- Article
- Published:
CRISPR RNA maturation bytrans-encoded small RNA and host factor RNase III
- Elitza Deltcheva1,2,
- Krzysztof Chylinski1,2 na1,
- Cynthia M. Sharma3 na1,
- Karine Gonzales2,
- Yanjie Chao3,4,
- Zaid A. Pirzada2,
- Maria R. Eckert2,
- Jörg Vogel3,4 &
- …
- Emmanuelle Charpentier1,2
Naturevolume 471, pages602–607 (2011)Cite this article
75kAccesses
1786Citations
324Altmetric
Abstract
CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogenStreptococcus pyogenes uncovered tracrRNA, atrans-encoded small RNA with 24-nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protectS. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Aliyari, R. & Ding, S. W. RNA-based viral immunity initiated by the Dicer family of host immune receptors.Immunol. Rev.227, 176–188 (2009)
Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs.Cell136, 642–655 (2009)
Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?Nature Rev. Genet.9, 102–114 (2008)
Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular machinery of RNA interference.Nature457, 405–412 (2009)
Malone, C. D. & Hannon, G. J. Small RNAs as guardians of the genome.Cell136, 656–668 (2009)
Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA.Nature431, 343–349 (2004)
Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities.Science320, 1047–1050 (2008)
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes.Science315, 1709–1712 (2007)
Deveau, H., Garneau, J. E. & Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions.Annu. Rev. Microbiol.64, 475–493 (2010)
Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea.Science327, 167–170 (2010)
Koonin, E. V. & Makarova, K. S. CRISPR-Cas: an adaptive immunity system in prokaryotes.F1000 Biol. Rep.1, 95 (2009)
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea.Nature Rev. Genet.11, 181–190 (2010)
Sorek, R., Kunin, V. & Hugenholtz, P. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea.Nature Rev. Microbiol.6, 181–186 (2008)
van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. CRISPR-based adaptive and heritable immunity in prokaryotes.Trends Biochem. Sci.34, 401–407 (2009)
Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.J. Mol. Evol.60, 174–182 (2005)
Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.Microbiology151, 2551–2561 (2005)
Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements inYersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies.Microbiology151, 653–663 (2005)
van der Oost, J. & Brouns, S. J. RNAi: prokaryotes get in on the act.Cell139, 863–865 (2009)
Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes.Mol. Microbiol.43, 1565–1575 (2002)
Mojica, F. J., Ferrer, C., Juez, G. & Rodriguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the ArchaeaHaloferax mediterranei andHaloferax volcanii and could be involved in replicon partitioning.Mol. Microbiol.17, 85–93 (1995)
Nakata, A., Amemura, M. & Makino, K. Unusual nucleotide arrangement with repeated sequences in theEscherichia coli K-12 chromosome.J. Bacteriol.171, 3553–3556 (1989)
Waters, L. S. & Storz, G. Regulatory RNAs in bacteria.Cell136, 615–628 (2009)
Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A. DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis.Nucleic Acids Res.30, 482–496 (2002)
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.Nature468, 67–71 (2010)
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.Science322, 1843–1845 (2008)
Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.Cell139, 945–956 (2009)
Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity.Nature463, 568–571 (2010)
Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes.Genes Dev.22, 3489–3496 (2008)
Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes.Science321, 960–964 (2008)
Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease.Science329, 1355–1358 (2010)
Carte, J., Pfister, N. T., Compton, M. M., Terns, R. M. & Terns, M. P. Binding and cleavage of CRISPR RNA by Cas6.RNA16, 2181–2188 (2010)
Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.PLOS Comput. Biol.1, e60 (2005)
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action.Biol. Direct1, 7 (2006)
Vojtek, I. et al. Lysogenic transfer of group AStreptococcus superantigen gene among streptococci.J. Infect. Dis.197, 225–234 (2008)
Fischetti, V. A.In vivo acquisition of prophage inStreptococcus pyogenes.Trends Microbiol.15, 297–300 (2007)
Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion.Microbiol. Mol. Biol. Rev.68, 560–602 (2004)
Banks, D. J., Beres, S. B. & Musser, J. M. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence.Trends Microbiol.10, 515–521 (2002)
Aziz, R. K. et al. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone ofStreptococcus pyogenes.J. Bacteriol.187, 3311–3318 (2005)
Sharma, C. M. et al. The primary transcriptome of the major human pathogenHelicobacter pylori.Nature464, 250–255 (2010)
Drider, D. & Condon, C. The continuing story of endoribonuclease III.J. Mol. Microbiol. Biotechnol.8, 195–200 (2004)
Huntzinger, E. et al.Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulatespa gene expression.EMBO J.24, 824–835 (2005)
Nicholson, A. W. Function, mechanism and regulation of bacterial ribonucleases.FEMS Microbiol. Rev.23, 371–390 (1999)
Vogel, J., Argaman, L., Wagner, E. G. & Altuvia, S. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide.Curr. Biol.14, 2271–2276 (2004)
Opdyke, J. A., Fozo, E. M., Hemm, M. R. & Storz, G. RNase III participates in GadY-dependent cleavage of thegadX-gadW mRNA.J. Mol. Biol.406, 29–43 (2010)
Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing.Nature Struct. Mol. Biol.11, 214–218 (2004)
Condon, C. Maturation and degradation of RNA in bacteria.Curr. Opin. Microbiol.10, 271–278 (2007)
Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats.Genome Biol.8, R61 (2007)
Mangold, M. et al. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule.Mol. Microbiol.53, 1515–1527 (2004)
Deveau, H. et al. Phage response to CRISPR-encoded resistance inStreptococcus thermophilus.J. Bacteriol.190, 1390–1400 (2008)
Sambrook, J., Fritsch, E. F. & Maniatis, T.Molecular Cloning: a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1989)
Caparon, M. G. & Scott, J. R. Genetic manipulation of pathogenic streptococci.Methods Enzymol.204, 556–586 (1991)
Charpentier, E. et al. Novel cassette-based shuttle vector system for gram-positive bacteria.Appl. Environ. Microbiol.70, 6076–6085 (2004)
Arnaud, M., Chastanet, A. & Debarbouille, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria.Appl. Environ. Microbiol.70, 6887–6891 (2004)
Siller, M. et al. Functional analysis of the group A streptococcalluxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells.BMC Microbiol.8, 188 (2008)
Urban, J. H. & Vogel, J. Translational control and target recognition byEscherichia coli small RNAsin vivo.Nucleic Acids Res.35, 1018–1037 (2007)
Sittka, A. et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq.PLoS Genet.4, e1000163 (2008)
Herbert, S., Barry, P. & Novick, R. P. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes inStaphylococcus aureus.Infect. Immun.69, 2996–3003 (2001)
Pall, G. S. & Hamilton, A. J. Improved northern blot method for enhanced detection of small RNA.Nature Protocols3, 1077–1084 (2008)
Roberts, C. et al. Characterizing the effect of theStaphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives.J. Bacteriol.188, 2593–2603 (2006)
Britton, R. A. et al. Maturation of the 5′ end ofBacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1.Mol. Microbiol.63, 127–138 (2007)
Sittka, A., Pfeiffer, V., Tedin, K. & Vogel, J. The RNA chaperone Hfq is essential for the virulence ofSalmonella typhimurium.Mol. Microbiol.63, 193–217 (2007)
Papenfort, K. et al. SigmaE-dependent small RNAs ofSalmonella respond to membrane stress by accelerating globalomp mRNA decay.Mol. Microbiol.62, 1674–1688 (2006)
Kingsford, C. L., Ayanbule, K. & Salzberg, S. L. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake.Genome Biol.8, R22 (2007)
Denman, R. B. Using RNAFOLD to predict the activity of small catalytic RNAs.Biotechniques15, 1090–1095 (1993)
Hofacker, I. L. & Stadler, P. F. Memory efficient folding algorithms for circular RNA secondary structures.Bioinformatics22, 1172–1176 (2006)
Darty, K., Denise, A. & Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure.Bioinformatics25, 1974–1975 (2009)
Acknowledgements
We thank D. Veit for technical help. This work was funded by the European Community (FP6, BACRNAs-018618; E.C.), the Austrian Science Fund (FWF, P17238-B09 (E.C.) and W1207-B09 (E.C., K.C.)), the Austrian Agency for Research Promotion (FFG, 812138-SCK/KUG; E.C.), the Theodor Körner Fonds (E.C.), Umeå University (E.C.), the Swedish Research Council (E.C.), IMPRS-IDI (Y.C.), the German Research Council (DFG Priority Program “Sensory and Regulatory RNAs in Prokaryotes” SPP1258, Vo875/4; J.V.), and the German Ministry of Education and Research (BMBF, 01GS0806/JV-BMBF-01 and 0315836; J.V.).
Author information
Krzysztof Chylinski and Cynthia M. Sharma: These authors contributed equally to this work.
Authors and Affiliations
Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, S-90187 Umeå, Sweden,
Elitza Deltcheva, Krzysztof Chylinski & Emmanuelle Charpentier
Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria,
Elitza Deltcheva, Krzysztof Chylinski, Karine Gonzales, Zaid A. Pirzada, Maria R. Eckert & Emmanuelle Charpentier
ZINF Research Center for Infectious Diseases, University of Würzburg, D-97080 Würzburg, Germany,
Cynthia M. Sharma, Yanjie Chao & Jörg Vogel
RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany,
Yanjie Chao & Jörg Vogel
- Elitza Deltcheva
You can also search for this author inPubMed Google Scholar
- Krzysztof Chylinski
You can also search for this author inPubMed Google Scholar
- Cynthia M. Sharma
You can also search for this author inPubMed Google Scholar
- Karine Gonzales
You can also search for this author inPubMed Google Scholar
- Yanjie Chao
You can also search for this author inPubMed Google Scholar
- Zaid A. Pirzada
You can also search for this author inPubMed Google Scholar
- Maria R. Eckert
You can also search for this author inPubMed Google Scholar
- Jörg Vogel
You can also search for this author inPubMed Google Scholar
- Emmanuelle Charpentier
You can also search for this author inPubMed Google Scholar
Contributions
E.D., K.C., C.M.S., K.G., J.V. and E.C. designed the research; E.D., K.C., C.M.S., K.G., Z.A.P., Y.C. and M.R.E. conducted the experiments; E.D., K.C., C.M.S., K.G., J.V. and E.C. analysed and interpreted the data; E.C. wrote the paper which E.D., K.C., C.M.S. and J.V. commented on, and supervised the project. Author information and raw data are available from E.D., K.C., C.M.S., J.V. and E.C.
Corresponding author
Correspondence toEmmanuelle Charpentier.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Figures
This file contains Supplementary Figures 1-17 with legends and additional references. (PDF 3511 kb)
Supplementary Tables
This file contains Supplementary Tables 1-10 and additional references. (PDF 811 kb)
Rights and permissions
About this article
Cite this article
Deltcheva, E., Chylinski, K., Sharma, C.et al. CRISPR RNA maturation bytrans-encoded small RNA and host factor RNase III.Nature471, 602–607 (2011). https://doi.org/10.1038/nature09886
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative