- Review Article
- Published:
Pathophysiology of ischemic acute kidney injury
Nature Reviews Nephrologyvolume 7, pages189–200 (2011)Cite this article
7886Accesses
614Citations
13Altmetric
Abstract
Acute kidney injury (AKI) as a consequence of ischemia is a common clinical event leading to unacceptably high morbidity and mortality, development of chronic kidney disease (CKD), and transition from pre-existing CKD to end-stage renal disease. Data indicate a close interaction between the many cell types involved in the pathophysiology of ischemic AKI, which has critical implications for the treatment of this condition. Inflammation seems to be the common factor that links the various cell types involved in this process. In this Review, we describe the interactions between these cells and their response to injury following ischemia. We relate these events to patients who are at high risk of AKI, and highlight the characteristics that might predispose these patients to injury. We also discuss how therapy targeting specific cell types can minimize the initial and subsequent injury following ischemia, thereby limiting the extent of acute changes and, hopefully, long-term structural and functional alterations to the kidney.
Key Points
During ischemic acute kidney injury (AKI), ATP depletion results in cytoskeletal changes in epithelial and endothelial cells, causing disruption of function, and a decrease in glomerular filtration rate
Apoptosis and necrosis are major mechanisms of cell death that have important roles in ischemia, with the contribution of each pathway depending on the extent of the injury
Under physiological conditions, endothelial cells regulate permeability, vascular tone, coagulation, and inflammation; endothelial cells that are dysfunctional substantially contribute to the extension phase of AKI
Inflammation and its mediators orchestrate the extension phase of ischemic AKI, and limit injury to tubular epithelial cells and vascular endothelial cells, thereby promoting repair
Complex interactions between epithelial cells, endothelial cells, inflammatory mediators, and cytokines can result in persistent injury during acute tubular necrosis
Stem cells, mesenchymal cells, and endothelial progenitor cells contribute to the repair and regeneration of tubular cells and endothelial cells following injury, and could provide attractive targets for therapeutic intervention
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Thakar, C. V., Arrigain, S., Worley, S., Yared, J. P. & Paganini, E. P. A clinical score to predict acute renal failure after cardiac surgery.J. Am. Soc. Nephrol.16, 162–168 (2005).
Singh, P., Rifkin, D. E. & Blantz, R. C. Chronic kidney disease: an inherent risk factor for acute kidney injury?Clin. J. Am. Soc. Nephrol.5, 1690–1695 (2010).
Coca, S. G. Acute kidney injury in elderly persons.Am. J. Kidney Dis.56, 122–131 (2010).
Harel, Z. & Chan, C. T. Predicting and preventing acute kidney injury after cardiac surgery.Curr. Opin. Nephrol. Hypertens.17, 624–628 (2008).
James, M. T. et al. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study.Lancet376, 2096–2103 (2010).
Cruz, D. N., Bagshaw, S. M., Ronco, C. & Ricci, Z. Acute kidney injury: classification and staging.Contrib. Nephrol.164, 24–32 (2010).
Ricci, Z., Cruz, D. & Ronco, C. The RIFLE criteria and mortality in acute kidney injury: a systematic review.Kidney Int.73, 538–546 (2008).
Molitoris, B. A., Melnikov, V. Y., Okusa, M. D. & Himmelfarb, J. Technology insight: biomarker development in acute kidney injury—what can we anticipate?Nat. Clin. Pract. Nephrol.4, 154–165 (2008).
Molitoris, B. A. Contrast nephropathy: are short-term outcome measures adequate for quantification of long-term renal risk?Nat. Clin. Pract. Nephrol.4, 594–595 (2008).
Himmelfarb, J. Acute kidney injury in the elderly: problems and prospects.Semin. Nephrol.29, 658–664 (2009).
Liaño, F. & Pascual, J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group.Kidney Int.50, 811–818 (1996).
Nash, K., Hafeez, A. & Hou, S. Hospital-acquired renal insufficiency.Am. J. Kidney Dis.39, 930–936 (2002).
Sesso, R., Roque, A., Vicioso, B. & Stella, S. Prognosis of ARF in hospitalized elderly patients.Am. J. Kidney Dis.44, 410–419 (2004).
Wencker, D. Acute cardio-renal syndrome: progression from congestive heart failure to congestive kidney failure.Curr. Heart Fail. Rep.4, 134–138 (2007).
Wan, L. et al. Pathophysiology of septic acute kidney injury: what do we really know?Crit. Care Med.36, S198–S203 (2008).
Himmelfarb, J. et al. Evaluation and initial management of acute kidney injury.Clin. J. Am. Soc. Nephrol.3, 962–967 (2008).
Fujii, T. et al. The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure.Eur. J. Pharmacol.481, 241–248 (2003).
Blantz, R. C. The glomerular and tubular actions of angiotensin II.Am. J. Kidney Dis.10 (Suppl. 1), 2–6 (1987).
Kastner, P. R., Hall, J. E. & Guyton, A. C. Control of glomerular filtration rate: role of intrarenally formed angiotensin II.Am. J. Physiol.246, F897–F906 (1984).
Badr, K. F. & Ichikawa, I. Prerenal failure: a deleterious shift from renal compensation to decompensation.N. Engl. J. Med.319, 623–629 (1988).
Maddox, D. & Brenner, B. M. inThe Kidney 6th edn Vol.1 (eds Brenner, B. M. & Levine, S. A.) 319–374 (W. B. Saunders, Philadelphia, 2000).
Yared, A., Kon, V. & Ichikawa, I. Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin.J. Clin. Invest.75, 1477–1487 (1985).
Oliver, J. A., Sciacca, R. R. & Cannon, P. J. Renal vasodilation by converting enzyme inhibition. Role of renal prostaglandins.Hypertension5, 166–171 (1983).
Cryer, H. G., Bloom, I. T., Unger, L. S. & Garrison, R. N. Factors affecting renal microvascular blood flow in rat hyperdynamic bacteremia.Am. J. Physiol.264, H1988–H1997 (1993).
Molitoris, B. A. & Sutton, T. A. Endothelial injury and dysfunction: role in the extension phase of acute renal failure.Kidney Int.66, 496–499 (2004).
Oberbauer, R., Rohrmoser, M., Regele, H., Mühlbacher, F. & Mayer, G. Apoptosis of tubular epithelial cells in donor kidney biopsies predicts early renal allograft function.J. Am. Soc. Nephrol.10, 2006–2013 (1999).
Rosenberger, C. et al. Activation of hypoxia-inducible factors ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney.Nephrol. Dial. Transplant.23, 3472–3478 (2008).
Alejandro, V. et al. Mechanisms of filtration failure during postischemic injury of the human kidney. A study of the reperfused renal allograft.J. Clin. Invest.95, 820–831 (1995).
Ramaswamy, D. et al. Maintenance and recovery stages of postischemic acute renal failure in humans.Am. J. Physiol. Renal Physiol.282, F271–F280 (2002).
Solez, K., Morel-Maroger, L. & Sraer, J. D. The morphology of “acute tubular necrosis” in man: analysis of 57 renal biopsies and a comparison with the glycerol model.Medicine (Baltimore)58, 362–376 (1979).
Racusen, L. inAcute Renal Failure 1st edn (eds Molitoris, B. A. & Finn, W. F.) 1–12 (W. B. Saunders, Philadelphia, 2001).
Saikumar, P. & Venkatachalam, M. A. Role of apoptosis in hypoxic/ischemic damage in the kidney.Semin. Nephrol.23, 511–521 (2003).
Wagner, M. C. et al. Ischemic injury to kidney induces glomerular podocyte effacement and dissociation of slit diaphragm proteins Neph1 and ZO-1.J. Biol. Chem.283, 35579–35589 (2008).
Molitoris, B. A. Actin cytoskeleton in ischemic acute renal failure.Kidney Int.66, 871–883 (2004).
Ashworth, S. L., Sandoval, R. M., Tanner, G. A. & Molitoris, B. A. Two-photon microscopy: visualization of kidney dynamics.Kidney Int.72, 416–421 (2007).
Molitoris, B. A., Dahl, R. & Hosford, M. Cellular ATP depletion induces disruption of the spectrin cytoskeletal network.Am. J. Physiol.271, F790–F798 (1996).
Ashworth, S. L., Sandoval, R. M., Hosford, M., Bamburg, J. R. & Molitoris, B. A. Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells.Am. J. Physiol. Renal Physiol.280, F886–F894 (2001).
Ashworth, S. L. et al. ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion.Am. J. Physiol. Renal Physiol.284, F852–F862 (2003).
Atkinson, S. J., Hosford, M. A. & Molitoris, B. A. Mechanism of actin polymerization in cellular ATP depletion.J. Biol. Chem.279, 5194–5199 (2004).
Chen, J., Doctor, R. B. & Mandel, L. J. Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury.Am. J. Physiol.267, C784–C795 (1994).
Ashworth, S. L. et al. Renal ischemia induces tropomyosin dissociation-destabilizing microvilli microfilaments.Am. J. Physiol. Renal Physiol.286, F988–F996 (2004).
Molitoris, B. A. & Marrs, J. The role of cell adhesion molecules in ischemic acute renal failure.Am. J. Med.106, 583–592 (1999).
Zuk, A., Bonventre, J. V., Brown, D. & Matlin, K. S. Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney.Am. J. Physiol.275, C711–C731 (1998).
Molitoris, B. A., Geerdes, A. & McIntosh, J. R. Dissociation and redistribution of Na+, K+-ATPase from its surface membrane actin cytoskeletal complex during cellular ATP depletion.J. Clin. Invest.88, 462–469 (1991).
Molitoris, B. A. Na+-K+-ATPase that redistributes to apical membrane during ATP depletion remains functional.Am. J. Physiol.265, F693–F697 (1993).
Lieberthal, W., Koh, J. S. & Levine, J. S. Necrosis and apoptosis in acute renal failure.Semin. Nephrol.18, 505–518 (1998).
Bonegio, R. & Lieberthal, W. Role of apoptosis in the pathogenesis of acute renal failure.Curr. Opin. Nephrol. Hypertens.11, 301–308 (2002).
Guo, R., Wang, Y., Minto, A. W., Quigg, R. J. & Cunningham, P. N. Acute renal failure in endotoxemia is dependent on caspase activation.J. Am. Soc. Nephrol.15, 3093–3102 (2004).
Safirstein, R. L. Acute renal failure: from renal physiology to the renal transcriptome.Kidney Int. Suppl.91, S62–S66 (2004).
Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents.Nature407, 810–816 (2000).
Edelstein, L. C., Lagos, L., Simmons, M., Tirumalai, H. & Gélinas, C. NF-κB-dependent assembly of an enhanceosome-like complex on the promoter region of apoptosis inhibitor Bfl-1/A1.Mol. Cell. Biol.23, 2749–2761 (2003).
Kelly, K. J., Plotkin, Z., Vulgamott, S. L. & Dagher, P. C. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor.J. Am. Soc. Nephrol.14, 128–138 (2003).
Park, K. M., Chen, A. & Bonventre, J. V. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment.J. Biol. Chem.276, 11870–11876 (2001).
Scheid, M. P., Schubert, K. M. & Duronio, V. Regulation of bad phosphorylation and association with Bcl-xL by the MAPK/Erk kinase.J. Biol. Chem.274, 31108–31113 (1999).
Imamura, R. et al. Intravital 2-photon microscopy assessment of renal protection efficacy of siRNA for p53 in experimental rat kidney transplantation models.Cell Transplant. doi:10.3727/096368910X516619.
Molitoris, B. A. et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury.J. Am. Soc. Nephrol.20, 1754–1764 (2009).
Sogabe, K. et al. Calcium dependence of integrity of the actin cytoskeleton of proximal tubule cell microvilli.Am. J. Physiol.271, F292–F303 (1996).
Portilla, D. Role of fatty acid beta-oxidation and calcium-independent phospholipase A2 in ischemic acute renal failure.Curr. Opin. Nephrol. Hypertens.8, 473–477 (1999).
Galli, F. et al. Oxidative stress and reactive oxygen species.Contrib. Nephrol.149, 240–260 (2005).
Li, L., Zepeda-Orozco, D., Black, R. & Lin, F. Autophagy is a component of epithelial cell fate in obstructive uropathy.Am. J. Pathol.176, 1767–1778 (2010).
Koesters, R. et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells.Am. J. Pathol.177, 632–643 (2010).
Conger, J. D. & Schrier, R. W. Renal hemodynamics in acute renal failure.Annu. Rev. Physiol.42, 603–614 (1980).
Conger, J. D., Robinette, J. B. & Hammond, W. S. Differences in vascular reactivity in models of ischemic acute renal failure.Kidney Int.39, 1087–1097 (1991).
Noiri, E. et al. Oxidative and nitrosative stress in acute renal ischemia.Am. J. Physiol. Renal Physiol.281, F948–F957 (2001).
Ling, H. et al. Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice.Am. J. Physiol.277, F383–F390 (1999).
Goligorsky, M. S., Brodsky, S. V. & Noiri, E. NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology.Semin. Nephrol.24, 316–323 (2004).
Ogawa, T. et al. Contribution of nitric oxide to the protective effects of ischemic preconditioning in ischemia-reperfused rat kidneys.J. Lab. Clin. Med.138, 50–58 (2001).
Mattson, D. L. & Wu, F. Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla.Acta Physiol. Scand.168, 149–154 (2000).
Chander, V. & Chopra, K. Renal protective effect of molsidomine and L-arginine in ischemia-reperfusion induced injury in rats.J. Surg. Res.128, 132–139 (2005).
Sutton, T. A. et al. Injury of the renal microvascular endothelium alters barrier function after ischemia.Am. J. Physiol. Renal Physiol.285, F191–F198 (2003).
Sutton, T. A. et al. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury.Am. J. Physiol. Renal Physiol.288, F91–F97 (2005).
Van de Wouwer, M., Collen, D. & Conway, E. M. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation.Arterioscler. Thromb. Vasc. Biol.24, 1374–1383 (2004).
Gupta, A. et al. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2.Am. J. Physiol. Renal Physiol.293, F245–F254 (2007).
Gupta, A., Williams, M. D., Macias, W. L., Molitoris, B. A. & Grinnell, B. W. Activated protein C and acute kidney injury: selective targeting of PAR-1.Curr. Drug Targets10, 1212–1226 (2009).
Mizutani, A., Okajima, K., Uchiba, M. & Noguchi, T. Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation.Blood95, 3781–3787 (2000).
Sharfuddin, A. A. et al. Soluble thrombomodulin protects ischemic kidneys.J. Am. Soc. Nephrol.20, 524–534 (2009).
Tajra, L. C. et al.In vivo effects of monoclonal antibodies against rat β2 integrins on kidney ischemia-reperfusion injury.J. Surg. Res.87, 32–38 (1999).
Singbartl, K., Forlow, S. B. & Ley, K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure.FASEB J.15, 2337–2344 (2001).
Burne, M. J. & Rabb, H. Pathophysiological contributions of fucosyltransferases in renal ischemia reperfusion injury.J. Immunol.169, 2648–2652 (2002).
Nemoto, T. et al. Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure.Kidney Int.60, 2205–2214 (2001).
Matsukawa, A. et al. Mice genetically lacking endothelial selectins are resistant to the lethality in septic peritonitis.Exp. Mol. Pathol.72, 68–76 (2002).
Singbartl, K. & Ley, K. Leukocyte recruitment and acute renal failure.J. Mol. Med.82, 91–101 (2004).
Basile, D. P. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function.Kidney Int.72, 151–156 (2007).
Hörbelt, M. et al. Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury.Am. J. Physiol. Renal Physiol.293, F688–F695 (2007).
Basile, D. P., Fredrich, K., Chelladurai, B., Leonard, E. C. & Parrish, A. R. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor.Am. J. Physiol. Renal Physiol.294, F928–F936 (2008).
Leonard, E. C., Friedrich, J. L. & Basile, D. P. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury.Am. J. Physiol. Renal Physiol.295, F1648–F1657 (2008).
Basile, D. P. et al. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury.Am. J. Physiol. Renal Physiol. doi:10.1152/ajprenal.00546.2010.
Okusa, M. D., Chertow, G. M. & Portilla, D. for the Acute Kidney Injury Advisory Group of the American Society of Nephrology. The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009.Clin. J. Am. Soc. Nephrol.4, 520–522 (2009).
Akcay, A., Nguyen, Q. & Edelstein, C. L. Mediators of inflammation in acute kidney injury.Mediators Inflamm.2009, 137072 (2009).
Gluba, A. et al. The role of Toll-like receptors in renal diseases.Nat. Rev. Nephrol.6, 224–235 (2010).
Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury.J. Clin. Invest.117, 2847–2859 (2007).
Burne-Taney, M. J. & Rabb, H. The role of adhesion molecules and T cells in ischemic renal injury.Curr. Opin. Nephrol. Hypertens.12, 85–90 (2003).
Burne-Taney, M. J. et al. B cell deficiency confers protection from renal ischemia reperfusion injury.J. Immunol.171, 3210–3215 (2003).
de Vries, B. et al. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils.J. Immunol.170, 3883–3889 (2003).
Riedemann, N. C., Guo, R. F. & Ward, P. A. The enigma of sepsis.J. Clin. Invest.112, 460–467 (2003).
Huber-Lang, M. S. et al. Protective effects of anti-C5a peptide antibodies in experimental sepsis.FASEB J.15, 568–570 (2001).
Thurman, J. M. et al. C3a is required for the production of CXC chemokines by tubular epithelial cells after renal ishemia/reperfusion.J. Immunol.178, 1819–1828 (2007).
Thurman, J. M. et al. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion.J. Clin. Invest.116, 357–368 (2006).
Zheng, X. et al. Protection of renal ischemia injury using combination gene silencing of complement 3 and caspase 3 genes.Transplantation82, 1781–1786 (2006).
Kinsey, G. R., Li, L. & Okusa, M. D. Inflammation in acute kidney injury.Nephron Exp. Nephrol.109, e102–e107 (2008).
Tsuboi, N. et al. Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells.J. Immunol.169, 2026–2033 (2002).
El-Achkar, T. M. et al. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney.Am. J. Physiol. Renal Physiol.290, F1034–F1043 (2006).
El-Achkar, T. M., Plotkin, Z., Marcic, B. & Dagher, P. C. Sepsis induces an increase in thick ascending limb Cox-2 that is TLR4 dependent.Am. J. Physiol. Renal Physiol.293, F1187–F1196 (2007).
El-Achkar, T. M. et al. Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression.Am. J. Physiol. Renal Physiol.295, F534–F544 (2008).
Rusai, K. et al. Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury.Pediatr. Nephrol.25, 853–860 (2010).
Day, Y. J., Huang, L., Ye, H., Linden, J. & Okusa, M. D. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages.Am. J. Physiol. Renal Physiol.288, F722–F731 (2005).
Jo, S. K., Bajwa, A., Awad, A. S., Lynch, K. R. & Okusa, M. D. Sphingosine-1-phosphate receptors: biology and therapeutic potential in kidney disease.Kidney Int.73, 1220–1230 (2008).
Bajwa, A. et al. Activation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury.J. Am. Soc. Nephrol.21, 955–965 (2010).
Dong, X. et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury.Kidney Int.71, 619–628 (2007).
Gandolfo, M. T. et al. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury.Kidney Int.76, 717–729 (2009).
Kinsey, G. R., Huang, L., Vergis, A. L., Li, L. & Okusa, M. D. Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney.Kidney Int.77, 771–780 (2010).
Kinsey, G. R. et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury.J. Am. Soc. Nephrol.20, 1744–1753 (2009).
Li, L. et al. NKT cell activation mediates neutrophil IFN-γ production and renal ischemia-reperfusion injury.J. Immunol.178, 5899–5911 (2007).
Gupta, A. et al. Distinct functions of activated protein C differentially attenuate acute kidney injury.J. Am. Soc. Nephrol.20, 267–277 (2009).
Liu, M. et al. Effect of T cells on vascular permeability in early ischemic acute kidney injury in mice.Microvasc. Res.77, 340–347 (2009).
Savransky, V. et al. Role of the T-cell receptor in kidney ischemia-reperfusion injury.Kidney Int.69, 233–238 (2006).
Kelly, K. J. Distant effects of experimental renal ischemia/reperfusion injury.J. Am. Soc. Nephrol.14, 1549–1558 (2003).
Kramer, A. A. et al. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability.Kidney Int.55, 2362–2367 (1999).
Rabb, H. et al. Acute renal failure leads to dysregulation of lung salt and water channels.Kidney Int.63, 600–606 (2003).
Liu, M. et al. Acute kidney injury leads to inflammation and functional changes in the brain.J. Am. Soc. Nephrol.19, 1360–1370 (2008).
Pratschke, J. et al. Influence of donor brain death on chronic rejection of renal transplants in rats.J. Am. Soc. Nephrol.12, 2474–2481 (2001).
Pinsky, M. R. Pathophysiology of sepsis and multiple organ failure: pro- versus anti-inflammatory aspects.Contrib. Nephrol.144, 31–43 (2004).
Kelly, K. J. Stress response proteins and renal ischemia.Minerva Urol. Nefrol.54, 81–91 (2002).
Paller, M. S., Weber, K. & Patten, M. Nitric oxide-mediated renal epithelial cell injury during hypoxia and reoxygenation.Ren. Fail.20, 459–469 (1998).
Hill-Kapturczak, N., Chang, S. H. & Agarwal, A. Heme oxygenase and the kidney.DNA Cell Biol.21, 307–321 (2002).
Inguaggiato, P. et al. Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis.Kidney Int.60, 2181–2191 (2001).
Kapturczak, M. H. et al. Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse.Am. J. Pathol.165, 1045–1053 (2004).
Stromski, M. E. et al. Chemical and functional correlates of postischemic renal ATP levels.Proc. Natl Acad. Sci. USA83, 6142–6145 (1986).
Spiegel, D. M., Wilson, P. D. & Molitoris, B. A. Epithelial polarity following ischemia: a requirement for normal cell function.Am. J. Physiol.256, F430–F436 (1989).
Ichimura, T. et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells.J. Clin. Invest.118, 1657–1668 (2008).
Li, B. et al. The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair.FASEB J.24, 4767–4781 (2010).
Lin, S. L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration.Proc. Natl Acad. Sci. USA107, 4194–4199 (2010).
Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats.J. Am. Soc. Nephrol.14, 1825–1832 (2003).
Vannay, A. et al. Divergence of renal vascular endothelial growth factor mRNA expression and protein level in post-ischaemic rat kidneys.Exp. Physiol.89, 435–444 (2004).
Ichimura, T. & Bonventre, J. V. inAcute Renal Failure 1st edn (eds Molitoris, B. A. & Finn, W. F.) 101–118 (W. B. Saunders, Philadelphia, 2001).
Gupta, S. et al. Isolation and characterization of kidney-derived stem cells.J. Am. Soc. Nephrol.17, 3028–3040 (2006).
Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney.Am. J. Pathol.166, 545–555 (2005).
De Broe, M. E. Tubular regeneration and the role of bone marrow cells: 'stem cell therapy'—a panacea?Nephrol. Dial. Transplant.20, 2318–2320 (2005).
Lange, C. et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats.Kidney Int.68, 1613–1617 (2005).
Tögel, F., Zhang, P., Hu, Z. & Westenfelder, C. VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury.J. Cell. Mol. Med.13, 2109–2114 (2009).
Humphreys, B. D. & Bonventre, J. V. Mesenchymal stem cells in acute kidney injury.Annu. Rev. Med.59, 311–325 (2008).
Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury.Cell Stem Cell2, 284–291 (2008).
Cantley, L. G. Adult stem cells in the repair of the injured renal tubule.Nat. Clin. Pract. Nephrol.1, 22–32 (2005).
Reinders, M. E., Rabelink, T. J. & Briscoe, D. M. Angiogenesis and endothelial cell repair in renal disease and allograft rejection.J. Am. Soc. Nephrol.17, 932–942 (2006).
Tongers, J. & Losordo, D. W. Frontiers in nephrology: the evolving therapeutic applications of endothelial progenitor cells.J. Am. Soc. Nephrol.18, 2843–2852 (2007).
Becherucci, F. et al. The role of endothelial progenitor cells in acute kidney injury.Blood Purif.27, 261–270 (2009).
Li, B. et al. Mobilized human hematopoietic stem/progenitor cells promote kidney repair after ischemia/reperfusion injury.Circulation121, 2211–2220 (2010).
Author information
Authors and Affiliations
Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 West Walnut Street, R2–202, Indianapolis, 46202, IN, USA
Asif A. Sharfuddin & Bruce A. Molitoris
- Asif A. Sharfuddin
You can also search for this author inPubMed Google Scholar
- Bruce A. Molitoris
You can also search for this author inPubMed Google Scholar
Contributions
A. A. Sharfuddin and B. A. Molitoris contributed equally to researching data for the article, discussion of the content, writing and reviewing/editing of the manuscript before submission.
Corresponding author
Correspondence toBruce A. Molitoris.
Ethics declarations
Competing interests
B. A. Molitoris has worked as a consultant for and received grant/research support from Eli Lilly and Quark Pharmaceuticals. He is also a patent holder/applicant with Eli Lilly. A. A. Sharfuddin declares no competing interests.
Rights and permissions
About this article
Cite this article
Sharfuddin, A., Molitoris, B. Pathophysiology of ischemic acute kidney injury.Nat Rev Nephrol7, 189–200 (2011). https://doi.org/10.1038/nrneph.2011.16
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Effects of poly (ADP-ribose) polymerase inhibitor treatment on the repair process of ischemic acute kidney injury
- Junseok Jeon
- Kyungho Lee
- Wooseong Huh
Scientific Reports (2024)
The mechanism of ferroptosis and its related diseases
- Shijian Feng
- Dan Tang
- Shiqian Qi
Molecular Biomedicine (2023)
Cucurbit[8]uril-based water-dispersible assemblies with enhanced optoacoustic performance for multispectral optoacoustic imaging
- Yinglong Wu
- Lihe Sun
- Yanli Zhao
Nature Communications (2023)
Pannexin 1 targets mitophagy to mediate renal ischemia/reperfusion injury
- Lianjiu Su
- Jiahao Zhang
- Zhiyong Peng
Communications Biology (2023)
Acute kidney injury decreases pulmonary vascular growth and alveolarization in neonatal rat pups
- Brianna M. Liberio
- Gregory Seedorf
- Jason Gien
Pediatric Research (2023)