Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Immunology
  • News & Views
  • Published:

Twenty-first century Foxp3

Nature Immunologyvolume 4pages304–306 (2003)Cite this article

The transcription factor(s) controlling TReg cell development are not definitely known. The finding that these cells specifically express Foxp3 provides a better understanding of their development and function at the molecular level.

This is a preview of subscription content,access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equilibrium in the control of effector T cells.

K.R.

References

  1. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.Nat. Immunol.4, 330–336 (2003).

    Article CAS  Google Scholar 

  2. Khattri, R., Cox, T., Yasayko, S.-A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells.Nat. Immunol.4, 337–342 (2003).

    Article CAS  Google Scholar 

  3. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance.Immunol. Rev.182, 18–32 (2001).

    Article CAS  Google Scholar 

  4. Shevach, E.M. CD4+CD25+ suppressor T cells: more questions than answers.Nat. Rev. Immunol.2, 389–400 (2002).

    Article CAS  Google Scholar 

  5. Maloy, K.J. & Powrie, F. Regulatory T cells in the control of immune pathology.Nat. Immunol.2, 816–822 (2001).

    Article CAS  Google Scholar 

  6. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen.Nat. Immunol.3, 756–763 (2002).

    Article CAS  Google Scholar 

  7. Furtado, G.C. et al. Regulatory T cells in spontaneous autoimmune encephalomyelitis.Immunol. Rev.182, 122–134 (2001).

    Article CAS  Google Scholar 

  8. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells controlLeishmania major persistence and immunity.Nature420, 502–507 (2002).

    Article CAS  Google Scholar 

  9. Annacker, O., Pimenta-Araujo, R., Burlen-Defranoux, O. & Bandeira, A. On the ontogeny and physiology of regulatory T cells.Immunol. Rev.182, 5–17 (2001).

    Article CAS  Google Scholar 

  10. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor FoxP3.Science299, 1057–1061 (2003).

    Article CAS  Google Scholar 

  11. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse.Nat. Genet.27, 68–73 (2001).

    Article CAS  Google Scholar 

  12. Chatila, T.A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome.J. Clin. Invest.106, R75–R81 (2000).

    Article CAS  Google Scholar 

  13. Schubert, L.A., Jeffery, E., Zhang, Y., Ramsdell, F. & Ziegler, S.F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation.J. Biol. Chem.276, 37672–37679 (2001).

    Article CAS  Google Scholar 

  14. Barthlott, T., Kassiotis, G. & Stockinger, B. T cell regulation as a side effect of homeostasis and competition.J. Exp. Med.197, 451–460 (2003).

    Article CAS  Google Scholar 

  15. Maloy, K.J. et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms.J. Exp. Med.197, 111–119 (2003).

    Article CAS  Google Scholar 

  16. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell–mediated suppression by dendritic cells.Science299, 1033–1036 (2003).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Stockinger, R. Marques, P.L. Vieira, D. Robinson, J.P. Pereira and A. Bandeira for helpful comments.

Author information

Authors and Affiliations

  1. Division of Immunoregulation, The National Institute for Medical Research (NIMR), London, NW7 1AA, United Kingdom

    Anne O'Garra

  2. Unité du Développement des Lymphocytes (CNRS URA 1961), Institut Pasteur, 25 Rue du Docteur Roux, Paris, 757015, France

    Paulo Vieira

Authors
  1. Anne O'Garra

    You can also search for this author inPubMed Google Scholar

  2. Paulo Vieira

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAnne O'Garra.

Rights and permissions

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Foxp3 programs the development and function of CD4+CD25+ regulatory T cells

  • Jason D. Fontenot
  • Marc A. Gavin
  • Alexander Y. Rudensky
Nature ImmunologyArticle

An essential role for Scurfin in CD4+CD25+ T regulatory cells

  • Roli Khattri
  • Tom Cox
  • Fred Ramsdell
Nature ImmunologyArticle

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp