- Article
- Published:
Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms
- Gregory W. Stull ORCID:orcid.org/0000-0002-2733-48231,2 na1,
- Xiao-Jian Qu ORCID:orcid.org/0000-0003-1201-25543 na1,
- Caroline Parins-Fukuchi4,
- Ying-Ying Yang1,
- Jun-Bo Yang1,
- Zhi-Yun Yang1,
- Yi Hu5,
- Hong Ma ORCID:orcid.org/0000-0001-8717-44225,
- Pamela S. Soltis ORCID:orcid.org/0000-0001-9310-86596,
- Douglas E. Soltis ORCID:orcid.org/0000-0001-8638-41376,7,
- De-Zhu Li ORCID:orcid.org/0000-0002-4990-724X1,2,
- Stephen A. Smith ORCID:orcid.org/0000-0003-2035-95318 &
- …
- Ting-Shuang Yi ORCID:orcid.org/0000-0001-7093-95641,2
Nature Plantsvolume 7, pages1015–1025 (2021)Cite this article
9331Accesses
161Citations
134Altmetric
Subjects
Abstract
Inferring the intrinsic and extrinsic drivers of species diversification and phenotypic disparity across the tree of life is a major challenge in evolutionary biology. In green plants, polyploidy (or whole-genome duplication, WGD) is known to play a major role in microevolution and speciation, but the extent to which WGD has shaped macroevolutionary patterns of diversification and phenotypic innovation across plant phylogeny remains an open question. Here, we examine the relationship of various facets of genomic evolution—including gene and genome duplication, genome size, and chromosome number—with macroevolutionary patterns of phenotypic innovation, species diversification, and climatic occupancy in gymnosperms. We show that genomic changes, such as WGD and genome-size shifts, underlie the origins of most major extant gymnosperm clades, and notably, our results support an ancestral WGD in the gymnosperm lineage. Spikes of gene duplication typically coincide with major spikes of phenotypic innovation, while increased rates of phenotypic evolution are typically found at nodes with high gene-tree conflict, representing historic population-level dynamics during speciation. Most shifts in gymnosperm diversification since the rise of angiosperms are decoupled from putative WGDs and instead are associated with increased rates of climatic occupancy evolution, particularly in cooler and/or more arid climatic conditions, suggesting that ecological opportunity, especially in the later Cenozoic, and environmental heterogeneity have driven a resurgence of gymnosperm diversification. Our study provides critical insight on the processes underlying diversification and phenotypic evolution in gymnosperms, with important broader implications for the major drivers of both micro- and macroevolution in plants.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The newly generated raw sequence data are available at the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) under BioProjectPRJNA726756 (transcriptomic samples) andPRJNA726638 (genome skimming samples). The newly assembled plastid genomes are also available at NCBI (https://www.ncbi.nlm.nih.gov); see Supplementary Table2 for sample accession numbers. Sequence alignments, phylogenies,Ks plots, phenotypic trait data and other data analysed (chromosome counts,C-values) are available on figshare (https://doi.org/10.6084/m9.figshare.14547354).
Code availability
The code used to calculate and plot rates and levels of phenotypic evolution can be found on figshare (https://figshare.com/articles/dataset/pf_stull_smith_tgz/13190816/2).
References
Otto, S. P. & Whitton, J. Polyploid incidence and evolution.Annu. Rev. Genet.34, 401–437 (2000).
Wood, T. E. et al. The frequency of polyploid speciation in vascular plants.Proc. Natl Acad. Sci. USA106, 13875–13879 (2009).
Stebbins, G. L.Variation and Evolution in Plants (Columbia Univ. Press, 1950).
Levin, D. A. Polyploidy and novelty in flowering plants.Am. Nat.122, 1–25 (1983).
Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications.New Phytol.207, 454–467 (2015).
Landis, J. B. et al. Impact of whole-genome duplication events on diversification rates in angiosperms.Am. J. Bot.105, 348–363 (2018).
Smith, S. A. et al. Disparity, diversity and duplications in the Caryophyllales.New Phytol.217, 836–854 (2017).
Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae.Nat. Commun.11, 3795 (2020).
Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms.Curr. Opin. Genet. Dev.30, 159–165 (2016).
Guo, J. et al. Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations.Mol. Plant13, 1117–1133 (2020).
Sheehan, H. et al. Evolution ofL-DOPA 4,5-dioxygenase activity allows for recurrent specialization to betalain pigmentation in Caryophyllales.New Phytol.227, 914–929 (2020).
Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation.Annu. Rev. Ecol. Evol. Syst.47, 507–532 (2016).
Parins-Fukuchi, C., Stull, G. W. & Smith, S. A. Phylogenomic conflict coincides with rapid morphological innovation.Proc. Natl Acad. Sci. USA118, e2023058118 (2021).
Cantino, P. D. et al. Towards a phylogenetic nomenclature of Tracheophyta.Taxon56, E1–E44 (2007).
Doyle, J. A. Phylogenetic analyses and morphological innovations in land plants.Annu. Plant Rev.45, 1–50 (2013).
DiMichele, W. A., Pfefferkorn, H. W. & Gastaldo, R. A. Response of Late Carboniferous and early Permian plant communities to climate change.Annu. Rev. Earth Planet. Sci.29, 461–487 (2001).
Behrensmeyer, A. K. et al.Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (Univ. Chicago Press, 1992).
Crane, P. R. Phylogenetic analysis of seed plants and the origin of angiosperms.Ann. Mo. Bot. Gard.72, 716–793 (1985).
Taylor, E. L., Taylor, T. N. & Krings, M.Paleobotany: The Biology and Evolution of Fossil Plants (Academic Press, 2009).
Nagalingum, N. S. et al. Recent synchronous radiation of a living fossil.Science334, 796–799 (2011).
Leslie, A. B. et al. Hemisphere-scale differences in conifer evolutionary dynamics.Proc. Natl Acad. Sci. USA109, 16217–16221 (2012).
Li, Z. et al. Early genome duplications in conifers and other seed plants.Sci. Adv.1, e1501084 (2015).
Guan, R. et al. Draft genome of the living fossilGinkgo biloba.GigaScience5, 49 (2016).
Farhat, P. et al. Polyploidy in the conifer genusJuniperus: an unexpectedly high rate.Front. Plant Sci.10, 676 (2019).
Ickert-Bond, S. M. et al. Polyploidy in gymnosperms—insights into the genomic and evolutionary consequences of polyploidy inEphedra.Mol. Phylogenet. Evol.147, 106786 (2020).
Khoshoo, T. N. Polyploidy in gymnosperms.Evolution13, 24–39 (1959).
Lewis, W. H.Polyploidy—Biological Relevance (Plenum Press, 1980).
Yang, Y. et al. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events.New Phytol.217, 855–870 (2018).
Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms.Nature473, 97–100 (2011).
Roodt, D. et al. Evidence for an ancient whole-genome duplication in the cycad lineage.PLoS ONE12, e0184454 (2017).
Ruprecht, C. et al. Revisiting ancestral polyploidy in plants.Sci. Adv.3, e1603195 (2017).
Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants.Nature574, 679–685 (2019).
Scott, A. D., Stenz, N. W. M., Ingvarsson, P. K. & Baum, D. A. Whole-genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers.New Phytol.211, 186–193 (2016).
Rabosky, D. L. Automatic detection of key innovations, rate shifts and diversity‐dependence on phylogenetic trees.PLoS ONE9, e89543 (2014).
Ohno, S.Evolution by Gene Duplication (Springer Verlag, 1970).
Rensing, S. A. Gene duplication as a driver of plant morphogenetic evolution.Curr. Opin. Plant Biol.14, 43–48 (2014).
Marques, D. A., Meier, J. I. & Seehausen, O. A combinatorial view on speciation and adaptive radiation.Trends Ecol. Evol.34, 531–544 (2019).
de la Torre, A. R., Li, Z., van de Peer, Y. & Ingvarsson, P. K. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants.Mol. Biol. Evol.34, 1363–1377 (2017).
Ran, J.-H., Shen, T.-T., Wang, M.-M. & Wang, X.-Q. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms.Proc. R. Soc. B285, 20181012 (2018).
Oliver, J. C. Microevolutionary processes generate phylogenomic discordance at ancient divergences.Evolution67, 1823–1839 (2013).
Farjon, A.A Natural History of Conifers (Timber Press, 2008).
Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I. J. Genome size diversity and its impact on land plants.Genes9, 88 (2018).
Otto, S. P. The evolutionary consequences of polyploidy.Cell131, 452–462 (2007).
Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories.Nature580, 502–505 (2020).
Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence.Biol. J. Linn. Soc.36, 227–249 (1989).
Lupia, R., Ligard, S. & Crane, P. R. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation.Paleobiology25, 305–340 (1999).
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms and aberrations in global climate 65 Ma to present.Science292, 686–693 (2001).
Wing, S. L. & Boucher, L. D. Ecological aspects of the Cretaceous flowering plant radiation.Annu Rev. Earth Planet. Sci.26, 379–421 (1998).
Tiffney, B. H. Seed size, dispersal syndromes and the rise of the angiosperms: evidence and hypothesis.Ann. Mo. Bot. Gard.71, 551–576 (1984).
Rice, A. et al. The chromosome counts database (CCDB)—a community resource of plant chromosome numbers.New Phytol.206, 19–26 (2015).
Pellicer, J. & Leitch, I. J. The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies.New Phytol.226, 301–305 (2020).
Biffin, E. et al. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation.Proc. R. Soc. B279, 341–348 (2012).
Brodribb, T. J., McAdam, S. A., Jordan, G. J. & Martins, S. C. Conifer species adapt to low-rainfall climates by following one of two divergent pathways.Proc. Natl Acad. Sci. USA111, 14489–14493 (2014).
English, J. M. & Johnson, S. T. The Laramide orogeny: what were the driving forces?Int. Geol. Rev.46, 833–838 (2004).
Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling.Proc. Natl Acad. Sci. USA117, 28867–28875 (2020).
Fragnière, Y., Bétrisey, S., Cardinaux, L., Stoffel, M. & Kozlowski, G. Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms.J. Biogeogr.42, 809–820 (2015).
Forest, F. et al. Gymnosperms on the EDGE.Sci. Rep.8, 6053 (2018).
Rundel, P. W. A Neogene heritage: conifer distributions and endemism in Mediterranean-climate ecosystems.Front. Ecol. Evol.7, 364 (2019).
Jin, W.-T. et al. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines.Proc. Natl Acad. Sci. USA118, e2022302118 (2021).
Zwaenepoel, A. & van de Peer, Y. Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates.Mol. Biol. Evol.36, 1384–1404 (2019).
Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics.Nucleic Acids Res.40, 1178–1186 (2012).
Mendes, F. K. & Hahn, M. W. Gene tree discordance causes apparent substitution rate variation.Syst. Biol.65, 711–721 (2016).
Walker, J. F., Walker-Hale, N., Vargas, O. M., Larson, D. A. & Stull, G. W. Characterizing gene tree conflict in plastome-inferred phylogenies.PeerJ7, e7747 (2019).
Zhong, B., Yonezawa, T., Zhong, Y. & Hasegawa, M. The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics.Mol. Biol. Evol.27, 2855–2863 (2010).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome.Nat. Biotechnol.29, 644–652 (2011).
Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing.Genome Res.20, 265–272 (2010).
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.Nat. Protoc.8, 1494–1512 (2013).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data.Bioinformatics28, 3150–3152 (2012).
Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem. Bull.19, 11–15 (1987).
Jin, J.-J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes.Genome Biol.21, 241 (2020).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.J. Comput. Biol.19, 455–477 (2012).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2.Nat. Methods9, 357–359 (2012).
Qu, X. J., Moore, M. J., Li, D. Z. & Yi, T. S. PGA: a software package for rapid, accurate and flexible batch annotation of plastomes.Plant Methods15, 50 (2019).
Walker, J. F. et al. From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insights into the evolution of Caryophyllales.Am. J. Bot.105, 446–462 (2018).
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res.25, 3389–3402 (1997).
Yang, Y. & Smith, S. A. Orthology inference in non-model organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics.Mol. Biol. Evol.31, 3081–3092 (2014).
Brown, J. W., Walker, J. F. & Smith, S. A. Phyx: phylogenetic tools for unix.Bioinformatics33, 1886–1888 (2017).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics30, 1312–1313 (2014).
Zhang, C. et al. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees.BMC Bioinformatics19, 153 (2018).
Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell.Bioinformatics26, 1669–1670 (2010).
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies.Mol. Biol. Evol.32, 268–274 (2015).
Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices.Syst. Biol.65, 997–1008 (2016).
Smith, S. A., Moore, M. J., Brown, J. W. & Yang, Y. Analysis of phylogenomic datasets reveals conflict, concordance and gene duplications with examples from animals and plants.BMC Evol. Biol.15, 150 (2015).
Walker, J. F. et al. Widespread paleopolyploidy, gene tree conflict and recalcitrant relationships among the carnivorous Caryophyllales.Am. J. Bot.104, 858–867 (2017).
Smith, S. A. & Walker, J. F. PyPHLAWD: a python tool for phylogenetic dataset construction.Methods Ecol. Evol.10, 104–108 (2019).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Mol. Biol. Evol.30, 772–780 (2013).
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Mol. Biol. Evol.34, 772–773 (2017).
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference.Bioinformatics35, 4453–4455 (2019).
Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies.Bioinformatics28, 2689–2690 (2012).
Glick, L. & Mayrose, I. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny.Mol. Biol. Evol.31, 1914–1922 (2014).
R Core TeamR: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020);https://www.R-project.org
Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things).Methods Ecol. Evol.3, 217–223 (2012).
Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.Nat. Commun.4, 1958 (2013).
Rabosky, D. L. et al. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees.Methods Ecol. Evol.5, 701–707 (2014).
Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases.Methods Ecol. Evol.10, 744–751 (2019).
Hart, J. A. A cladistics analysis of conifers: preliminary results.J. Arnold Arbor.68, 269–307 (1987).
Hilton, J. & Bateman, R. M. Pteridosperms are the backbone of seed-plant phylogeny.J. Torrey Bot. Soc.133, 119–168 (2006).
Mao, K. et al. Distribution of living Cupressaceae reflects the breakup of Pangea.Proc. Natl Acad. Sci. USA109, 7793–7798 (2012).
Escapa, I. H. & Catalano, S. A. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology and fossils.Int. J. Plant Sci.174, 1153–1170 (2013).
Coiro, M. & Pott, C.Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia?BMC Evol. Biol.17, 97 (2017).
Herrera, F. et al. Cupressaceae conifers from the Early Cretaceous of Mongolia.Int. J. Plant Sci.178, 19–41 (2017).
Herrera, F. et al. ReconstructingKrassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers.PLoS ONE15, e0226779 (2020).
Gernandt, D. S. et al. Incorporating fossils into the Pinaceae tree of life.Am. J. Bot.105, 1329–1344 (2018).
Andruchow-Colombo, A., Wilf, P. & Escapa, I. H. A South American fossil relative ofPhyllocladus:Huncocladus laubenfelsii gen. et sp. nov. (Podocarpaceae) from the early Eocene of Laguna del Hunco, Patagonia, Argentina.Aust. Syst. Bot.32, 290–309 (2019).
Nixon, K. C., Crepet, W. L., Stevenson, D. & Friis, E. M. A reevaluation of seed-plant phylogeny.Ann. Mo. Bot. Gard.81, 484–533 (1994).
Acknowledgements
We thank the Germplasm Bank of Wild Species at the Kunming Institute of Botany (KIB) for facilitating this study, and the curators and staff of the Kunming Botanical Garden of the Kunming Institute of Botany, the University of California Botanical Garden at Berkeley, the Arnold Arboretum of Harvard University, the Missouri Botanical Garden, the Royal Botanic Garden Edinburgh and the Royal Botanical Gardens Kew for providing fresh and silica-dried leaves and DNA samples. This work was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (grant no. XDB31000000 to D.-Z.L. and T.-S.Y.), CAS’s large-scale scientific facilities (grant no. 2017-LSF-GBOWS-02 to D.-Z.L., J.-B.Y. and T.-S.Y.), the National Natural Science Foundation of China (key international (regional) cooperative research project no. 31720103903 to T.-S.Y. and D.E.S.), the Yunling International High-end Experts Program of Yunnan Province (grant nos. YNQR-GDWG-2017-002 to P.S.S. and T.-S.Y., and YNQR-GDWG-2018-012 to D.E.S. and T.-S.Y.) and the Natural Science Foundation of Shandong Province (ZR2020QC022 to X.-J.Q.). G.W.S. acknowledges support from the CAS President’s International Fellowship Initiative (no. 2020PB0009) and the China Postdoctoral Science Foundation (CPSF) International Postdoctoral Exchange Program.
Author information
These authors contributed equally: Gregory W. Stull, Xiao-Jian Qu.
Authors and Affiliations
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
Gregory W. Stull, Ying-Ying Yang, Jun-Bo Yang, Zhi-Yun Yang, De-Zhu Li & Ting-Shuang Yi
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
Gregory W. Stull, De-Zhu Li & Ting-Shuang Yi
Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
Xiao-Jian Qu
Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
Caroline Parins-Fukuchi
Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
Yi Hu & Hong Ma
Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
Pamela S. Soltis & Douglas E. Soltis
Department of Biology, University of Florida, Gainesville, FL, USA
Douglas E. Soltis
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
Stephen A. Smith
- Gregory W. Stull
Search author on:PubMed Google Scholar
- Xiao-Jian Qu
Search author on:PubMed Google Scholar
- Caroline Parins-Fukuchi
Search author on:PubMed Google Scholar
- Ying-Ying Yang
Search author on:PubMed Google Scholar
- Jun-Bo Yang
Search author on:PubMed Google Scholar
- Zhi-Yun Yang
Search author on:PubMed Google Scholar
- Yi Hu
Search author on:PubMed Google Scholar
- Hong Ma
Search author on:PubMed Google Scholar
- Pamela S. Soltis
Search author on:PubMed Google Scholar
- Douglas E. Soltis
Search author on:PubMed Google Scholar
- De-Zhu Li
Search author on:PubMed Google Scholar
- Stephen A. Smith
Search author on:PubMed Google Scholar
- Ting-Shuang Yi
Search author on:PubMed Google Scholar
Contributions
G.W.S., D.-Z.L., S.A.S. and T.-S.Y. conceived the study; X.-J.Q., Y.-Y.Y., T.-S.Y., Y.H., J.-B.Y., Z.-Y.Y. and H.M. collected and prepared samples for transcriptome and plastome sequencing; G.W.S. generated the trait dataset and compiled publicly available data for the supermatrix and comparative analyses; G.W.S. conducted analyses with help from C.P.-F., S.A.S. and X.-J.Q; G.W.S, C.P.-F., P.S.S., D.E.S., S.A.S. and T.-S.Y. interpreted the results; G.W.S. wrote the manuscript, with contributions from C.P.-F., P.S.S., D.E.S., S.A.S. and T.-S.Y. All authors approved the manuscript.
Corresponding authors
Correspondence toDe-Zhu Li,Stephen A. Smith orTing-Shuang Yi.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review informationNature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Plots of synonymous substitutions per site (Ks) for within-taxon paralog pairs (black lines) and between-taxon orthologue pairs (blue lines).
The relative positions of orthologue vs. paralogKs spikes help clarify the phylogenetic positions of possible WGD events. The seed plant WGD event (GINK-α) is labelled.Ks peaks corresponding to an inferred WGD for gymnosperms are highlighted with an asterisk. The taxa compared capture the root nodes of (A, B) seed plants and gymnosperms, (C) the ‘ginkad’ clade, (D) conifers, (E) the cupressophyte clade, and (F) the Taxaceae-Cupressaceae clade. Orthologue and paralogKs plots were generated using the pipelines of Walker et al.84 and Yang et al.28, respectively.
Extended Data Fig. 2 Plots of synonymous substitutions per site (Ks) for within-taxon paralog pairs of representatives of the ‘ginkad’ clade.
The seed plant WGD event (GINK-α) is labelled.Ks peaks corresponding to an inferred WGD for gymnosperms are highlighted with an asterisk.
Extended Data Fig. 3 Genome size evolution in gymnosperms.
Ancestral reconstruction of genome size (C-value) on the pruned supermatrix phylogeny, showing BAMM rate shifts (red circles) and jumps (that is, extreme differences in ancestor-descendent values; transparent circles) in genome size evolution, as well as BAMM diversification shifts (larger black circles). Supplementary Fig.15 shows this figure with species tip labels.
Supplementary information
Supplementary Information
Supplementary Methods, Tables 1 and 3, results and discussion, and Figs. 1–35.
Rights and permissions
About this article
Cite this article
Stull, G.W., Qu, XJ., Parins-Fukuchi, C.et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms.Nat. Plants7, 1015–1025 (2021). https://doi.org/10.1038/s41477-021-00964-4
Received:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Plastome data provides new insights into population differentiation and evolution of Ginkgo in the Sichuan Basin of China
- Liyun Nie
- Fangling Liu
- Xiaoli Liu
BMC Plant Biology (2025)
Spatiotemporal dynamics of age-related genes and the regulatory network of LaAGL2-3 in Larix kaempferi (Lamb.) Carr. based on the latest genome annotation
- Tang-Quan Liao
- Ao-Jie Luo
- Wanfeng Li
BMC Plant Biology (2025)
Ortho2Web: a workflow for disentangling the roles of hybridization and allopolyploidization in reticulation within Campanulaceae
- Chao Xu
- Zetao Jin
- Binbin Liu
BMC Biology (2025)
Analysis genome of Pseudotaxus chienii reveals insights into the origin and evolution of taxane biosynthesis
- Mingshuang Wang
- Ruoyun Ma
- Chenjia Shen
Nature Communications (2025)
Developmentally regulated genes drive phylogenomic splits in ovule evolution
- Veronica M. Sondervan
- Gil Eshel
- Gloria M. Coruzzi
Nature Communications (2025)


