Movatterモバイル変換


[0]ホーム

URL:


Log InRegister
AboutSupport UsPhotosDiscussionsSearchLearnMore
Quick Links :The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral QuizTime Machine
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Vaterite

A valid IMA mineral species - grandfathered
This page is currently not sponsored.Click here to sponsor this page.
Photos of Vaterite (13)Discuss Vaterite
Vaterite GallerySearch Photos of Vaterite
EditAdd SynonymEdit CIF structuresClear Cache
CaCO3
Colour:
Colorless
Lustre:
Sub-Vitreous, Waxy
Hardness:
3
Specific Gravity:
2.645
Crystal System:
Hexagonal
Name:
Named in honor of Heinrich August Vater [September 5, 1859 Bremen, Germany - February 10, 1930 Dresden, Germany], Professor of Mineralogy and Chemistry, Tharandt, Saxony (Germany). He was a pioneer in the areas of forest soil science, land evaluation, and forest fertilization.
Polymorph of:
A rare CaCO3 modification that is metastable below approx. 400°C. May be stabilised by sulphate (Fernández-Díaz et al., 2010).

Vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo–single crystal. The major structure (actually substructure) exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown (Kabalah-Amitai et al., 2013). However, as suggested by Christy (2017) in his review, the most plausible polytypes to describe the structure, namely the 2M and 6H ones, actually "do not occur in their highest-symmetry forms", but are described by the space groupsC121 andP3221, respectively.

The structure is disordered in terms of (1) different orientations of the carbonate groups, (2) different stacking sequences of the carbonate-comprising layers, and (3) possible chiral forms (Demichelis et al., 2013). The OD character leads to polytypism; the OD layer comprises Ca coordination polyhedra and halves of the carbonate groups, and the group symmetry of the layer isC2/m; the known stacking sequences include:P6122,P6522,C2/c,C2/c2/m21/m, andP312 orP322. The type of the OD layering is similar to those observed inbastnäsite-synchysite polysomatic series (Makovicky, 2016).

In 2019, Steciuk et al. identified the modulation and polycrystalline properties of vaterite for the first time using electron diffraction experiments. Based on Steciuk’s ideas, San et al. proposed a “polymorph coexistence” model through molecular dynamics simulations driven by a deep neural network potential function (DNN), achieving an error of only 0.3% compared to experiments and successfully explaining the phase transition behavior of vaterite. It is proposed that the pseudohexagonal symmetry of vaterite is actually caused by the slip stackings with different periodicities along a specific direction, and the slight difference in the orientation of carbonate groups leads to the phenomenon of polymorphism. This result was directly observed by Okumura’s team using scanning transmission electron microscopy (STEM) combined with annular dark-field imaging (ADF), which verifies the accuracy of the San model and may mark the end of the phase of controversy regarding the vaterite structure.

Not uncommon as a biomineral (other sources: rarely used in hard tissue). Exists in fish otoliths. As such, it is formed from the precursor -Unnamed (Amorphous Calcium Carbonate) - via dehydration (Bots et al., 2012), the transformation process being inhibited in the presence of PO43- ions (Sugiura et al., 2016). Further dissolution-reprecipitation turns vaterite into calcite. Vaterite/calcite precipitates are known in theCladosporium fungus, too (Ye et al., 2023).

May comprise a series withbästnasite group, known asbästnasite-vaterite homologous series.


Unique Identifiers
IMA Formula:
Ca(CO3)

Classification of Vaterite

5 : CARBONATES (NITRATES)
A : Carbonates without additional anions, without H2O
B : Alkali-earth (and other M2+) carbonates
14.1.2.1

14 : ANHYDROUS NORMAL CARBONATES
1 : A(XO3)
11.4.3

11 : Carbonates
4 : Carbonates of Ca

Mineral Symbols
Transparency:
Transparent
Colour:
Colorless
Streak:
White
Tenacity:
Brittle
Fracture:
Irregular/Uneven, Splintery
Density:
2.645 g/cm3 (Measured)    2.645 g/cm3 (Calculated)

Optical Data of Vaterite
Surface Relief:
Moderate
Optical Extinction:
Parallel

Chemistry of Vaterite
CAS Registry number:
471-34-1

CAS Registry numbers are published by the
American Chemical Society

Crystallography of Vaterite

Other Language Names for Vaterite

Relationship of Vaterite to other Species

Common AssociatesTrig.3m(32/m) :R3c5.AB.05RhodochrositeMnCO3Trig.3m(32/m) :R3c5.AB.05CalciteCaCO3Trig.3m(32/m) :R3c5.AB.05SmithsoniteZnCO3Trig.3m(32/m) :R3c5.AB.05GaspéiteNiCO3Trig.3m(32/m) :R3c5.AB.05SpherocobaltiteCoCO3Trig.3m(32/m) :R3c5.AB.05MagnesiteMgCO3Trig.3m(32/m) :R3c5.AB.05OtaviteCdCO3Trig.3m(32/m) :R3c5.AB.05 vaParakutnohorite5.AB.10DolomiteCaMg(CO3)2Trig.3 :R35.AB.10MinrecorditeCaZn(CO3)2Trig.3 :R35.AB.10ŠkáchaiteCaCo(CO3)2Trig.3 :R35.AB.10AnkeriteCa(Fe2+,Mg)(CO3)2Trig.3 :R35.AB.10KutnohoriteCaMn2+(CO3)2Trig.3 :R35.AB.15AragoniteCaCO3Orth.mmm(2/m2/m2/m)5.AB.15CerussitePbCO3Orth.mmm(2/m2/m2/m)5.AB.15WitheriteBaCO3Orth.mmm(2/m2/m2/m)5.AB.15StrontianiteSrCO3Orth.mmm(2/m2/m2/m)5.AB.25HuntiteCaMg3(CO3)4Trig. 32 :R325.AB.30NorsethiteBaMg(CO3)2Trig. 32 :R325.AB.35AlstoniteBaCa(CO3)2Tric.5.AB.40ParalstoniteBaCa(CO3)2Trig. 32 :P3215.AB.40OlekminskiteSr(Sr,Ca,Ba)(CO3)2Trig. 32 :P3215.AB.45BarytocalciteBaCa(CO3)2Mon. 2/m :P21/m5.AB.50Carbocernaite(Ca,Na)(Sr,Ce,Ba)(CO3)2Orth.mm25.AB.55BenstoniteBa6Ca6Mg(CO3)13Trig.3 :R35.AB.60JuangodoyiteNa2Cu(CO3)2Mon. 2/m :P21/b

Fluorescence of Vaterite

Other Information
Search Engines:
  • Look for Vaterite on Google
  • Look for Vaterite images on Google
  • Look for Vaterite on Bing
  • Look for Vaterite images on Bing
  • Look for Vaterite on DuckDuckGo
  • Look for Vaterite images on DuckDuckGo
  • Look for Vaterite in the Rock H. Currier Digital Library
  • References for VateriteHut Point PeninsulaBrowne
    Australia
     
    Bottrill et al. (2008)
    Austria
     
    42+2 other references
    Canada
     
    Gleeson et al. (2011)HORVÁTH et al. (2000)+1 other referenceFournier (1993)FOURNIER (1993)
    France
     
    publication date: November 2018+1 other referenceVanaecker et al. (2014)
    Germany
     
    Walenta (1995)Schnorrer-Köhler (1991)Hentschel et al. (1983)Hentschel (1983)Hentschel (1978)Schüller et al. (1986)Hentschel (1983)
    Hungary
     
    Szakáll & Gatter: Hun. Min. Spec.
    Italy
     
    Pavel M. Kartashov analytical data
    Japan
     
    Ito et al. (1999)
    Jordan
     
    Pitty et al. (2010)Khoury et al. (1985)
    Kyrgyzstan
     
    Shevkunov et al. (2022)
    Lebanon
     
    Kruszewski (2019)
    Middle East
     
    Gross (1977)
    Namibia
     
    ex J Lamond Micro Collection (ex Rob Sielecki)
    New Zealand
     
    BlackNewman (2015)
    Palestine
     
    Sokol et al. (2011)Gross (1977)
    Poland
     
    Kruszewski (2006)
    Romania
     
    SzakállSzakáll et al. (2010)Dumitras et al. (2000)+1 other reference
    Russia
     
    Cesnokov et al. (1998) ...Belovitskaya et al. (2004)
    Slovakia
     
    Mikuš T. et al. (2017)Mikuš T. et al. (2017)Zajzon N. et al. (2021)
    South Africa
     
    Cairncross et al. (1995)
    UK
     
    Field et al. (2016)+1 other referenceMcConnell (1960)+1 other reference
    USA
     
    Anthony et al. (1995)Excalibur Mineral Company specimenHeinrich et al. (2004)XRD - Laszlo Horvath collectionwww.excaliburmineral.com
     
    and/or 
    Mindat.org is an outreach project of theHudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
    Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 byJolyon Ralph.
    To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844.doi:10.2138/am-2024-9486.
    Privacy Policy -Terms & Conditions -Contact Us / DMCA issues -Report a bug/vulnerabilityCurrent server date and time: November 28, 2025 04:17:10 Page updated: October 11, 2025 00:05:03