Movatterモバイル変換


[0]ホーム

URL:


Log InRegister
AboutSupport UsPhotosDiscussionsSearchLearnMore
Quick Links :The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Rotem slag locality, Rotem, Dilsen-Stokkem, Limburg, Flanders, Belgiumi
Regional Level Types
Rotem slag localitySlag Locality (Reclaimed)
RotemVillage
Dilsen-StokkemMunicipality
LimburgProvince
FlandersRegion
BelgiumCountry

This page is currently not sponsored.Click here to sponsor this page.
PhotosMapsSearch
Standard
All Photos (60)Specimen Photos (46)Locality Photos (14)Photos by ColorGalleryPhoto StatisticsAdd Photo
Map PagesNearest LocalitiesUse Map in Article
Mineral SearchSimilar LocalitiesNearest LocalitiesPredictive MineralogySearch Google
08206580017272059364447.jpg
Rotem ( slag locality ), Dilsen-Stokkem, Limburg Prov. Belgium.

Rotem slag locality, Rotem, Dilsen-Stokkem, Limburg, Flanders, Belgium
07316040017272059372922.jpg
A large piece of slag from a zinc smelter. ( 1990 )

Rotem slag locality, Rotem, Dilsen-Stokkem, Limburg, Flanders, Belgium
08206580017272059364447.jpg
Rotem ( slag locality ), Dilsen-Stokkem, Limburg Prov. Belgium.

Rotem slag locality, Rotem, Dilsen-Stokkem, Limburg, Flanders, Belgium
07316040017272059372922.jpg
A large piece of slag from a zinc smelter. ( 1990 )

Rotem slag locality, Rotem, Dilsen-Stokkem, Limburg, Flanders, Belgium
00277800017272059389262.jpg
Rotem ( slag locality ), Dilsen-Stokkem, Limburg Prov. Belgium.

Rotem slag locality, Rotem, Dilsen-Stokkem, Limburg, Flanders, Belgium
Latitude & Longitude (WGS84):
51° 2' 58'' North , 5° 41' 46'' East
Latitude & Longitude (decimal):
Type:
Slag Locality (Reclaimed) - last checked 2020
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Grevenbicht2,355(2017)5.6km
Papenhoven730(2017)5.6km
Obbicht1,895(2017)6.4km
Nattenhoven155(2017)6.9km
Berg1,985(2017)7.3km
Nearest Clubs:
Local clubs are the best way to get access to collecting localities
ClubLocationDistance
Vieille Montagne HeritageKelmis / La Calamine, Belgium43km
Mindat Locality ID:
29192
Long-form identifier:
mindat:1:2:29192:4
GUID (UUID V4):
2e225610-5df5-481f-9765-dc99027dc69f


Slag dumps of a former zinc smelter that ceased its activities in 1967.The site has been completely recultivated and transformed into an industrial estate.

The Société Anonyme de Rothem was a company that had a zinc plant built in Rotem. The plant was in production from 1913-1966.

As early as 1907, engineer Paul Raoult from Liège submitted a request for the construction of both a zinc plant and a plant for the manufacture of sulphuric acid for roasting the natural sulphuric zinc necessary for the manufacture of zinc there. He obtained authorization, upon which the industrialists Henry Regnier-Oury and Théophile Dumoulin submitted another amended proposal in 1910, followed by another amendment in 1911, increasing the proposed production capacity from 10 to 25 kt/year. Eventually, the Société Anonyme de Rothem was founded. The factory was built on a 130-hectare site.

There were favourable transport possibilities via the Zuid-Willemsvaart canal and the Maaseik-Hasselt railroad line. On the site alone, 9 km of railroad were constructed. Construction began in 1912, and in 1913 another labour strike broke out among the builders. They demanded higher wages. Nevertheless, on November 2, 1913, the factory was ready for production. It employed 300 people in the inaugural year, a number that gradually increased to a maximum of 550 workers, making it the smallest zinc smelter in Belgium.

However, World War I broke out, which led to a lack of raw materials, preventing the plant from producing. It wasn't until 1927 that all eight zinc furnaces were in operation. Moreover, it wasn't until 1937 that a sulphuric acid plant was put into operation and the ores could be roasted on-site. Before that time, this was done in another plant, and the roasted ores were transported from there to Rotem. As in Budel, the sulphuric acid plant was nicknamed "the silent death", but such names as "den acide" and "Abyssinia" were also in vogue.

In 1941 the licence for the plant, which initially had a term of 30 years, was extended for another 30 years.

In September 1944, 27 German soldiers who had been raided by the Belgian Secret Army were imprisoned here for some time.

In 1953, the plant was hit by a very prolonged wage strike. It lasted from June 8 to October 19 of that year. The demands were finally met, and the strike was over. There were 400 people working in the plant at that time.

The factory then prospered again, with a profitable peak year in 1959. After that, profits dropped and losses were incurred as early as 1963. In 1966 work at the plant came to an end. Although job advertisements appeared in the same year, the end came unexpectedly on November 6, 1966. The factory was shut down and the workers were laid off. Only a few could continue to work for another year, but only for the dismantling of the plant.

The site, with its heavily contaminated soil, was remediated starting in 1998, the buildings that still existed were gradually demolished, and new businesses moved in.

A few iconic chimneys remained for many years, until they too were dismantled in 2006. Today, only a small part of the former warehouse still stands. This dilapidated building is still used by a container manufacturing company.

Notes on the mineral list:

Ottenburgs et al. (1998, see link below) claim thatall the species they list in their article were adequately identified by XRD, SEM and/or polarized light microscopy. They also list anunspecified Cu-Zn alloy and state that "this is not exceptional since the treated zinc ores included Cu-sulphides. This Cu-Zn alloy appears as rounded inclusions in a silicate matrix."

On the other hand,many of the minerals listed by Fruytier CANNOT be confirmed yet because they werepublished without proper (XRD/EDS etc.) analyses (Nautilus 2003-03). Please don't change their status to "confirmed" without mentioning the method of analysis and any article(s) used.

Select Mineral List Type

StandardDetailedGalleryStrunzChemical Elements

Detailed Mineral List:

Anglesite
Formula:PbSO4
Aragonite
Formula:CaCO3
Augite
Formula:(CaxMgyFez)(Mgy1Fez1)Si2O6
Description: Ottenburgs et al. (1998): "Pyroxenes, of the augite type, crystallized during the metallurgical treatment; they have a complex composition and include often spinel inclusions."
Azurite ?
Formula:Cu3(CO3)2(OH)2
Beudantite ?
Formula:PbFe3(AsO4)(SO4)(OH)6
Bornite
Formula:Cu5FeS4
Brochantite
Formula:Cu4(SO4)(OH)6
Description: Ottenburgs et al. "Brochantite, Cu4(SO4)(OH)6, also with blue colour, develops monoclinic-prismatic crystals."
Calcite
Formula:CaCO3
Description: Ottenburgs et al. (1998): "Calcite often forms white powdery aggregates."
Caledonite ?
Formula:Pb5Cu2(SO4)3(CO3)(OH)6
Caracolite
Formula:Na3Pb2(SO4)3Cl
Description: Ottenburgs et al. (1998): "Caracolite, Na3Pb2(SO4)Cl, crystallizes as colourless, pseudohexagonal crystals."
Cerussite
Formula:PbCO3
Chalcoalumite
Formula:CuAl4(SO4)(OH)12 · 3H2O
Description: Ottenburgs et al. (1998): "Chalcoalumite, CuAl4(SO4)(OH)12.3H2O, is a blue-white sulphate. It forms tabular or fibrous crystals and is often associated with brochantite."
Chalcophyllite
Formula:Cu18Al2(AsO4)4(SO4)3(OH)24 · 36H2O
Chalcopyrite
Formula:CuFeS2
Chenite ?
Formula:Pb4Cu(SO4)2(OH)6
Connellite
Formula:Cu19(SO4)(OH)32Cl4 · 3H2O
Copper
Formula:Cu
Corundum
Formula:Al2O3
Description: Ottenburgs et al. (1998): "Corundum appears as spots in the silicate matrix. Probably it results from dissolved K-feldspar."
Cuprite
Formula:Cu2O
Cuprite var. Chalcotrichite
Formula:Cu2O
Devilline
Formula:CaCu4(SO4)2(OH)6 · 3H2O
Elyite
Formula:Pb4Cu(SO4)O2(OH)4 · H2O
Ettringite
Formula:Ca6Al2(SO4)3(OH)12 · 26H2O
Goethite
Formula:Fe3+O(OH)
Description: Ottenburgs et al. (1998): "Goethite, α-FeOOH, is a hydration product of Fe3O4; it also may have been part of the zinc ores (primary)."
Graphite
Formula:C
Description: Ottenburgs et al. (1998): "Carbon is found in anthracite fragments and in cokes residues from the roasting of ore."
Gypsum
Formula:CaSO4 · 2H2O
Description: Ottenburgs et al. (1998): "Gypsum, CaSO4.2H2O, is common; it grows mostly as aggregates on slopes of the dumps during evaporation of interstitial water/solutions from the dump material."
Hematite
Formula:Fe2O3
Description: Ottenburgs et al. (1998): "Hematite probably originated from magnetite by oxidation. The hematite coating around magnetite prevented complete oxidation later on."
Hemimorphite
Formula:Zn4Si2O7(OH)2 · H2O
Hercynite
Formula:Fe2+Al2O4
Description: Listed as both "Al-spinel FeAl2O4" and "Fe-spinel Fe(Fe,Al)2O4".Ottenburgs et al. (1998): "Al- and Fe-spinels form rounded inclusions in pyroxenes, or appear as idiomorphic crystals in a Ca-Al-silicate matrix. They represent partial crystallization products of the melt."
Hydrozincite
Formula:Zn5(CO3)2(OH)6
Description: Ottenburgs et al. (1998): "Hydrozincite, Zn5(CO3)2(OH)6, appears as white to yellowish-white crystals with silky lustre, or as earthy aggregates, mainly in oven pipe fragments and condensors."
Iron
Formula:Fe
Description: Ottenburgs et al. (1998): "Metallic iron appears often as spherical inclusions in a Ca-silicate matrix. It is often associated with pyrrhotite or bornite/chalcopyrite, or in contact with magnetite/hematite, sphalerite, zincite or wollastonite."
Jarosite
Formula:KFe3+3(SO4)2(OH)6
Description: Ottenburgs et al. (1998): "Jarosite, KFe3(SO4)2(OH)6, is represented as small, yellow crystals with tabular habitus and glassy lustre, or as aggregates resembling limonite."
'K Feldspar'
Description: Ottenburgs et al. (1998): "Relicts of K-feldspar have been found in this [silicate] matrix."
Ktenasite ?
Formula:ZnCu4(SO4)2(OH)6 · 6H2O
Langite
Formula:Cu4(SO4)(OH)6 · 2H2O
Lead ?
Formula:Pb
Leadhillite
Formula:Pb4(CO3)2(SO4)(OH)2
Lepidocrocite
Formula:Fe3+O(OH)
Description: Ottenburgs et al. (1998): "Lepidocrocite, γ-FeOOH, is the smallest fraction of ochre-yellow-brown aggregates (limonite)."
Linarite
Formula:PbCu(SO4)(OH)2
Description: Ottenburgs et al. (1998): "Linarite, CuPb(SO4)(OH)2, with its sky-blue colour, platy crystals and glassy lustre, is besides caracolite the only Pb-bearing mineral found at Rotem."
Magnetite
Formula:Fe2+Fe3+2O4
Malachite
Formula:Cu2(CO3)(OH)2
'Melilite Group'
Formula:Ca2M(XSiO7)
Description: Ottenburgs et al. (1998): "Melilite, a complex sorosilicate, containing Na, Ca, Mg, Fe, besides Al and Si crystallized from the melt during the roasting stage."
Mullite
Formula:Al4+2xSi2-2xO10-x
Description: Ottenburgs et al. (1998): "Mullite is found as small needle crystals in an Al-silicate matrix of debris of refractory material (pipes, condensors)."
Pyrrhotite
Formula:Fe1-xS
Description: Ottenburgs et al. (1998): "[...] probably formed during roasting of the ore."
Rosasite ?
Formula:(Cu,Zn)2(CO3)(OH)2
Schulenbergite
Formula:(Cu,Zn)7(SO4)2(OH)10 · 3H2O
Serpierite
Formula:Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Description: Ottenburgs et al. (1998): "Serpierite, Ca(Cu,Zn)4(SO4)2(OH)6.3H2O, is observed on stones of a former reduction oven. This blue-green mineral develops prismatic crystals with a glassy lustre."
Silver
Formula:Ag
Simonkolleite ?
Formula:Zn5Cl2(OH)8 · H2O
Smithsonite
Formula:ZnCO3
Sphalerite
Formula:ZnS
Description: Ottenburgs et al. (1998): "Sphalerite (Zn,Fe)S was the most important economic constituent of the treated ores. It is found as inclusions in a Ca-silicate matrix, sometimes with wollastonite and several times accompanied by chalcopyrite and bornite."
Sulphur ?
Formula:S8
Willemite
Formula:Zn2SiO4
Wollastonite
Formula:Ca3(Si3O9)
Description: Ottenburgs et al. (1998): "Wollastonite occurs as needle-shaped crystals in a Ca-silicate matrix, and was once part of the melt."
Zinc
Formula:Zn
Description: The zinc at this locality is not native zinc, but rather a smelter product.
Zincite
Formula:ZnO
Description: Ottenburgs et al. (1998): "Zincite formed by oxidation of metallic zinc is often observed near metallic iron. This proves the easier oxidation of zinc compared with iron. Zincite covering metallic iron globules also prevents or hampers the oxidation of this Fe. Sphalerite relicts are also found near zincite, this being due to an incomplete roasting of the ore."

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Lead ?1.AA.05Pb
Silver1.AA.05Ag
Zinc ?1.AB.05Zn
Iron1.AE.05Fe
Graphite1.CB.05aC
Sulphur ?1.CC.05S8
Group 2 - Sulphides and Sulfosalts
Bornite2.BA.15Cu5FeS4
Sphalerite2.CB.05aZnS
Chalcopyrite2.CB.10aCuFeS2
Pyrrhotite2.CC.10Fe1-xS
Group 3 - Halides
Simonkolleite ?3.DA.20Zn5Cl2(OH)8 · H2O
Connellite3.DA.25Cu19(SO4)(OH)32Cl4 · 3H2O
Group 4 - Oxides and Hydroxides
Goethite4.00.Fe3+O(OH)
Cuprite
var. Chalcotrichite
4.AA.10Cu2O
4.AA.10Cu2O
Zincite4.AB.20ZnO
Hercynite4.BB.05Fe2+Al2O4
Magnetite4.BB.05Fe2+Fe3+2O4
Corundum4.CB.05Al2O3
Hematite4.CB.05Fe2O3
Lepidocrocite4.FE.15Fe3+O(OH)
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Smithsonite5.AB.05ZnCO3
Aragonite5.AB.15CaCO3
Cerussite5.AB.15PbCO3
Azurite ?5.BA.05Cu3(CO3)2(OH)2
Malachite5.BA.10Cu2(CO3)(OH)2
Rosasite ?5.BA.10(Cu,Zn)2(CO3)(OH)2
Hydrozincite5.BA.15Zn5(CO3)2(OH)6
Leadhillite5.BF.40Pb4(CO3)2(SO4)(OH)2
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anglesite7.AD.35PbSO4
Brochantite7.BB.25Cu4(SO4)(OH)6
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Caledonite ?7.BC.50Pb5Cu2(SO4)3(CO3)(OH)6
Linarite7.BC.65PbCu(SO4)(OH)2
Chenite ?7.BC.70Pb4Cu(SO4)2(OH)6
Caracolite7.BD.20Na3Pb2(SO4)3Cl
Gypsum7.CD.40CaSO4 · 2H2O
Langite7.DD.10Cu4(SO4)(OH)6 · 2H2O
Ktenasite ?7.DD.20ZnCu4(SO4)2(OH)6 · 6H2O
Devilline7.DD.30CaCu4(SO4)2(OH)6 · 3H2O
Serpierite7.DD.30Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Chalcoalumite7.DD.75CuAl4(SO4)(OH)12 · 3H2O
Schulenbergite7.DD.80(Cu,Zn)7(SO4)2(OH)10 · 3H2O
Elyite7.DF.65Pb4Cu(SO4)O2(OH)4 · H2O
Ettringite7.DG.15Ca6Al2(SO4)3(OH)12 · 26H2O
Group 8 - Phosphates, Arsenates and Vanadates
Beudantite ?8.BL.05PbFe3(AsO4)(SO4)(OH)6
Chalcophyllite8.DF.30Cu18Al2(AsO4)4(SO4)3(OH)24 · 36H2O
Group 9 - Silicates
Willemite9.AA.05Zn2SiO4
Mullite9.AF.20Al4+2xSi2-2xO10-x
Hemimorphite9.BD.10Zn4Si2O7(OH)2 · H2O
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Wollastonite9.DG.05Ca3(Si3O9)
Unclassified
'K Feldspar'-
'Melilite Group'-Ca2M(XSiO7)

List of minerals for each chemical element

HHydrogen
HAzuriteCu3(CO3)2(OH)2
HBeudantitePbFe3(AsO4)(SO4)(OH)6
HBrochantiteCu4(SO4)(OH)6
HCaledonitePb5Cu2(SO4)3(CO3)(OH)6
HChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
HChalcophylliteCu18Al2(AsO4)4(SO4)3(OH)24 · 36H2O
HChenitePb4Cu(SO4)2(OH)6
HConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
HDevillineCaCu4(SO4)2(OH)6 · 3H2O
HElyitePb4Cu(SO4)O2(OH)4 · H2O
HEttringiteCa6Al2(SO4)3(OH)12 · 26H2O
HGoethiteFe3+O(OH)
HGypsumCaSO4 · 2H2O
HHemimorphiteZn4Si2O7(OH)2 · H2O
HHydrozinciteZn5(CO3)2(OH)6
HJarositeKFe33+(SO4)2(OH)6
HKtenasiteZnCu4(SO4)2(OH)6 · 6H2O
HLangiteCu4(SO4)(OH)6 · 2H2O
HLeadhillitePb4(CO3)2(SO4)(OH)2
HLepidocrociteFe3+O(OH)
HLinaritePbCu(SO4)(OH)2
HMalachiteCu2(CO3)(OH)2
HRosasite(Cu,Zn)2(CO3)(OH)2
HSchulenbergite(Cu,Zn)7(SO4)2(OH)10 · 3H2O
HSerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
HSimonkolleiteZn5Cl2(OH)8 · H2O
CCarbon
CAragoniteCaCO3
CAzuriteCu3(CO3)2(OH)2
CCalciteCaCO3
CCaledonitePb5Cu2(SO4)3(CO3)(OH)6
CCerussitePbCO3
CGraphiteC
CHydrozinciteZn5(CO3)2(OH)6
CLeadhillitePb4(CO3)2(SO4)(OH)2
CMalachiteCu2(CO3)(OH)2
CRosasite(Cu,Zn)2(CO3)(OH)2
CSmithsoniteZnCO3
OOxygen
OAnglesitePbSO4
OAragoniteCaCO3
OAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
OAzuriteCu3(CO3)2(OH)2
OBeudantitePbFe3(AsO4)(SO4)(OH)6
OBrochantiteCu4(SO4)(OH)6
OCalciteCaCO3
OCaledonitePb5Cu2(SO4)3(CO3)(OH)6
OCaracoliteNa3Pb2(SO4)3Cl
OCerussitePbCO3
OChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
OCuprite var.ChalcotrichiteCu2O
OChalcophylliteCu18Al2(AsO4)4(SO4)3(OH)24 · 36H2O
OChenitePb4Cu(SO4)2(OH)6
OConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
OCorundumAl2O3
OCupriteCu2O
ODevillineCaCu4(SO4)2(OH)6 · 3H2O
OElyitePb4Cu(SO4)O2(OH)4 · H2O
OEttringiteCa6Al2(SO4)3(OH)12 · 26H2O
OGoethiteFe3+O(OH)
OGypsumCaSO4 · 2H2O
OHematiteFe2O3
OHemimorphiteZn4Si2O7(OH)2 · H2O
OHercyniteFe2+Al2O4
OHydrozinciteZn5(CO3)2(OH)6
OJarositeKFe33+(SO4)2(OH)6
OKtenasiteZnCu4(SO4)2(OH)6 · 6H2O
OLangiteCu4(SO4)(OH)6 · 2H2O
OLeadhillitePb4(CO3)2(SO4)(OH)2
OLepidocrociteFe3+O(OH)
OLinaritePbCu(SO4)(OH)2
OMagnetiteFe2+Fe23+O4
OMalachiteCu2(CO3)(OH)2
OMulliteAl4+2xSi2-2xO10-x
ORosasite(Cu,Zn)2(CO3)(OH)2
OSchulenbergite(Cu,Zn)7(SO4)2(OH)10 · 3H2O
OSerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
OSimonkolleiteZn5Cl2(OH)8 · H2O
OSmithsoniteZnCO3
OWillemiteZn2SiO4
OWollastoniteCa3(Si3O9)
OZinciteZnO
OMelilite GroupCa2M(XSiO7)
NaSodium
NaCaracoliteNa3Pb2(SO4)3Cl
MgMagnesium
MgAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
AlAluminium
AlChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
AlChalcophylliteCu18Al2(AsO4)4(SO4)3(OH)24 · 36H2O
AlCorundumAl2O3
AlEttringiteCa6Al2(SO4)3(OH)12 · 26H2O
AlHercyniteFe2+Al2O4
AlMulliteAl4+2xSi2-2xO10-x
SiSilicon
SiAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
SiHemimorphiteZn4Si2O7(OH)2 · H2O
SiMulliteAl4+2xSi2-2xO10-x
SiWillemiteZn2SiO4
SiWollastoniteCa3(Si3O9)
SiMelilite GroupCa2M(XSiO7)
SSulfur
SAnglesitePbSO4
SBeudantitePbFe3(AsO4)(SO4)(OH)6
SBorniteCu5FeS4
SBrochantiteCu4(SO4)(OH)6
SCaledonitePb5Cu2(SO4)3(CO3)(OH)6
SCaracoliteNa3Pb2(SO4)3Cl
SChalcopyriteCuFeS2
SChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
SChalcophylliteCu18Al2(AsO4)4(SO4)3(OH)24 · 36H2O
SChenitePb4Cu(SO4)2(OH)6
SConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
SDevillineCaCu4(SO4)2(OH)6 · 3H2O
SElyitePb4Cu(SO4)O2(OH)4 · H2O
SEttringiteCa6Al2(SO4)3(OH)12 · 26H2O
SGypsumCaSO4 · 2H2O
SJarositeKFe33+(SO4)2(OH)6
SKtenasiteZnCu4(SO4)2(OH)6 · 6H2O
SLangiteCu4(SO4)(OH)6 · 2H2O
SLeadhillitePb4(CO3)2(SO4)(OH)2
SLinaritePbCu(SO4)(OH)2
SPyrrhotiteFe1-xS
SSchulenbergite(Cu,Zn)7(SO4)2(OH)10 · 3H2O
SSerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
SSphaleriteZnS
SSulphurS8
ClChlorine
ClCaracoliteNa3Pb2(SO4)3Cl
ClConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
ClSimonkolleiteZn5Cl2(OH)8 · H2O
KPotassium
KJarositeKFe33+(SO4)2(OH)6
CaCalcium
CaAragoniteCaCO3
CaAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
CaCalciteCaCO3
CaDevillineCaCu4(SO4)2(OH)6 · 3H2O
CaEttringiteCa6Al2(SO4)3(OH)12 · 26H2O
CaGypsumCaSO4 · 2H2O
CaSerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
CaWollastoniteCa3(Si3O9)
CaMelilite GroupCa2M(XSiO7)
FeIron
FeAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
FeBeudantitePbFe3(AsO4)(SO4)(OH)6
FeBorniteCu5FeS4
FeChalcopyriteCuFeS2
FeGoethiteFe3+O(OH)
FeHematiteFe2O3
FeHercyniteFe2+Al2O4
FeIronFe
FeJarositeKFe33+(SO4)2(OH)6
FeLepidocrociteFe3+O(OH)
FeMagnetiteFe2+Fe23+O4
FePyrrhotiteFe1-xS
CuCopper
CuAzuriteCu3(CO3)2(OH)2
CuBorniteCu5FeS4
CuBrochantiteCu4(SO4)(OH)6
CuCaledonitePb5Cu2(SO4)3(CO3)(OH)6
CuChalcopyriteCuFeS2
CuChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
CuCuprite var.ChalcotrichiteCu2O
CuChalcophylliteCu18Al2(AsO4)4(SO4)3(OH)24 · 36H2O
CuChenitePb4Cu(SO4)2(OH)6
CuConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
CuCupriteCu2O
CuCopperCu
CuDevillineCaCu4(SO4)2(OH)6 · 3H2O
CuElyitePb4Cu(SO4)O2(OH)4 · H2O
CuKtenasiteZnCu4(SO4)2(OH)6 · 6H2O
CuLangiteCu4(SO4)(OH)6 · 2H2O
CuLinaritePbCu(SO4)(OH)2
CuMalachiteCu2(CO3)(OH)2
CuRosasite(Cu,Zn)2(CO3)(OH)2
CuSchulenbergite(Cu,Zn)7(SO4)2(OH)10 · 3H2O
CuSerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
ZnZinc
ZnHemimorphiteZn4Si2O7(OH)2 · H2O
ZnHydrozinciteZn5(CO3)2(OH)6
ZnKtenasiteZnCu4(SO4)2(OH)6 · 6H2O
ZnRosasite(Cu,Zn)2(CO3)(OH)2
ZnSchulenbergite(Cu,Zn)7(SO4)2(OH)10 · 3H2O
ZnSerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
ZnSimonkolleiteZn5Cl2(OH)8 · H2O
ZnSmithsoniteZnCO3
ZnSphaleriteZnS
ZnWillemiteZn2SiO4
ZnZincZn
ZnZinciteZnO
AsArsenic
AsBeudantitePbFe3(AsO4)(SO4)(OH)6
AsChalcophylliteCu18Al2(AsO4)4(SO4)3(OH)24 · 36H2O
AgSilver
AgSilverAg
PbLead
PbAnglesitePbSO4
PbBeudantitePbFe3(AsO4)(SO4)(OH)6
PbCaledonitePb5Cu2(SO4)3(CO3)(OH)6
PbCaracoliteNa3Pb2(SO4)3Cl
PbCerussitePbCO3
PbChenitePb4Cu(SO4)2(OH)6
PbElyitePb4Cu(SO4)O2(OH)4 · H2O
PbLeadPb
PbLeadhillitePb4(CO3)2(SO4)(OH)2
PbLinaritePbCu(SO4)(OH)2

Other Databases

Wikipedia:https://nl.wikipedia.org/wiki/Zinkfabriek_(Rotem)
Wikidata ID:Q2128143

Other Regions, Features and Areas containing this locality

Eurasian PlateTectonic Plate
EuropeContinent

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, pleaseregister so you can add to our database. This locality information is for reference purposes only. You should never attempt tovisit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holdersfor access and that you are aware of all safety precautions necessary.

References

 
and/or 
Mindat.org is an outreach project of theHudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 byJolyon Ralph.
Privacy Policy -Terms & Conditions -Contact Us / DMCA issues -Report a bug/vulnerabilityCurrent server date and time: March 29, 2025 08:42:01 Page updated: March 7, 2025 13:37:06