Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Plants
  • Brief Communication
  • Published:

Icacinaceae fossil provides evidence for a Cretaceous origin of the lamiids

Nature Plantsvolume 8pages1374–1377 (2022)Cite this article

Subjects

Abstract

Today the asterids comprise over 80,000 species of flowering plants; however, relatively little is known about the timing of their early diversification. This is particularly true for the diverse lamiid clade, which comprises half of asterid diversity. Here, a lamiid fossil fruit assigned to Icacinaceae from the Campanian of western North America provides important macrofossil evidence indicating that lamiids diverged at least 80 million years ago and sheds light on potential Cretaceous rainforest-like ecosystems.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1:Palaeophytocrene chicoensis Atkinson sp. nov. Holotype T 32.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.N. Phytol.207, 437–453 (2015).

    Article  Google Scholar 

  2. Atkinson, B. A., Stockey, R. A. & Rothwell, G. W. Tracking the initial diversification of Asterids: anatomically preserved Cornalean fruits from the Early Coniacian (Late Cretaceous) of Western North America.Int. J. Plant Sci.179, 21–35 (2018).

    Article  Google Scholar 

  3. Manchester, S. R., Grímsson, F. & Zetter, R. Assessing the fossil record of asterids in the context of our current phylogenetic framework.Ann. Mo. Botanical Gard.100, 329–363 (2015).

    Article  Google Scholar 

  4. Martínez, C. et al.Rariglanda jerseyensis, a new ericalean fossil flower from the Late Cretaceous of New Jersey.Botany94, 747–758 (2016).

    Article  Google Scholar 

  5. Stull, G. W., Soltis, P. S., Soltis, D. E., Gitzendanner, M. A. & Smith, S. A. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages.Am. J. Bot.107, 790–805 (2020).

    Article  Google Scholar 

  6. Zhang, C. et al. Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole-genome duplications.Mol. Biol. Evolution37, 3188–3210 (2020).

    Article CAS  Google Scholar 

  7. Magallón, S., Crane, P. R. & Herendeen, P. S. Phylogenetic pattern, diversity, and diversification of eudicots.Ann. Mo. Botanical Gard.86, 297–372 (1999).

    Article  Google Scholar 

  8. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV.Bot. J. Linn. Soc.181, 1–20 (2016).

  9. Manchester, S. R. & O’Leary, E. L. Phylogenetic distribution and identification of fin-winged fruits.Bot. Rev.76, 1–82 (2010).

    Article  Google Scholar 

  10. Hilton, R. & Antuzzi, P. Chico Formation yields clues to Late Cretaceous paleoenvironment in California.Calif. Geol.54, 4–10 (1997).

    Google Scholar 

  11. Ward, P. D., Haggart, J. W., Mitchell, R., Kirschvink, J. L. & Tobin, T. Integration of macrofossil biostratigraphy and magnetostratigraphy for the Pacific Coast Upper Cretaceous (Campanian-Maastrichtian) of North America and implications for correlation with the Western Interior and Tethys.Geol. Soc. Am. Bull.124, 957–974 (2012).

    Article CAS  Google Scholar 

  12. Verosub, K. L., Haggart, J. W. & Ward, P. D. Magnetostratigraphy of Upper Cretaceous strata of the Sacramento Valley, California.Geol. Soc. Am. Bull.101, 521–533 (1989).

    Article  Google Scholar 

  13. Parham, J. F. & Stidham, T. A. Late Cretaceous sea turtles from the Chico Formation of California.PaleoBios19, 1–7 (1999).

    Google Scholar 

  14. Stull, G. W., Duno de Stefano, R., Soltis, D. E. & Soltis, P. S. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome‐scale data set.Am. J. Bot.102, 1794–1813 (2015).

    Article CAS  Google Scholar 

  15. Miers, J. Observations on the affinities of the Olacaceæ.Ann. Mag. Nat. Hist.8, 161–184 (1851).

    Article  Google Scholar 

  16. Reid, E. M. & Chandler, M. E. J. The London Clay Flora (Oxford Univ. Press, 1933).

  17. Stull, G. W., Herrera, F., Manchester, S. R., Jaramillo, C. & Tiffney, B. H. Fruits of an “Old World” tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America.Syst. Bot.37, 784–794 (2012).

  18. Rankin, B. D., Stockey, R. A. & Beard, G. Fruits of Icacinaceae from the Eocene Appian Way locality of Vancouver Island, British Columbia.Int. J. Plant Sci.169, 305–314 (2008).

    Article  Google Scholar 

  19. Rio, C. D., Thomas, R. & Franceschi, D. D. Fruits of Icacinaceae Miers from the Palaeocene of the Paris Basin (Oise, France).Earth Environ. Sci. Trans. R. Soc. Edinb.108, 459–469 (2017).

  20. Stull, G. W., Adams, N. F., Manchester, S. R., Sykes, D. & Collinson, M. E. Revision of Icacinaceae from the Early Eocene London Clay flora based on X-ray micro-CT.Botany94, 713–745 (2016).

    Article CAS  Google Scholar 

  21. Scott, R. A. & Barghoorn, E. S.Phytocrene microcarpa – a new species of Icacinaceae based on Cretaceous fruits from Kreischerville, New York.J. Palaeosciences6, 25–28 (1957).

    Article  Google Scholar 

  22. Knobloch, E. & Mai, D. H. Monographie der früchte und samen in der Kreide von Mitteleuropa.Rozpravy ústredího ústavu geologickénho Praha47, 1–219 (1986).

    Google Scholar 

  23. Soudry, D. & Gregor, H.-J.Jodes israelii sp. nov.: a huge phosphate-mineralized icacinacean fructification from the Late Cretaceous of the Negev, southern Israel.Cretac. Res.18, 161–178 (1997).

    Article  Google Scholar 

  24. Stull, G. W., Moore, B. R. & Manchester, S. R. Fruits of Icacinaceae from the Eocene of southeastern North America and their biogeographic implications.Int. J. Plant Sci.172, 935–947 (2011).

    Article  Google Scholar 

  25. Del Rio, C. & De Franceschi, D. Fossil record of the Icacinaceae and its paleogeographic implications.Rev. Palaeobot. Palynol.273, 104135 (2020).

    Article  Google Scholar 

  26. Tang, K. K., Smith, S. Y. & Atkinson, B. A. Extending beyond Gondwana: Cretaceous Cunoniaceae from western North America.N. Phytol.234, 704–718 (2022).

    Article  Google Scholar 

  27. Atkinson, B. A., Stockey, R. A. & Rothwell, G. W. Cretaceous origin of dogwoods: an anatomically preservedCornus (Cornaceae) fruit from the Campanian of Vancouver Island.PeerJ4, e2808 (2016).

    Article  Google Scholar 

  28. Atkinson, B. A. Fossil evidence for a Cretaceous rise of the mahogany family.Am. J. Bot.107, 139–147 (2020).

    Article  Google Scholar 

  29. Matsunaga, K. K. S. & Smith, S. Y. Fossil palm reading: using fruits to reveal the deep roots of palm diversity.Am. J. Bot.108, 472–494 (2021).

    Article CAS  Google Scholar 

  30. Atkinson, B. A. The critical role of fossils in inferring deep‐node phylogenetic relationships and macroevolutionary patterns in Cornales.Am. J. Bot.105, 1401–1411 (2018).

    Article  Google Scholar 

  31. Srivastava, R., Wheeler, E. A., Manchester, S. R. & Baas, P. Wood of Oleaceae from the latest Cretaceous of India – the earliest olive branch.IAWA J.36, 443–451 (2015).

    Article  Google Scholar 

  32. Burnham, R. An overview of the fossil record of climbers: bejucos, sogas, trepadoras, lianas, cipós, and vines.Rev. Brasileira De. Paleontologia12, 149–160 (2009).

    Article  Google Scholar 

  33. Smith, S. Y., Little, S. A., Cooper, R. L., Burnham, R. J. & Stockey, R. A. A Ranunculalean Liana stem from the Cretaceous of British Columbia, Canada:Atli morinii gen. et sp. nov.Int. J. Plant Sci.174, 818–831 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to D. Hilton (Sierra College) and P. Antuzzi for recovering the fossil, R. Greve and G. Bromm (Sierra College) for facilitating access to the studied material, and R. Shapiro (California State University – Chico) for bringing the fossil material to my attention. Thanks to R. Serbet (University of Kansas) for helpful edits on the manuscript. This work was supported by a University of Kansas New Faculty Research Development fund awarded to B.A.A.

Author information

Authors and Affiliations

  1. Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA

    Brian A. Atkinson

  2. Biodiversity Institute, University of Kansas, Lawrence, KS, USA

    Brian A. Atkinson

Authors
  1. Brian A. Atkinson

    You can also search for this author inPubMed Google Scholar

Contributions

The author confirms sole responsibility for all aspects of this study including conception and design, fossil identification, imaging, taxonomy, interpretation of results, and writing and editing the manuscript.

Corresponding author

Correspondence toBrian A. Atkinson.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Plants thanks James Doyle and Gregory Stull for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1Palaeophytocrene chicoensis Atkinson sp. nov. Holotype T 32.

Region of rectangle in Fig.1d showing a less magnified view of papillate area in Fig.1e in which the inferred papillae (exemplars at arrows) have a size and rounded-shape distinct from the surrounding matrix. Note that this was the only tubercle where these structures are observed. Scale = 100 µm.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, B.A. Icacinaceae fossil provides evidence for a Cretaceous origin of the lamiids.Nat. Plants8, 1374–1377 (2022). https://doi.org/10.1038/s41477-022-01275-y

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp