Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

The timing of Pleistocene glaciations from a simple multiple-state climate model

Naturevolume 391pages378–381 (1998)Cite this article

Abstract

The Earth's climate over the past million years has been characterized by a succession of cold and warm periods, known as glacial–interglacial cycles, with periodicities corresponding to those of the Earth's main orbital parameters; precession (23 kyr), obliquity (41 kyr) and eccentricity (100 kyr). The astronomical theory of climate, in which the orbital variations are taken to drive the climate changes, has been very successful in explaining many features of the palaeoclimate records1. Nevertheless, the timing of the main glacial and interglacial periods remains puzzling in many respects2,3,4,5. In particular, the main glacial–interglacial switches occur approximately every 100 kyr, but the changes in insolation forcing are very small in this frequency band. Similarly, an especially warm interglacial episode, about 400,000 years ago7, occurred at a time when insolation variations were minimal. Here I propose that multiple equilibria in the climate system can provide a resolution of these problems within the framework of astronomical theory. I present two simple models that successfully simulate each glacial–interglacial cycle over the late Pleistocene epoch at the correct time and with approximately the correct amplitude. Moreover, in a simulation over the past 2 million years, the onset of the observed prominent100-kyr cycles around 0.8 to 1 million years ago is correctly reproduced.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structure of the multiple-state system used.
Figure 2: Results from the first idealized model (middle curve).
Figure 3: Results from the second model (thick middle curve).
Figure 4: Same asFig. 3 but with a time-varying thresholdvmax.

Similar content being viewed by others

References

  1. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the earth's orbit: Pacemakers of the ice ages.Science194, 1121–1132 (1976).

    ADS CAS  Google Scholar 

  2. Imbrie, J.et al. On the structure and origin of major glaciation cycles: 1. Linear responses to Milankovitch Forcing.Paleoceanography7, 701–738 (1992).

    Article ADS  Google Scholar 

  3. Muller, R. A. & MacDonald, G. J. Glacial cycles and orbital inclination.Nature377, 107–108 (1995).

    Article ADS CAS  Google Scholar 

  4. Imbrie, J. & Imbrie, J. Z. Modelling the climatic response to orbital variations.Science207, 943–953 (1980).

    Article ADS CAS  Google Scholar 

  5. Ghil, M. & Le Treut, H. Aclimate model with cryodynamics and geodynamics.J. Geophys. Res.86, 5262–5270 (1981).

    Article ADS  Google Scholar 

  6. Saltzman, B., Hansen, A. R. & Maasch, K. A. The late Quaternary glaciations as the response of a three-component feedback system to Earth-orbital forcing.J. Atmos. Sci.41, 3380–3389 (1984).

    Article ADS  Google Scholar 

  7. Howard, W. R. Awarm future in the past.Nature388, 418–419 (1997).

    Article ADS CAS  Google Scholar 

  8. Imbrie, J.et al. On the structure and origin of major glaciation cycles: 2. The 100,000-year cycle.Paleoceanography8, 699–735 (1993).

    Article ADS  Google Scholar 

  9. Paillard, D. Modèles simplifiés pour l'étude de la variabilité de la circulation thermohaline au cours des cycles glaciaire-interglaciaire.Thesis, Univ. Paris-Sud (1995).

  10. Berger, A. Long-term variations of daily insolation and Quaternary climatic change.J. Atmos. Sci.35, 2362–2367 (1978).

    Article ADS  Google Scholar 

  11. Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: northern hemisphere ice sheets and north atlantic ocean.Paleoceanography4, 353–412 (1989).

    Article ADS  Google Scholar 

  12. Stommel, H. M. Thermohaline convection with two stable regimes of flow.Tellus13, 224–230 (1961).

    Article ADS  Google Scholar 

  13. Bryan, F. High-latitude salinity effects and interhemispheric thermohaline circulations.Nature323, 301–304 (1986).

    Article ADS CAS  Google Scholar 

  14. Manabe, S. & Stouffer, R. J. Two stable equilibria of a coupled ocean-atmosphere model.J. Clim.1, 841–866 (1988).

    Article ADS  Google Scholar 

  15. Rooth, C. Hydrology and ocean circulation.Prog. Oceanogr.11, 131–149 (1982).

    Article ADS  Google Scholar 

  16. Thual, O. & McWilliams, J. C. The catastrophic structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box model.Geophys. Astrophys. Fluid Dyn.64, 67–95 (1992).

    Article ADS  Google Scholar 

  17. Jouzel, J.et al. Climatic interpretation of the recently extended Vostok ice records.Clim. Dyn.12, 513–521 (1996).

    Article  Google Scholar 

  18. Laskar, J. The chaotic motion of the solar system: A numerical estimate of the chaotic zones.Icarus88, 266–291 (1990).

    Article ADS  Google Scholar 

  19. Raymo, M. The timing of major climate terminations.Paleoceanography12, 577–585 (1997).

    Article ADS  Google Scholar 

  20. Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle.Nature378, 145–149 (1995).

    Article ADS CAS  Google Scholar 

  21. Manabe, S. & Stouffer, R. J. Century-scale effects of increased atmospheric CO2on the ocean-atmosphere system.Nature364, 215–218 (1993).

    Article ADS CAS  Google Scholar 

  22. Cortijo, E.et al. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth.Nature372, 446–449 (1994).

    Article ADS CAS  Google Scholar 

  23. Dansgaard, W.et al. The abrupt termination ofthe Younger Dryas climate event.Nature339, 532–534 (1989).

    Article ADS  Google Scholar 

  24. Bassinot, F. C.et al. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal.Earth Planet. Sci. Lett.126, 91–108 (1994).

    Article ADS  Google Scholar 

  25. Tiedemann, R.et al. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program site 659.Paleoceanography9, 619–638 (1994).

    Article ADS  Google Scholar 

  26. Adkins, J. F.et al. Variability of the North Atlantic thermohaline circulation during the last interglacial period.Nature390, 154–156 (1997).

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Clemens and to M. Raymo for encouragement and comments on this Letter.

Author information

Authors and Affiliations

  1. Laboratoire de Modélisation du Climat et de l'Environnement, CEA/DSM, Centre d'Etudes de Saclay, 91191, Gif-sur-Yvette, France

    Didier Paillard

Authors
  1. Didier Paillard

Corresponding author

Correspondence toDidier Paillard.

Rights and permissions

About this article

Cite this article

Paillard, D. The timing of Pleistocene glaciations from a simple multiple-state climate model.Nature391, 378–381 (1998). https://doi.org/10.1038/34891

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp