.05°C/dec to 0.3°C/dec, Δδ18O ≈ 0.5 × ΔT).

Extended Data Fig. 3 Simulation of the trend impact on the persistence on surrogate data with natural variability.

change of persistence (Θ, top),δ18O (middle), and 40-year running trend (bottom) as observed in the Iso2k stack (grey individual datapoints, black, 40-year block average) and for 4 different hypotheses on the intensity of the climatic change induced trend (from 0.05°C/dec to 0.3°C/dec, Δδ18O ≈ 0.5 × ΔT) with natural variability with aβ of 0.6 and an average power at the decadal scale (10 - 40 years band) of 0.52 ‰2/y.

Extended Data Fig. 4 Simulation of the natural variability and trend impact on the persistence on surrogate data.

change of persistence (Θ, top),δ18O (middle), and 40-year running trend (bottom) as observed in the Iso2k stack (grey individual datapoints, black, 40-year block average) and for 4 different hypotheses on the intensity of the power of the natural variability with aβ of 0.6 and average powers at the decadal scale (10 - 40 years band) ranging from 0.3 to 2.2 °C2/yr. The climate change induced trend is set to 0.2°C/dec (Δδ18O ≈ 0.5 × ΔT).

Extended Data Fig. 5 Probability to obtain a given number of decades where Θ out of the range of values observed in the last 1000 years.

Monte-Carlo analysis of the probability to obtain a given number of times whenθ is above the confidence interval presented in Fig.2 (1 std on the whole time series) for a period of a 100 years using 10 000 iterations on the dataset.

Extended Data Fig. 6 Regional last 1000 years reconstructions.

a) Antarctic Peninsula, b) Weddell Coast, c) Dronning Maud Land Coast, d) West Antarctica, e) map of the different regions, the black dots represent the station locations, f) East Antarctic Plateau, g) All of Antarctica, h) Victoria Land, and i) Indian Coast. For each panel, from top to bottom, time series of the persistence metric (Θ, y), isotopic composition anomaly stack for all ice cores in Antarctica (inδ18O units ‰), compared to the previous stack realised by Stenni et al.29 (purple: CPS stack, yellow, unweighted stack, ‰), trend on 40-year running windows ending on the given year with confidence intervals, and number of records covering a given time period,. For Θ andδ18O, light curves are the original data with annual resolution, thick curves are 10-year block averages. Note that the block averages and the trend estimates do not take into account datapoints after 2008 when the number of available cores drop below 10. For the top panel, the horizontal solid line represents the average value, while the horizontal dashed line is the average value +1 std.

Extended Data Fig. 7 Spectral constraint of the isotope-temperature calibration.

Power spectral density of the reconstructed temperature for different values of Δδ18OT between 1920 and 1990 compared to the spectrum of the ERA5 reanalysis outputs for the core location between 1951 and 2020 (the non-overlapping windows are set up to obtain the same length of time series with the largest number of cores; the results are insensitive to the window choice). The dip in ERA5 for timescales around 15 years is also found in the weather station observations and could be link to the SAM influence but was not taken into account for the sake of the calibration.

Extended Data Table 1 Summary of regional isotope to temperature calibration

Supplementary information

Supplementary Information

Supplementary Sections 1–11, Figs. 1–9, Tables 1–7 and references 1–52.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casado, M., Hébert, R., Faranda, D.et al. The quandary of detecting the signature of climate change in Antarctica.Nat. Clim. Chang.13, 1082–1088 (2023). https://doi.org/10.1038/s41558-023-01791-5

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp