- Article
- Published:
A quantum network of clocks
Nature Physicsvolume 10, pages582–587 (2014)Cite this article
19kAccesses
705Citations
141Altmetric
Abstract
The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout


using clock networks of different types and degrees of cooperation.

Similar content being viewed by others
References
Bloom, B. et al. An optical lattice clock with accuracy and stability at the 10−18 level.Nature506, 71–75 (2014).
Hinkley, N. et al. An atomic clock with 10−18 instability.Science341, 1215–1218 (2013).
Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s.Phys. Rev. Lett.109, 230801 (2012).
Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin.Phys. Rev. Lett.104, 073602 (2010).
Buzek, V., Derka, R. & Massar, S. Optimal quantum clocks.Phys. Rev. Lett.82, 2207–2210 (1999).
Ye, J. et al. Delivery of high-stability optical and microwave frequency standards over an optical fiber network.J. Opt. Soc. Am. B20, 1459–1467 (2003).
Droste, S. et al. Optical-frequency transfer over a single-span 1840 km fiber link.Phys. Rev. Lett.111, 110801 (2013).
Cirac, J., Zoller, P., Kimble, H. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network.Phys. Rev. Lett.78, 3221–3224 (1997).
Kimble, H. J. The quantum internet.Nature453, 1023–1030 (2008).
Perseguers, S., Lapeyre, G. J., Cavalcanti, D., Lewenstein, M. & Acín, A. Distribution of entanglement in large-scale quantum networks.Rep. Prog. Phys.76, 096001 (2013).
Nielsen, M. A. & Chuang, I. L.Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics.Nature414, 413–418 (2001).
Bollinger, J., Itano, W., Wineland, D. & Heinzen, D. Optimal frequency measurements with maximally correlated states.Phys. Rev. A54, R4649–R4652 (1996).
Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states.Science304, 1476–1478 (2004).
Wineland, D. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions.J. Res. Natl Inst. Stand. Technol.103, 259–328 (1998).
Kessler, E. M. et al. Heisenberg-limited atom clocks based on entangled qubits.Phys. Rev. Lett.112, 190403 (2014).
Giedke, G., Taylor, J., D Alessandro, D., Lukin, M. & Imamolu, A. Quantum measurement of a mesoscopic spin ensemble.Phys. Rev. A74, 032316 (2006).
Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement.Phys. Rev. Lett.79, 3865–3868 (1997).
Rosenband, T. & Leibrandt, D. R. Exponential scaling of clock stability with atom number. Preprint athttp://arXiv.org/abs/1303.6357 (2013).
Borregaard, J. & Sørensen, A. S. Efficient atomic clocks operated with several atomic ensembles.Phys. Rev. Lett.111, 090802 (2013).
Escher, B. M., de Matos Filho, R. L. & Davidovich, L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology.Nature Phys.7, 406–411 (2011).
Borregaard, J. & Sørensen, A. S. Near-Heisenberg-limited atomic clocks in the presence of decoherence.Phys. Rev. Lett.111, 090801 (2013).
Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks.Phys. Rev. Lett.104, 070802 (2010).
Monz, T. et al. 14-qubit entanglement: Creation and coherence.Phys. Rev. Lett.106, 130506 (2011).
Maunz, P. et al. Quantum interference of photon pairs from two remote trapped atomic ions.Nature Phys.3, 538–541 (2007).
Schiller, S. et al. Einstein Gravity Explorer—A medium-class fundamental physics mission.Exp. Astron.23, 573–610 (2008).
Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion.Phys. Rev. A62, 022311 (2000).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography.Rev. Mod. Phys.74, 145–195 (2002).
Olmschenk, S. et al. Quantum teleportation between distant matter qubits.Science323, 486–489 (2009).
Chou, C-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks.Science316, 1316–1320 (2007).
Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit.Nature466, 730–734 (2010).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres.Nature497, 86–90 (2013).
Ristè, D. et al. Deterministic entanglement of superconducting qubits by parity measurement and feedback.Nature502, 350–354 (2013).
Dür, W., Briegel, H-J., Cirac, J. & Zoller, P. Quantum repeaters based on entanglement purification.Phys. Rev. A59, 169–181 (1999).
Sherson, J. F. et al. Quantum teleportation between light and matter.Nature443, 557–560 (2006).
Ma, X-S. et al. Quantum teleportation over 143 kilometres using active feed-forward.Nature489, 269–273 (2012).
McConnell, R. et al. Generating entangled spin states for quantum metrology by single-photon detection.Phys. Rev. A88, 063802 (2013).
Andersen, U. L. & Ralph, T. C. High fidelity teleportation of continuous variable quantum states using delocalized single photons.Phys. Rev. Lett.111, 050504 (2013).
Djerroud, K. et al. Coherent optical link through the turbulent atmosphere.Opt. Lett.35, 1479–1481 (2010).
Tapley, B. et al. GGM02—An improved Earth gravity field model from GRACE.J. Geod.79, 467–478 (2005).
Abramovici, A. et al. LIGO: The laser interferometer gravitational-wave observatory.Science256, 325–333 (1992).
Seidel, A. et al.2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum The aces microwave link: Instrument design and test results. 1295–1298 (IEEE, 2007).
Wolf, P. et al. Quantum physics exploring gravity in the outer solar system: The SAGAS project.Exp. Astron.23, 651–687 (2008).
Acknowledgements
We are grateful to T. Rosenband, V. Vuletić, J. Borregaard and T. Nicholson for enlightening discussions. This work was supported by NSF, CUA, ITAMP, HQOC, JILA PFC, NIST, DARPA QuASAR and Quiness programs, the Alfred P. Sloan Foundation, the Packard Foundation, ARO MURI, and the ERC grant QIOS (grant no. 306576); M.B. acknowledges support from NDSEG and NSF GRFP. It is dedicated to R. Blatt and P. Zoller on the occasion of their 60th birthday, when initial ideas for this work were formed.
Author information
P. Kómár and E. M. Kessler: These authors contributed equally to this work.
Authors and Affiliations
Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
P. Kómár, E. M. Kessler & M. D. Lukin
ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
E. M. Kessler
Department of Physics, JILA, NIST, University of Colorado, Boulder, Colorado 80309, USA
M. Bishof & J. Ye
Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
L. Jiang
QUANTOP, Danish National Research Foundation Centre of Quantum Optics, Niels Bohr Institute, DK-2100 Copenhagen, Denmark
A. S. Sørensen
- P. Kómár
Search author on:PubMed Google Scholar
- E. M. Kessler
Search author on:PubMed Google Scholar
- M. Bishof
Search author on:PubMed Google Scholar
- L. Jiang
Search author on:PubMed Google Scholar
- A. S. Sørensen
Search author on:PubMed Google Scholar
- J. Ye
Search author on:PubMed Google Scholar
- M. D. Lukin
Search author on:PubMed Google Scholar
Contributions
All authors contributed extensively to the work presented in this paper.
Corresponding author
Correspondence toM. D. Lukin.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1006 kb)
Rights and permissions
About this article
Cite this article
Kómár, P., Kessler, E., Bishof, M.et al. A quantum network of clocks.Nature Phys10, 582–587 (2014). https://doi.org/10.1038/nphys3000
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level
- John M. Robinson
- Maya Miklos
- Jun Ye
Nature Physics (2024)
Distributed quantum sensing of multiple phases with fewer photons
- Dong-Hyun Kim
- Seongjin Hong
- Hyang-Tag Lim
Nature Communications (2024)
Calibration-independent bound on the unitarity of a quantum channel with application to a frequency converter
- Matthias Bock
- Pavel Sekatski
- Jürgen Eschner
npj Quantum Information (2024)
Quantum Fisher information matrix of quantum metrology in a Heisenberg XXZ model
- Rachid Ben hammou
- Abdelfattah El Achab
- Nabil Habiballah
Quantum Studies: Mathematics and Foundations (2024)
End-to-end entanglement establishment with lower latency in quantum networks
- Na Chen
- Qi Zhao
- Jianjun Tang
Quantum Information Processing (2024)


