Movatterモバイル変換


[0]ホーム

URL:


Log InRegister
AboutSupport UsPhotosDiscussionsSearchLearnMore
Quick Links :The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral QuizTime Machine
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Connecticut, USAi
Regional Level Types
ConnecticutState
USACountry

This page kindly sponsored byHarold Moritz
PhotosMapsSearch
Standard
All Photos (9803)Specimen Photos (8805)Locality Photos (998)Photos by ColorGalleryPhoto StatisticsAdd Photo
Mineral SearchSimilar LocalitiesPredictive MineralogySearch Google
05177790017361088094970.jpg
Microcline variety Amazonite around Quartz Core Zone

Hewitt Gem Quarry, Haddam, Middlesex County, Connecticut, USA
05177790017361088094970.jpg
Microcline variety Amazonite around Quartz Core Zone

Hewitt Gem Quarry, Haddam, Middlesex County, Connecticut, USA
Area:
14,357 km2
Type:
Largest Settlements:
PlacePopulation
Bridgeport147,629(2017)
New Haven130,322(2017)
Stamford128,874(2017)
Hartford124,006(2017)
North Stamford121,230(2017)
Waterbury108,802(2017)
Mindat Locality ID:
15903
Long-form identifier:
mindat:1:2:15903:5
GUID (UUID V4):
0
Other Languages:

Although not a pegmatite quarry, the quarry for the reservoir dam at East Morris worked an outlier of the Devonian Nonnewaug granite and intersected numerous, large miarolitic cavities in pegmatitic phases of the granite. The cavities produced great smoky quartz and microcline crystals with albite similar in quality and size to those from granite plutons in northern New Hampshire.

Almandine for abrasives was quarried from metamorphic rocks in several places, the most famous was in Roxbury where the host schist is largely altered to crumbly talc facilitating the separation of the dodecahedral porphyroblasts.

Finally, the hydrothermal veins so plentiful from the Triassic-Jurassic rifting of Pangaea were exploited for a variety of minerals, primarily quartz at the giant lode at Lantern Hill and other places. Many smaller faults, particularly those cross-cutting quartzite in the highlands, are brecciated with open spaces lined with fantastic quartz crystals, such as at West Stafford, Haddam, Moosup, and Avon. Amethyst occurs at the Canton Lead Mine in Canton. The hydrothermal veins were also worked mainly for copper and baryte during the 19th century. Baryte was successfully mined in Cheshire and copper mining was moderately successful at the Simsbury Mine (the first chartered copper mine in North America) in what is now East Granby, and at the Bristol Copper Mine, famous for its fantastic chalcocite and bornite crystals. There are many small holes and shafts dug by prospectors in search of silver, lead, copper, cobalt, nickel, and the elusive gold, none of which really panned out but now provide places for mineral collectors to ply their trade.

Coordinates are at the intersection of Interstates 91 and 691, state Routes 15 and 66, and East Main Street in Meriden very near the geographic center of the state.

References covering the state, or significant regions of it, are listed below.

Select Mineral List Type

StandardDetailedGalleryStrunzChemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

370 valid minerals.14(TL) - type locality of valid minerals.1(FRL) - first recorded locality of unapproved mineral/variety/etc.20 erroneous literature entries.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical ListTree Diagram

Detailed Mineral List:

Acanthite
Formula:Ag2S
Description: in "trace amounts" pseudomorphed after argentite
Actinolite
Formula:◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Localities: Reported from at least48 localities in this region.
Habit: elongated prismatic
Colour: olive green
Description: Vein of crystals, originally enclosed in calcite, to about 1 cm, from a localized alteration of host amphibolite.
Aegirine
Formula:NaFe3+Si2O6
Aegirine-augite
Formula:(NaaCabFe2+cMgd)(Fe3+eAlfFe2+gMgh)Si2O6
Habit: anhedral to subhedral elongated prisms
Colour: black to dark green
Description: Reported by Dale and Gregory as aegirine in 1911, the mineral found here has since been redefined as aegirine-augite.
'Aeschynite'
Description: now equivalent to Davidite-(La)
Albite
Formula:Na(AlSi3O8)
Localities: Reported from at least237 localities in this region.
Habit: blocky, equant
Colour: white to pale gray
Fluorescence: lavender, magenta-pink
Description: Besides a major constituent of the pegmatite, crystals in small pockets reach up to about 2 cm, often in dense clusters, also as overgrowth on microcline on cleavelandite and psuedomorphous after muscovite in the wall zone.
Albite var. Andesine
Formula:(Na,Ca)[Al(Si,Al)Si2O8]
Localities: Reported from at least6 localities in this region.
Albite var. Cleavelandite
Formula:Na(AlSi3O8)
Localities: Reported from at least21 localities in this region.
Habit: tabular prisms
Colour: white
Fluorescence: reddish magenta to lavender
Description: As irregular aggregates of small subhedral crystals, often in very aesthetic arrangements, and as veins 1/8 to ¼ inch wide and as much as 6 feet long.
Albite var. Oligoclase
Formula:(Na,Ca)[Al(Si,Al)Si2O8]
Localities: Reported from at least22 localities in this region.
Habit: anhedral but in large cleavable masses
Colour: white to pale green
Description: Gemmy and in large cleavable masses.
Albite var. Peristerite
Formula:Na(AlSi3O8)
'Alkali Feldspar'
Allanite-(Ce)
Formula:(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Localities: Reported from at least6 localities in this region.
Habit: elongated prisms
Colour: black, very dark brown
Description: Very sharp terminated crystals crystals, up to half an inch in diameter and five or six inches in length, accompany pink fluorite. Massive material also occurs, intergrown with quartz, bastnaesite, pyrite, chalcopyrite, and white to greenish plagioclase (commonly stained brown). The allanite is not very radioactive and was identified by an x-ray diffraction test by Mary E. Mrose of the U. S. Geological Survey. She indicated that it gave an exceptionally clear pattern. It was obviously non-metamict, in keeping with its unaltered appearance and virtual lack of radioactivity. Note: Schooner misidentified these as staurolite in Zodac (1940).
'Allanite Group'
Formula:(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
Localities: Reported from at least18 localities in this region.
Alleghanyite
Formula:Mn2+5(SiO4)2(OH)2
Colour: reddish
Description: Found by Dick Schooner. A segregation over a foot in diameter, it consisted mainly of reddish alleghanyite and pinkish kutnohorite, with accessories. Unfortunately, only a few specimens were saved.
Allophane
Formula:(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Alluaudite ?
Formula:(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Habit: pseudomorph after triphylite?
Description: From Januzzi (1994): "Alluaudite, collected and recently identified by the author as occurring at Branchville (confirmation by Kampf, Los Angeles County Museum of Natural History), is evidently a pseudomorph after euhedral crystals of triphylite." Needs confirmation.
Almandine
Formula:Fe2+3Al2(SiO4)3
Localities: Reported from at least134 localities in this region.
Habit: trapezohedral
Colour: red to maroon
Description: Pocket crystals with finely striated faces can reach over 7 cm. Compositionally zoned, with up to about 0.2 mole fraction grossular, 0.15 mole fraction pyrope, and 0.05 mole fraction spessartine - more toward the crystals' cores.
'Almandine-Pyrope Series var. Rhodolite' ?
Formula:Mg3Al2(SiO4)3
Habit: Dodecahedral
Colour: Red, purple
Description: Color is not diagnostic for garnet species. Needs chemical analysis to confirm, pyrope is not confirmed in Connecticut and is unlikely because it is found mostly in Mg-rich deep crustal igneous rocks and as grains rather than crystals. These crystals are probably almandine, which is extremely common in schists, though they may have a significant Mg component. The term "rhodolite" refers originally a rose-red gem variety of pyrope. Current usage has extended the name to any pink garnet in the almandine-pyrope series with most of the occurrences in the almandine compositional field.
'Almandine-Spessartine Series'
Habit: trapezohedral
Colour: dark maroon with black coating
Description: Crystals to 4 inches. Referred to by Schooner as spessartine, but most likely impure almandine based on XRF analyses of many other district pegmatitic garnets.
'Alum Group'
Formula:XAl(SO4)2 · 12H2O
Amblygonite
Formula:LiAl(PO4)F
Description: Re-identified as montebrasite.
'Amphibole Supergroup'
Formula:AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Localities: Reported from at least12 localities in this region.
'Amphibole Supergroup var. Byssolite'
Formula:AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Habit: fibrous
Colour: very pale green
'Amphibole Supergroup var. Uralite' ?
Formula:AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Description: Included in a list of minerals with no details.
Analcime
Formula:Na(AlSi2O6) · H2O
Localities: Reported from at least13 localities in this region.
Habit: trapezohedra
Colour: white
Description: good though generally small (~1 cm or less) crystals associated with prehnite, natrolite, micro heulandite
Anatase
Formula:TiO2
Localities: Reported from at least18 localities in this region.
Habit: tabular
Colour: red, brown, yellow
Description: Clear, sharp micro crystals.
Andalusite
Formula:Al2(SiO4)O
Habit: elongated prismatic
Description: Former crystals to 9 cm pseudomorphed by very fine-grained kyanite and muscovite in quartz matrix. Found in a glacially transported rock near State Routes 8 and 63 (Interchange 26), the in-situ source rock is unknown. These pseudomorphs are rare and unusual, E. S. Dana reported similar pseudomorphs at the kyanite locality in Washington, Connecticut (aka, Judd's Bridge). Unaltered andalusite was historically reported only from Litchfield.
Andradite
Formula:Ca3Fe3+2(SiO4)3
Habit: modified rhombic dodecahedrons
Colour: wine yellow
Description: "The Mill Rock garnets have a wine-yellow color, and a brilliant luster. The material available was much too scanty to admit of any chemical examination, but in view of their similarity of form and color, they may safely be referred to the variety topazolite." (Dana, 1877). They are a couple of mm across or less, associated with quartz.
Andradite var. Melanite
Formula:Ca3Fe3+2(SiO4)3
Habit: rhombic dodecahedral, often in nearly parallel positions in rosettes
Colour: dark-brown to jet-black, occasionally yellowish-brown
Description: Rosettes reach to about 2 cm across.
Andradite var. Topazolite
Formula:Ca3Fe3+2(SiO4)3
Habit: modified rhombic dodecahedrons
Colour: wine yellow
Description: "The Mill Rock garnets have a wine-yellow color, and a brilliant luster. The material available was much too scanty to admit of any chemical examination, but in view of their similarity of form and color, they may safely be referred to the variety topazolite." (Dana, 1877). They are a couple of mm across or less, associated with quartz.
Anglesite
Formula:PbSO4
Localities: Reported from at least10 localities in this region.
Anhydrite
Formula:CaSO4
Localities: Reported from at least27 localities in this region.
Habit: Cleavable masses, molds surrounded by later encrusting minerals
Colour: white to pale blue
Description: Extant crystals very rare in Conn. - nearly all were dissolved away and exist as platy to rectangular prismatic molds, but here there were "large pearly masses showing cleavage surfaces often 10 cm. or more broad. There is abundant evidence that anhydrite has been present in almost universal distribution, but it now remains undissolved only in the centers of the less pervious blocks of rock. Molds of anhydrite crystals varying from stout prisms to exceedingly thin sheets are abundant everywhere." Shannon (1920).
Ankerite
Formula:Ca(Fe2+,Mg)(CO3)2
Habit: rhombohedral
Description: Typical small rhombs<1 cm. Uncertain in the reference if the crystals are true ankerite under the revised definition, or ferroan dolomite, or how to distinguish them from the much more common magnesite.
Annabergite
Formula:Ni3(AsO4)2 · 8H2O
Habit: coatings
Colour: bright to pale green
Description: waxy, pale to bright green coatings on ore-bearing host rocks, particularly around bronze nickeline grains.
Annite
Formula:KFe2+3(AlSi3O10)(OH)2
Localities: Reported from at least73 localities in this region.
Description: fka: biotite
Anorthite
Formula:Ca(Al2Si2O8)
Localities: Reported from at least6 localities in this region.
Anorthite var. Bytownite
Formula:(Ca,Na)[Al(Al,Si)Si2O8]
Anorthite var. Labradorite
Formula:(Ca,Na)[Al(Al,Si)Si2O8]
Description: The references provide no details, but anorthite is a component of the diabase dike exposed in the cut.
Anthophyllite
Formula:◻{Mg2}{Mg5}(Si8O22)(OH)2
Localities: Reported from at least10 localities in this region.
Habit: prismatic
Colour: dark green
Description: As pure layers cm thick and as isolated to radial sprays of crystals to several cm long in a granular quartz-albite matrix.
Antigorite
Formula:Mg3(Si2O5)(OH)4
'Apatite'
Formula:Ca5(PO4)3(Cl/F/OH)
Localities: Reported from at least22 localities in this region.
'Apophyllite Group'
Formula:AB4[Si8O22]X · 8H2O
Localities: Reported from at least17 localities in this region.
Habit: tabular, in spherical aggregates
Colour: white to creamy
Description: Aggregates of tabular crystals can reach 3 to 4 cm. This habit is characteristic for this locality, other area trap rock quarries have bipyramidal crystals.
Aragonite
Formula:CaCO3
Localities: Reported from at least35 localities in this region.
Habit: flattened acicular prisms
Colour: colorless to white
Fluorescence: pale yellow-white under LW/MW/SW
Description: Excellent acicular sprays of clear crystals in small cavities on very rusty/earthy goethite in the cores of fault veins, crystals usually micro to 1.5 cm or so.
Arrojadite-(KFe) ?
Formula:(KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2
Description: reported by Dick Schooner, no details in the reference.
Arsenolite ?
Formula:As2O3
Arsenopyrite
Formula:FeAsS
Localities: Reported from at least26 localities in this region.
Arsenopyrite var. Danaite
Formula:(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
Habit: massive, striated aggregates
Description: The arsenopyrite is not the Co-Ni ore, earlier references to and analyses of "danaite" are probably from confusion with the loellingite ore veins.
'Asbestos'
Habit: firbous
Colour: white
Description: Fairly thick, white, matted fibers of amphibole asbestos.
'Asbestos var. Mountain Leather'
Habit: fibrous
Colour: white
Description: Fairly thick, white, matted fibers of amphibole or perhaps sepiolite.
Atacamite
Formula:Cu2(OH)3Cl
Habit: micro radiating clusters, aggregates, druses
Colour: deep green, sky blue
Description: Henderson (1967) reports: deep green crystals of quite variable habit up to 0.5 mm in size. The terminal planes of single crystals were generally bright, while faces in the prism zone were rounded and striated (Fig. 3). It also occurred as radiating groups and in irregular aggregates, sometimes with a single larger crystal perched on top. Druses of atacamite on vesicles were common. It was most frequently found close to or on cuprite, but occasionally appeared to be on malachite.Identification was based on its solubility in dilute hydrochloric and nitric acids, a positive test for halogen, and negative tests for carbonate and sulfate. The atacamite showed parallel extinction and weak birefringence, the two together ruling our malachite, antlerite and brochantite. The mineral was distinguished from paratacamite by its crystal form.On occasion, crystals corresponding to atacamite were found but with a sky blue color. These may well be pseudomorphs of rosasite after atacamite.
Augelite
Formula:Al2(PO4)(OH)3
Colour: gray
Description: Specimens of metasomatically altered natromontebrasite, collected at the Strickland quarry around 1950 by Charles Thomas, consist of gray augelite crystals intergrown with pink brazilianite, pink hydroxylapatite, and yellow lacroixite. Very little such material was preserved, and most of it was consumed in study at the U.S. Geological Survey. Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite.
Augite
Formula:(CaxMgyFez)(Mgy1Fez1)Si2O6
Localities: Reported from at least13 localities in this region.
Description: Included in a list of minerals without details, but plausible for the geology.
Augite var. Fassaite
Formula:(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Augite var. Titanium-bearing Augite
Formula:(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Aurichalcite
Formula:(Zn,Cu)5(CO3)2(OH)6
Localities: Reported from at least6 localities in this region.
Autunite
Formula:Ca(UO2)2(PO4)2 · 10-12H2O
Localities: Reported from at least26 localities in this region.
Axinite-(Fe)
Formula:Ca2Fe2+Al2BSi4O15OH
Habit: tabular, axe-head shaped
Colour: lavender-brown
Description: "Beautiful groups of tabular crystals, up to an inch across, were associated with prehnite and several other minerals in a small cavity in gneiss. The largest group was almost three inches long. Most of the crystals were colored green by inclusions of chlorite, but some were of a typical lavender-brown tint and quite gemmy. Pseudomorphs of chlorite after axinite were fairly abundant. This is the first reported occurrence of axinite in Connecticut." Schooner (1958)"Groups of simple axe-shaped crystals, up to two inches across, were embedded in loose chlorite, with some admixed clay. The crystals were of two types: lavender-brown, glassy, and without inclusions, and greenish, opaque, and thoroughly impregnated with the chlorite. Some of the smaller examples of the latter kind were pseudomorphs of chlorite after axinite. In all cases, there seemed to be two generations of axinite crystals, differing in size but not in habit. One large crystal had a number of smaller ones clustered on its surfaces." Schooner (1961)
'Axinite Group' ?
Description: ??? Must be a mistake in the reference as this mineral is not known from any basalt exposure in the region.
Azurite
Formula:Cu3(CO3)2(OH)2
Localities: Reported from at least16 localities in this region.
Habit: Tabular to tapered groups
Colour: Very dark blue
Description: Mostly massive, found in massive quartz with massive chalcocite, malachite, fluorite.
Babingtonite
Formula:Ca2Fe2+Fe3+Si5O14(OH)
Localities: Reported from at least14 localities in this region.
Habit: blocky to wedge-shaped
Colour: black
Description: Crystals to a little over 1 cm, surfaces are mix of smooth and lustrous to rough textures. Commonly associated with prehnite, calcite and quartz.
Baddeleyite
Formula:ZrO2
Baryte
Formula:BaSO4
Localities: Reported from at least40 localities in this region.
Description: Mostly massive to subhedral material, but good euhedral crystals can reach 1 dm and subparallel clusters can reach a meter. Large crystals tend to have transparent sections, smaller crystals translucent to opaque. Associated with drusy quartz, small isolated botryoidal malachite blebs or acicular sprays, rarer with blebs of copper sulfides, all on pinkish-red arkosic sandstone to conglomerate matrix. A partial, reddish coating may be present on many crystals.
Bastnäsite-(Ce)
Formula:Ce(CO3)F
Habit: thin, irregular plates
Colour: brown, reddish-brown to yellowish-tan
Description: Irregular thin plates, as much as two or three inches across and a half of an inch thick, are intimately associated with massive allanite, white to greenish plagioclase, pink to purple fluorite, chalcopyrite and pyrite. Some may be altered to gray lanthanite?
Bavenite
Formula:Ca4Be2Al2Si9O26(OH)2
Habit: blades, needles, platey, massive, in hemispherical and 2-D radiating aggregates
Colour: white to pale green
Description: probably the best material for the species in Connecticut.
Bazzite
Formula:Be3Sc2(Si6O18)
Becquerelite
Formula:Ca(UO2)6O4(OH)6 · 8H2O
Habit: pseudomorphs after uraninite
Colour: yellow
Description: "A soft yellow pseudomorph after a uraninite crystal was X-rayed, and proved to be becquerelite." Schooner (circa 1980s).
Bementite ?
Formula:Mn7Si6O15(OH)8
Description: Listed as associated with rhabdophane but no site-specific details given.
Beraunite ?
Formula:Fe3+6(PO4)4O(OH)4 · 6H2O
Habit: stains and encrustations
Colour: dark green
Description: Very poorly crystallized in fracture fillings.
Bertrandite
Formula:Be4(Si2O7)(OH)2
Localities: Reported from at least30 localities in this region.
Habit: Hemispherical aggregates and 2-dimensional sprays of radiating, acicular crystals
Colour: white
Beryl
Formula:Be3Al2(Si6O18)
Localities: Reported from at least116 localities in this region.
Habit: elongated hexagonal prisms, terminated with pinacoids and partial pyramids {11bar21}
Colour: yellow, peach, pale green, pink overgrowths on pale green cores, aqua, colorless
Fluorescence: blue-white
Description: Crystals to 2 feet (60 cm) across have been found. Most typical are colorless to pale green or pink overgrowths on pale green cored ("reverse watermelon") crystals, usually less than 15 cm long. Commonly frozen in quartz and associated with fluorapatite, cleavelandite, elbaite. Pocket crystals rare.
Beryl var. Aquamarine
Formula:Be3Al2Si6O18
Localities: Reported from at least19 localities in this region.
Habit: elongated hexagonal prisms with pinacoids
Colour: blue
Description: Typically rough masses or subhedral to euhedral hexagonal crystals in matrix. Gem material was common.
Beryl var. Emerald
Formula:Be3Al2(Si6O18)
Beryl var. Goshenite
Formula:Be3Al2(Si6O18)
Localities: Reported from at least6 localities in this region.
Habit: hexagonal prisms
Colour: colorless
Description: a gem quality flattened crystal 8 cm in diameter retained by Brack family.
Beryl var. Heliodor
Formula:Be3Al2(Si6O18)
Localities: Reported from at least14 localities in this region.
Habit: elongated prisms with partial or complete pyramidal terminations
Colour: yellow
Description: "Beryl occurs in the pegmatite in yellow (“golden”), green, and blue euhedral crystals. In the border zone they range in size from 1/32 to 1/34 inch in diameter and from 1/2 inch to 2 1/2 inches long. Crystals as much as 8 inches in length and 1 inch in diameter occur in the core-margin zone." Cameron et al (1954): USGS Prof Paper 255;"many crystals of golden beryl, sharp in form and of the finest gem quality. Indeed, this is one of the principal heliodor sources in North America. The Little collection, at Harvard University, contains some exceptionally fine clear golden crystals; they were obtained from masses of quartz, many years ago. Similar crystals are in various museums and private collections. Of late, several magnificent specimens of a different type have been recovered. Those are deeply etched, frosty-looking, greenish-golden gem crystals, from cavities along a fault (?) which runs through the lower end of the quarry. The Gallant collection includes a superb crystal, with round¬ed diamond-shaped etch-pits on virtually every surface. It is over two inches long." Schooner (1961).
Beryl var. Morganite
Formula:Be3Al2(Si6O18)
Localities: Reported from at least11 localities in this region.
Habit: elongated hexagonal prisms, terminated with pinacoids and partial pyramids {11bar21}
Colour: pink, commonly with green cores
Description: Beryl crystals to 2 feet (60 cm) across have been found. Crystals usually less than 15 cm long. Color zoning in large crystals typically consists of colorless to rose externally, with pale green cores. Commonly frozen in quartz and associated with fluorapatite, cleavelandite, elbaite. Some pocket gem material.
Beyerite ?
Formula:Ca(BiO)2(CO3)2
Description: Reference includes a list of minerals reportedly found by Dick Schooner in a pegmatite in East Hampton, but with no supporting details.
'Biotite'
Formula:K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Localities: Reported from at least60 localities in this region.
Habit: tabular
Colour: black
Description: Mostly as a component of the host metagabbro, but also as euhedral crystals in the open veins to about 1 cm.
Birnessite
Formula:(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Habit: encrustation
Colour: black
Description: "This is one of the manganese oxides identified as a component of the soft black alteration crusts on tephroite, etc."
Bismite
Formula:Bi2O3
Localities: Reported from at least6 localities in this region.
Habit: encrstation/pseudomorph after bismuthinite
Colour: green
Description: Alteration product associated with a roughly 1 cm crystalline mass of bismuthinite in albite/schorl matrix with associated bismutite (yellow).
Bismuthinite
Formula:Bi2S3
Localities: Reported from at least24 localities in this region.
Habit: prismatic, platy masses
Colour: metallic gray
Description: Huff et al (1996): Bismuthinite “occurs intimately associated with minor pyrite in small veins in the pegmatite and in the quartz vein – thus providing the necessary elements for alteration into bright green bismutoferrite. This is the first confirmation of bismutoferrite in Connecticut.”As platy masses to striated crystals typically with green and yellow secondaries, in rust-stained pegmatite due to oxidation of associated pyrite.
Bismutite
Formula:(BiO)2CO3
Localities: Reported from at least25 localities in this region.
Description: Good quality specimens were reported by Dick Schooner in Betts (1999).
Bismutoferrite
Formula:Fe3+2Bi(SiO4)2(OH)
Habit: coatings
Colour: bright green
Description: Associated with bismuthiniite and pyrite, which weathered to form this mineral and associated rusty stains and goethite in proximal matrix.
Bismutotantalite
Formula:BiTaO4
Habit: anhedral
Colour: gray exterior, brown interior
Description: Very small grains to a couple of mm in matrix of albite, muscovite, quartz, elbaite. Analyzed in 2017 by Peter Cristofono and Tom Mortimer.
Bityite
Formula:CaLiAl2(AlBeSi2O10)(OH)2
Habit: hexagonal
Colour: white
Description: Schooner (circa 1985) says: "When the Strickland quarry was last active, the author found a boulder of cleavelandite with a small vug of aggregated lustrous white hexagonal-looking crystals with calcite and a trace of lepidolite. It was many years before the mineral was recognized as being a mica! Its unusual X-ray pattern aroused some curiosity, and it was forwarded to Pete J. Dunn at the Smithsonian. He identified it as bityite, and made an analysis by electron microprobe."
'Bloodstone'
Formula:SiO2
Colour: shades of red
Description: Found as loose rocks in glacial till.
Bonaccorsiite
Formula:KK2Na3(Al6Si36)O84
Bornite
Formula:Cu5FeS4
Localities: Reported from at least21 localities in this region.
Habit: typically dodecahedral, less commonly in cubes showing slight modifications. Most crystals are slightly to severely rounded.
Colour: dull black, with blue patina
Description: Most bornite from Bristol is massive vein material in layers and stringers throughout the vein system, and as rounded blebs in white calcite or on quartz matrix. Crystals rare and specimens not as prevalent as chalcocite.
Brazilianite
Formula:NaAl3(PO4)2(OH)4
Colour: pink
Description: Schooner (circa 1985) says: "A few masses of Strickland quarry natromontebrasite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose. Ronald E. Januzzi had earlier collected material, on the old dumps, in which the brazilianite occurs as confused white aggregates, with hydroxylapatite and possibly morinite." Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite.
Breithauptite ?
Formula:NiSb
'Brewsterite Subgroup' ?
Description: Included in a list of minerals with no details.
Brochantite
Formula:Cu4(SO4)(OH)6
Brookite
Formula:TiO2
Localities: Reported from at least6 localities in this region.
Description: Occurs in Alpine clefts in the schist with anatase.
Brucite ?
Formula:Mg(OH)2
Colour: whitish green
Description: "Amianthusis sometimes nearly as fine as that of Corsica." (Robinson 1825). Uncertain if he was referring to brucite or byssolite.
Bustamite
Formula:CaMn2+(Si2O6)
Habit: cleavable masses
Colour: light pink
Description: When the author discovered a large lens of spessartine at the Jail Hill quarry, in the 1950s, a few good specimens of pink "rhodonite" were collected. Two different shades were associated differently, one with spessartine and calcite (or dolomite), the other with tephroite and pyrophanite. X-ray and spectrographic tests have shown the lighter pink mineral to be bustamite, and the darker one pyroxmangite. In some cases, bustamite is intimately intergrown with johannsenite (probably an exsolution product).
'Calamine'
'Calciomicrolite'
Habit: octahedron modified by dodecahedron, trapezohedron and hexahedron.
Colour: dark yellow green, brown, black
Description: Typically as micro-crystals but can reach 8mm, most easily found in the aplitic zone, but in the intermediate zone and core margin also. At least 4 crystals (tiny subhedral grains, 2 octahedral microcrystals and a single 21mm fragment) have been analyzed via SEM-EDS and in all cases the best match is calciomicrolite, with very little Na or Nb. Zones within the 21mm fragment were also analyzed and showed a Ca-Ta oxide with minor Nb (and no Na or Ti)...this could also be microlite, or perhaps calciotantite, which can occur as an inclusion in microlite.
Calcite
Formula:CaCO3
Localities: Reported from at least161 localities in this region.
Habit: rhombohedral
Colour: yellow
Description: small, yellow, transparent xls of calcite which were nearly cubic in form (Bartsch, 1940).
Calcite var. Iron-bearing Calcite
Formula:(Ca,Fe)CO3
Habit: Massive
Colour: Brown
Description: Masses in quartz veins.
'Calcium Amphibole Subgroup'
Formula:AnCa2(Z2+5-mZ3+m)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
References:
'Calcium Amphibole Subgroup var. Hornblende'
Formula:AnCa2(Z2+5-mZ3+m)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
Carnotite
Formula:K2(UO2)2(VO4)2 · 3H2O
References:
Caryopilite
Formula:Mn2+3Si2O5(OH)4
Description: This was identified (at the University of Michigan) as a very minor component of "ore" from the manganese pod at the Jail Hill quarry in Haddam.
Cassiterite
Formula:SnO2
Localities: Reported from at least8 localities in this region.
Colour: dark brownish black
Description: good crystals to 1 cm, can be highly modified, lustrous, microcrystals in cleavelandite
Celadonite
Formula:K(MgFe3+◻)(Si4O10)(OH)2
Celestine
Formula:SrSO4
Habit: Prismatic with wedge-shaped terminations
Colour: blue
Description: As thicker, isolated and typically terminated crystals than the similarly colored anhydrite. Can also be differentiated by SG.
Cerite-(CeCa) ?
Formula:(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
Description: Reference includes a list of minerals reportedly found by Dick Schooner in a pegmatite in East Hampton, but with no supporting details.
Cerussite
Formula:PbCO3
Localities: Reported from at least16 localities in this region.
Description: Included in a list of minerals without details, but plausible for the geology.
'Chabazite'
Localities: Reported from at least23 localities in this region.
'Chabazite var. Phacolite'
Chabazite-Ca
Formula:(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Localities: Reported from at least15 localities in this region.
Habit: rhombohedral
Colour: White, yellow to orange
Description: White and yellow crystals associated with pyrite, stilbite-Ca (or potentially stellerite), and calcite in brecciated schist.
Chalcanthite
Formula:CuSO4 · 5H2O
Chalcocite
Formula:Cu2S
Localities: Reported from at least16 localities in this region.
Habit: Orthorhombic crystals, many showing twinning. Some are heavily striated, often show a pseudohexagonal symmetry, and discoidal pseudohexagonal crystals are common. Tabular crystals also occur in abundance. Twinned crystals may be pseudohexagonal, or may b
Colour: metallic bluish-black
Description: Tabular to elongated, usually singly or multiply twinned crystals with a bluish, lustrous metallic luster when fresh, up to 2 or 3 cm long. Usually associated with scalenohedral calcite and/or milky quartz. Crystals gradually gain a black charcoal coating that is easily cleaned by placing them in an agitated alconox solution, which does not harm the crystals or associated minerals.
'Chalcodite'
Formula:K(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
Chalcopyrite
Formula:CuFeS2
Localities: Reported from at least103 localities in this region.
Habit: tetrahedral
Colour: Brassy yellow to rainbow iridescence
Description: Typically massive and iridescent, rarely as crystals up to 2 cm or as "blister" habit.
Chalcopyrite var. Blistered Copper
Formula:CuFeS2
'Chlorite Group'
Localities: Reported from at least73 localities in this region.
Description: Included in a list of minerals without details, but plausible for the geology.
'Chlorophyllite'
Habit: prismatic
Colour: silvery gray-green
Description: Micaceous alteration of cordierite, the latter crystals up to 8 cm across but typically fragmented into sections along a relict basal cleavage. May not be from this town specifically as the geology is not quite right, noted mainly from Haddam or eastern Litchfield - which is close to Thomaston, which was once part of Plymouth.
Chondrodite
Formula:Mg5(SiO4)2F2
Localities: Reported from at least8 localities in this region.
Description: Included in a list of minerals without details, but plausible for the geology.
Chromite
Formula:Fe2+Cr3+2O4
Chrysoberyl
Formula:BeAl2O4
Localities: Reported from at least6 localities in this region.
Habit: Typically flat, striated, cyclic twins, sometimes fully 6-sided.
Colour: yellow-green, pale green
Description: First locality where it was foundin-situ. Intensely studied in the 19th century - crystal drawings are in Dana's System of Mineralogy and Goldschmidt's Atlas der Krystallformen. Shepard (1837) writes: "occurs in large distinct crystals, simple and compound (see fig. 136 of my Mineralogy) as well as massive". Crystals reached up to about 7.5 cm across, typically translucent but not gemmy.
Chrysocolla
Formula:Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x< 1
Localities: Reported from at least19 localities in this region.
Habit: massive and waxy
Colour: blue-green, cyan
Description: Alteration of bornite, chalcopyrite and chalcocite.
'Chrysoprase'
Colour: apple green
Description: Found as loose rocks in glacial till.
Chrysotile
Formula:Mg3(Si2O5)(OH)4
Localities: Reported from at least8 localities in this region.
Habit: fibrous
Colour: pale green
Description: in veins cross-cutting lizardite
Churchite-(Y)
Formula:Y(PO4) · 2H2O
Habit: colloform with concentric layers
Colour: pale yellow-white
Description: Thin colloform crust on goethite with an associated opal-AN-like layer. In Januzzi (1994) the discoverer states, "Recent examination, by way of x-ray and semi-quantitative analysis uncovered a new species for the Scoville Ore Bed in Salisbury, Connecticut; the mineral churchite, a relatively inconspicuous species and confused (no doubt often) with rhabdophane and probably more common than realized. Florencite should be looked for when churchite occurs in a deposit of this type. A hyalite-like mineral evidently forming before churchite lies just beneath it (the specimen is in the author’s collection)-this species is very possibly evansite."
Claudetite ?
Formula:As2O3
Description: According to an unconfirmed report by Schooner (circa 1980s), associated with arsenopyrite were "a few soft, transparent, gypsum-like plates" of claudetite.
Clinochlore
Formula:Mg5Al(AlSi3O10)(OH)8
Localities: Reported from at least24 localities in this region.
Habit: double cones applied base to base, curved to spherical aggregates of radiating plates
Colour: dark green to black
Description: Accessory in the marble or along contacts of cross-cutting veins with country rock, especially veins rich in calcite, albite and scapolite. In voids as micaceous aggregates up to 2 cm shaped like “double cones applied base to base” (Shepard, 1837) or generally spherical. Good albite and clinochlore crystals are found in small voids in these veins or where they formed in contact with chlorophane "in joints in marble in the bottom of the main pit, some narrow veins filled with a greenish black chlorite, which formed fine granular friable aggregates of small variously oriented crystals. Where free surfaces are present the chlorite exhibits the vermiform curved prismatic crystals commonly called helminthe forms. These free surfaces are usually coated with manganese oxide." (Shannon, 1921b). Called prochlorite in some old literature.
Clinochlore var. Diabantite ?
Formula:(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
Colour: Deep green
Description: Filling small cavities, this mineral may actually be pumpellyite, which is now known to be common in the local traprock, but there were few quarries in that rock in 1920.
Clinochlore var. Ripidolite
Formula:(Mg,Fe,Al)6(Si,Al)4O10(OH)8
Habit: fine anhedral grains
Colour: dark green
Description: Forms fine-grained masses at the contact between the quartz mass and the host schist.
'Clinopyroxene Subgroup'
Clinozoisite
Formula:(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Localities: Reported from at least17 localities in this region.
Habit: acicular
Colour: gray-brown to green-brown
Description: Acicular crystals in voids in altered amphibolite, with white scapolite.
Clinozoisite var. Clinothulite
Formula:{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Habit: granular
Colour: pink
Description: Granular material in quartz, with calc-silicate minerals in the amphibolite. Clinozoisite is much more common than zoisite and more likely a mineral to occur in this metamorphic terrain.
Cobaltite
Formula:CoAsS
Description: Microcrystals.
Coffinite
Formula:U(SiO4) · nH2O
References:
Columbite-(Fe)
Formula:Fe2+Nb2O6
Localities: Reported from at least29 localities in this region.
Habit: crudely prismatic
Colour: black
Description: crude crystals with dull luster typically associated with or grown up against samarskite-(Y) crystals. In aggregates to about 8 cm, tiny euhedral crystals rare. Duller luster of the coarse, uneven fracture surface differentiates it from samarskite.
'Columbite-(Fe)-Columbite-(Mn) Series'
Localities: Reported from at least42 localities in this region.
Habit: flat, elongated prisms or subhedral masses
Colour: black, with iridescence
Description: Good prismatic crystals formed in quartz, also hand-sized subhedral masses with striations from neighboring muscovite. Januzzi (1976) reports that a beryl crystal with a large columbite crystal projecting from it was donated to the American Museum of Natural History in New York City. The ID is generic, at least one crystal was tested using Raman spectroscopy and the best match is tantalite-(Fe) (see entry). A crystal formerly in the Bill Shelton collection has a specific gravity of 6.7, making it clearly a columbite species.
'Columbite Group'
Habit: tabular
Colour: black with iridescence
Description: Subhedral crystals in pegmatite matrix.
Columbite-(Mn)
Formula:Mn2+Nb2O6
'Columbite-(Mn)-Tantalite-(Mn) Series'
Habit: rectangular prisms
Colour: dark reddish to reddish brown
Description: Columbite-tantalite crystals with reddish color and some translucency have been historically called tantalite-(Mn) without supporting analyses (even SG) but visually could equally be columbite-(Mn). Strong illumination is typically needed to see the color and translucency. Most are small (<1 cm) and embedded in matrix.
'Columbite-Tantalite'
Localities: Reported from at least6 localities in this region.
Description: "Incidentally, a magnificent columbite-tantalite crystal was also found in the pegmatite in 1974." Brunet (1978).
Cookeite
Formula:(LiAl4◻)[AlSi3O10](OH)8
Localities: Reported from at least10 localities in this region.
Habit: micro-globular aggregates, masses, pseudomorphs after spodumene
Colour: pale yellow
Description: Typically as tiny spheres of crystal aggregates with K-rich albite, micas, elbaite, quartz, calcite, pyrite, fluorite, and bertrandite in cleavelandite of the mineralized intermediate plagioclase-quartz zone. Rare pseudomorphs of spodumene. Schooner (1955) says: "solid masses of bright yellow fine-grained material. Some pieces were seen to be as much as 4 or 5 inches thick, the mineral having occurred as a lining in a long cavity or series of cavities."
Copiapite
Formula:Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
'Copiapite Group'
Cordierite
Formula:Mg2Al4Si5O18
Localities: Reported from at least18 localities in this region.
Habit: pseudohexagonal prism, subhedral blocky to massive
Colour: violet, blue, pale green
Description: Shows good cleavage and typically gemmy, though some of it is altered to dull gray-green "fahlunite". "The iolite has frequently been procured here in tabular plates, several inches across; and is remarkable for the facility with which it admits of cleavage into still thinner layers. This separation is undoubtedly promoted by the presence of exceedingly thin plates of what seems to be mica. The crystals are but seldom possessed of well defined lateral planes, in consequence of the implantation upon them of mica, albite, tourmaline, and more rarely of tabular spar. When perfect, however, they are either regular hexagonal prisms, or else this form, modified by the replacement of its lateral edges. Their color is a rich dark blue, with an occasional inclination to green; the depth of the color, as is usual in this species, is enhanced by the inspection of the plates in a direction perpendicularly to their cleavage." Shepard (1841)"Many beautiful specimens of a clear blue color have been found and cut into gems, showing dichroism by transmitted light. Specimens of this mineral seen in the different collections and museums of this country, you will invariably see labeled from Haddam. The alterations of this mineral are met with here in large quantities." (Davis, 1901).
Corundum
Formula:Al2O3
Localities: Reported from at least12 localities in this region.
Habit: hexagonal tabular
Colour: pale lavender
Description: A 2 cm, tabular, hexagonal crystal is present in a cabinet specimen of kyanite at Harvard that was part of Brace's large boulder.
Corundum var. Sapphire
Formula:Al2O3
Habit: hexagonal prisms
Colour: dark blue
Description: embedded in kyanite, vary in size from micro to megascopic.
Covellite
Formula:CuS
Localities: Reported from at least6 localities in this region.
Crandallite ?
Formula:CaAl3(PO4)(PO3OH)(OH)6
Description: Schooner (1955) reports it "as microscopic crystals associated with bertrandite" found by Gunnar Bjareby. However, he does not mention it in any of his subsequent writings on the area.
'Crichtonite Group'
Formula:AD21O38 or A{DE2G6 Ti12}O38
Cronstedtite
Formula:Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Habit: radial groups of flattened crystals
Colour: greenish-brown to almost black
Description: A drab greenish-brown to almost black mineral, abundantly associated with grunerite, siderite, and marcasite, was identified as chamosite. Careful restudy of X-ray data indicates cronstedtite as a better fit.
Cryptomelane
Formula:K(Mn4+7Mn3+)O16
Habit: botryoidal
Colour: black with blue tint
Cummingtonite
Formula:◻{Mg2}{Mg5}(Si8O22)(OH)2
Cuprite
Formula:Cu2O
Localities: Reported from at least16 localities in this region.
Cuprite var. Chalcotrichite
Formula:Cu2O
Habit: acicular
Cuprobismutite
Formula:Cu8AgBi13S24
Habit: prismatic
Colour: gray-bluish-black metallic
Description: Vajdak (1997): Cuprobismutite from Case Quarry, Portland, Middlesex County, Connecticut was found on several specimens self-collected by Russell C. Huff (Woodbury, CT) in 1995. The mineral occurs as prismatic crystals and blades a few mm long which is quite large for this rare mineral and is gray-bluish-black metallic. A very rare occurrence in pegmatite and a new mineral for Connecticut. It is associated with bismutoferrite which we have analyzed as a new mineral from there in 1995 and with yellow-green bismutite.
'Cymatolite'
Habit: pseudomorphs after spodumene
Colour: white to pale gray
Description: oriented intergrowth of very fine-grained, elongated albite and muscovite. Grains are oriented perpendicular to the spodumene c axis and give a columnar, silky appearance to the inside of a fractured specimen. Crystals pseudomorphs after spodumene at Yale to 32 x 70 cm.
Danburite (TL)
Formula:CaB2Si2O8
Datolite
Formula:CaB(SiO4)(OH)
Localities: Reported from at least35 localities in this region.
Habit: complex prisms with chisel-point terminations
Colour: pale apple green
Description: Gas vesicles rich in crystals lining the walls were once abundant. Never found singly. Crystals can reach over 2.5 cm, larger ones typically transparent, smaller crystals translucent to opaque - grading to porcelaineous crusts. Excellent specimens in major museums.
Davidite-(Ce)
Formula:Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Davidite-(La)
Formula:La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Habit: subhedral
Colour: pitch black
Description: Small 1-2 cm obsidian-black subhedral crystals with red staining in adjacent rock.
Devilline
Formula:CaCu4(SO4)2(OH)6 · 3H2O
Diadochite
Formula:Fe3+2(PO4)(SO4)(OH) · 6H2O
Habit: coatings and micro globules
Colour: orange
Description: Orange coatings on triphylite, messelite, and other related phosphates
Diamond
Formula:C
Habit: cubic
Colour: grey
Description: Single alluvial crystal 0.8mm
Diaspore
Formula:AlO(OH)
Habit: thin or 6-sided tables flattened parallel to the shorter diagonal
Colour: yellowish-white
Description: First reported by Shepard (1842) as euclase forming "thin, transparent, yellowish-white tabular crystals, lining cavities in a silvery white mica, and sometimes imbedded in a dark purple fluor" in the topaz veins. Later retracted and confirmed to be diaspore by Shepard (1851) and Dana (1851): H=7-7.5, SG=3.29, alumina 84.9%, water 15.1% and described as "thin or 6-sided tables flattened parallel to the shorter diagonal". May be more common than reported because who has really looked?
Dickinsonite-(KMnNa) (TL)
Formula:(KNa)(Mn2+◻)Ca(Na2Na)Mn2+13Al(PO4)11(PO4)(OH)2
Habit: foliated crystalline masses, almost micaceous, radiating or stellated curved laminae
Colour: oil to olive green, dark to grass-green
Description: Intimately associated with quartz, eosphorite, triploidite and rhodochrosite
Dickite
Formula:Al2(Si2O5)(OH)4
Digenite
Formula:Cu9S5
Diopside
Formula:CaMgSi2O6
Localities: Reported from at least51 localities in this region.
Habit: flattened short to elongated prisms
Colour: white to very pale green
Fluorescence: light blue-gray under SW
Description: pseudomorphed by tremolite (originally called Canaanite)
Diopside var. Canaanite
Formula:CaMgSi2O6
Djurleite
Formula:Cu31S16
Dolomite
Formula:CaMg(CO3)2
Localities: Reported from at least32 localities in this region.
Habit: rhombohedral, some curved
Colour: white, pink, tan, brown if iron-rich
Description: Abundant as fault vein filling associated with barite, quartz, bitumen. Crystals usually drusy.
Dolomite var. Iron-bearing Dolomite
Formula:Ca(Mg,Fe)(CO3)2
Dravite
Formula:NaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
Localities: Reported from at least8 localities in this region.
'Dravite-Schorl Series'
Habit: elongated prismatic with trigonal terminations
Colour: black to very dark brown
Description: Short to elongated (along c axis) prisms with simple rhombohedral terminations, commonly doubly.Januzzi: (1994): "I was recently informed (Schooner, private communication) that outstanding tourmaline crystals were collected, at the Bierman Quarry, that were between 4-5 inches long and about 2½ inches in width. These dravites occurred, in an area of tourmaline bearing schist, bordering the pegmatite dike. Fine doubly terminated crystals of tourmaline occur in the mica schist in the immediate area of the pegmatite locality. The crystals show the typical hemihedral form with well developed rhombohedral terminations; more than the usual number of prismatic faces are present so that the characteristic vertical striations often seen on specimens of tourmaline are wanting in the well formed specimens."
Dumortierite ?
Formula:Al(Al2O)(Al2O)2(SiO4)3(BO3)
Habit: acicular
Colour: bright blue
Description: A few concentrations of tiny acicular crystals in one specimen of coarse-grained albite/quartz/biotite gneiss matrix.
'Elaterite'
Formula:(C,H,O,S)
Elbaite
Formula:Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Localities: Reported from at least16 localities in this region.
Habit: Elongated trigonal prisms, antilogous pole terminated with rhombohedral pyramids {1bar11}, analgous pole dominated by a pedion.
Colour: prisms mostly green, blue-green, rarely pink. Terms. green, yellow, pink, blue, combinations
Description: Hundreds of crystals in some pockets, often "piercing" smoky quartz. Flawless crystals are rare; usually fractured. Large pocket crystals vary but are usually striated to silky, slender and elongated, from small needles up to 30 cm, but typically a few cm long. Color zoning is usually longitudinal, short and terminal in shades of green, pink, golden yellow and blue with up to 5 colors. Antilogous poles typically pale green, yellow, pink; analogous poles usually colorless, pale green, aqua. w/thin indigo cap, or sometimes with a narrow pale colored zone immediately beneath and parallel to the pedion. Tiny crystals may be any color throughout. Concentric “watermelon” zoning is not common. Some fragments of green prisms are overgrown by later pink zones. Also found frozen in matrix with beryl, fluorapatite, fluorite, muscovite, smoky quartz, lepidolite, microlite, columbite.
Enstatite
Formula:Mg2Si2O6
Description: Enstatite (sensu stricto) — [En 91.5] within xenolith, Wagneret al.,1979
Enstatite var. Bronzite
Formula:(Mg,Fe2+)2[SiO3]2
Eosphorite (TL)
Formula:Mn2+Al(PO4)(OH)2 · H2O
Habit: mostly massive, rare prismatic crystals
Colour: pale pink, grayish-, bluish-, and yellowish-white, white
Description: Intimately associated with quartz, dickinsonite, triploidite and rhodochrosite. Pink, translucent, prismatic crystals to around 1 cm long show rough striae parallel to the long axis, associated with micro encrusting quartz and apatite.
Epidote
Formula:(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Localities: Reported from at least62 localities in this region.
Habit: prismatic
Colour: yellow-green to dark green to black
Description: drusy crystals in fractures in gneiss, crystallized in two generations, an initial one with elongated, larger and darker crystals and a second one of much finer-grained, short and lighter colored crystals. The second generation coats the first and some other minerals like quartz.
Epidote var. Tawmawite
Formula:{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
Description: A completely unsubstantiated guess.
Epistilbite
Formula:CaAl2Si6O16 · 5H2O
Epsomite
Formula:MgSO4 · 7H2O
Habit: efflorescence
Description: Schooner (1958): "occurs very sparingly with pickeringite, in efflorescences on protected schist ledges in the cut above the Strickland Quarry. It is distinguished from pickeringite by its different taste… the same as that of artificial Epsom salt."
Erythrite
Formula:Co3(AsO4)2 · 8H2O
Habit: earthy incrustation or delicate needles
Colour: red
Description: Formed from the weathering of Co-rich loellingite. "Eugene Franckfort reported that the face of one lode, opened more than a century ago, was covered with, abundant erythrite crystals… as fine as any which he had seen in his native Europe." (Schooner 1958). "The Francfort mineral collection [at Wesleyan University] contains some excellent samples of erythrite from Bucks Shaft" (Gray 2005). It was common during the mining, but very scarce now.A small flake was tested in concentrated HCl and it turned the solution blue, indicating erythrite.
Euclase ?
Formula:BeAl(SiO4)(OH)
Colour: colorless
Description: Etched, elongated microcrystals with rhombic cross-section and wedge-shaped terminations. With secondary quartz and cookeite coating a pocket quartz.
Eucryptite (TL)
Formula:LiAlSiO4
Habit: pseudomorphous after spodumene
Colour: white to slightly greenish-white or pale gray
Fluorescence: red
Description: oriented intergrowth with very fine-grained, elongated albite. Grains are oriented perpendicular to the spodumene c axis and give an indistinct fibrous to columnar structure, this being always at right angles to the adjoining surface of the original mineral. Fractured surface typically has a frosty appearance.
Euxenite-(Y)
Formula:(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Description: Reference by Januzzi (1976) to this mineral being found by Schooner in "Portland" correlates only with a report by Schooner (circa 1985) from the Hale Quarry in Portland. Schooner makes no mention if it from Strickland in his various comprehensive publications, especially his last, Schooner (circa 1985).
'Fahlunite'
Formula:(Mg,Fe)Al2Si3O10 · 2H2O
Habit: pseudomorphs after cordierite
Colour: dull olive green
Description: "The pinite [later fahlunite] variety, though generally occurring in indeterminate shaped pieces, yet nevertheless is occasionally seen in forms of the same shape and regularity as the iolite, from which, however, it differs essentially in color and hardness. The peculiar tint affected by the pinite is a pale, bluish, chloride green. Its lustre is pearly, and not particularly shining, except in a few specimens, where the color approaches silver-white. Hardness 2.5. Laminae neither flexible nor elastic. "in rhombic prisms in great abundance at the Iolite locality, and desirable specimens are easily obtainable. Many of these specimens upon being broken show clear blue Iolite in the interior, from which mineral it, is derived as alteration." (Davis, 1901).
Fairfieldite (TL)
Formula:Ca2Mn2+(PO4)2 · 2H2O
Habit: foliated to lamellar masses, radiating masses consisting of curved foliated or fibrous aggregations
Colour: white to pale straw-yellow
Description: One variety cccurs filling cavities in the reddingite, and covering the distinct crystals of this mineral. It is uniformly clear and transparent, and is highly lustrous, showing entire absence of even incipient alteration. It is generally foliated to lamellar, although sometimes of a somewhat radiated structure. A second variety occurs in masses of considerable size interpenetrated rather irregularly with quartz, and quite uniformly run through with thin seams and lines of a black manganesian mineral of not very clearly defined character. Typically friable to the touch and lacks something of the brilliant luster of the first variety, it also shows greater difference of structure, passing from the distinct crystals to the massive and radiated form. Also occurs in small particles in fillowite and in masses of some size immediately associated with eosphorite, triploidite, and dickinsonite.
'Fayalite-Forsterite Series'
Localities: Reported from at least8 localities in this region.
Description: sheared and altered
'Feldspar Group'
Localities: Reported from at least15 localities in this region.
Description: Taylor (1824) says "in regular crystals of an inch and a half in diameter" He doesnt give the species.
'Feldspar Group var. Perthite'
Localities: Reported from at least9 localities in this region.
Ferberite
Formula:FeWO4
Habit: pseudomorphs after bipyramidal scheelite
Colour: black to dark brown
Description: The only US locality for ferberite after scheelite crystals, with only about 8 other world-wide localities. First described by Silliman (1819-1822) but not recognized as pseudomorphic after scheelite for a few decades. Pseudomorph occurrence is locally restricted to the quartz/clinzoisite-rich contact between the amphibolite and marble at the upper mine pit, sometimes in small open spaces formed from the dissolution of calcite in that zone, and perhaps a nearby locality northeast of the "Burnett place" by Hobbs (1901). Occurs as anhedral lumps to euhedral crystals<1 to >10 cm, the latter size usually aggregates, in the amphibolite. Intermixed scheelite/ferberite partial replacement crystals are common. Some crystals reported with "spongy" texture, probably where tungstite formed and was weathered out. Typically called "wolframite" in most reports but Silliman's original wet chemical analysis shows it is what we now call ferberite and the use of the obsolete term "wolframite" should be abandoned. Januzzi (1994) confirms Silliman's Fe-dominant analysis: "Chemical analysis (Grand Junction Laboratory, Grand Junction, Colorado - Bauer) gave the following results: Tungsten 60.1%, Iron 17.8%, Manganese 0.21%.Non-fibrous material yielded 16.3% iron and 0.95% manganese."
'Fergusonite' ?
Colour: brownish yellow
Description: reported by Januzzi (1976) as "a small, brownish yellow nodule in feldspar". No analysis reported, no other finds reported/confirmed.
Ferricopiapite ?
Formula:Fe3+0.67Fe3+4(SO4)6(OH)2 · 20H2O
Description: Details of the find needed.
References:
Ferri-ghoseite
Formula:◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
Habit: lamellar or bladed
Colour: tan or green
Description: Reported by Dick Schooner as "Tirodite", reference below provides no details. An XRD analysis of a sample labeled "tirodite" from Dick Schooner's collection could not differentiate it from actinolite. However, Schooner (circa 1990) reports: "Tan or green tirodite, lamellar and bladed, was rather common at the Jail Hill quarry, usually with only spessartine or barite. Masses two inches across have been preserved. A few little silky-fibrous tufts proved to be tirodite, also. This material was studied at the University of Michigan." A dark green amphibole-rich Schooner specimen labeled as "tirodite" (photo 983892) was analysed via SEM-EDS by Micromounters New England in 2019 and was found to be ferro-actinolite (no Mn).
Ferrimolybdite
Formula:Fe2(MoO4)3 · nH2O
Colour: yellowish
Description: alteration of molybdenite (Schooner 1958)
Ferro-actinolite
Formula:◻Ca2Fe2+5(Si8O22)(OH)2
Habit: anhedral
Colour: very dark green
Description: As sub-cm grains in amphibolite rock with frosty, fine-grained scapolite.
'Ferro-actinolite-Tremolite Series'
Ferroberaunite
Formula:Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Ferro-hornblende
Formula:◻Ca2(Fe2+4Al)(Si7Al)O22(OH)2
Habit: Slightly elongated prismatic
Colour: black
Description: Porphyroblasts in amphibole gneiss adjacent to the pegmatite, subhedral crystals to about 1 cm.
Ferrosaponite ?
Formula:Ca0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Habit: micaceous or foliated globules or coatings
Colour: very dark green to black
Description: A late forming, fine-grained, very dark green to black micaceous mineral forming tiny globules or coating other minerals in vesicles in basalt. An SEM-EDS analysis conducted in 2017 concluded the mineral is an Fe-Mg-Ca aluminosilicate. The complete absence of K rules out stilpnomelane, biotite, celadonite. The Ca is too low for pumpellyite or julgoldite. A mindat.org mineral search by chemistry found ferrosaponite as a good match, as are its physical properties and geoenvironment of formation. However, XRD is needed for confirmation.
Fillowite (TL)
Formula:Na3CaMn2+11(PO4)9
Type Locality:
Habit: granular aggregates, rare micro rhombohedra in tiny pockets
Colour: honey-yellow, wax-yellow, also yellowish to reddish-brown
Description: Reddingite is very commonly associated with fillowite, and in many cases it is not easy to distinguish the two minerals.
Fluorapatite
Formula:Ca5(PO4)3F
Localities: Reported from at least96 localities in this region.
Habit: short hexagonal prisms or tabular, terminated by pinacoids with modified edges
Colour: pale gray-green or rose pink to purple
Fluorescence: bright yellow
Description: Gray-green opaque crystals up to 2 cm common in quartz, albite, beryl, elbaite, lepidolite matrix. Translucent to clear crystals in pockets, either as stout hexagonal prisms or with a central fluorescent prism surrounded by tapered, non-fluorescent overgrowths up to a few cm across. Gray-green crystals show more forms than the rose pink to purple crystals.
Fluorapatite var. Manganese-bearing Fluorapatite
Formula:(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Localities: Reported from at least6 localities in this region.
Habit: anhedral to stubby subhedral hexagons
Colour: grayish green to blue-green, white, pale blue
Fluorescence: yellow
Description: An old term that should be abandoned, see description under fluorapatite.
Fluorapophyllite-(K)
Formula:KCa4(Si8O20)(F,OH) · 8H2O
Localities: Reported from at least10 localities in this region.
Habit: tabular, in spherical aggregates
Colour: white to creamy
Description: Aggregates of tabular crystals can reach 3 to 4 cm. This habit is characteristic for this locality, other area trap rock quarries have mostly bipyramidal crystals.
Fluorite
Formula:CaF2
Localities: Reported from at least46 localities in this region.
Habit: cubic, sometimes modified by dodecahedron and tetrahexahedron
Colour: purple and green shades to colorless, usually in layers
Fluorescence: blue-white to purplish blue under SW UV, often zoned with the daylight color.
Description: Very common in hydrothermal fault veins as coarse crystalline masses, found with most minerals present in these veins: quartz, calcite, galena, sphalerite, pyrite, zeolites, with open spaces lined by tightly packed, rough-surfaced (from many small sub-faces) crystals. Crystals to 7 cm were removed intact during the initial blasting of the railroad cut. As well-formed euhedral isolated crystals in voids with other minerals usually up to 2 cm.
Fluorite var. Chlorophane
Formula:CaF2
Localities: Reported from at least11 localities in this region.
Habit: anhedral to modified octahedral
Colour: micro crystals colorless to pale pink with purple zones at the tips, larger crystals and masses are red to reddish black
Fluorescence: blue-green in SW, purple in LW, green phosphorescence
Description: Crystals mostly micros in pockets in the aplitic zone, larger crystals to a few cm rare, but they typically crumble into fragments when found. Typically as irregular masses to 10 cm. SW fluorescence is eventually lost if left exposed to any light, so immediately place and keep any finds in an opaque container to preserve this property.
'Fluor-uvite-Uvite Series' ?
Colour: black, dark brown
Description:
Foitite
Formula:◻(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Description: Grading into elbaite, associated with wodginite, cassiterite, quartz and gobbinsite.
Forsterite
Formula:Mg2SiO4
Localities: Reported from at least10 localities in this region.
Description: Included in a list of minerals without details, but plausible for the geology.
Forsterite var. Peridot
Formula:Mg2SiO4
References:
Nekkhi MurtishiIdentified by Nekkhi Murtishi: Visual Identification
Fourmarierite
Formula:Pb(UO2)4O3(OH)4 · 4H2O
Habit: pseudomorphs after uraninite
Colour: reddish
Description: "In a study at Harvard University, in 1964, both fourmarierite and vandendriesscheite were identified, by X-ray diffraction, as components of hard "gummite" pseudomorphs after uraninite from the Rock Landing quarry. Fourmarierite is reddish; vandendriesscheite, yellow. The material came from the Charles Thomas collection." Schooner (circa 1980s).
Gahnite
Formula:ZnAl2O4
Localities: Reported from at least9 localities in this region.
Description: Mentioned by Foye (1922) as occurring there, but specimens are lacking.
Galaxite ?
Formula:Mn2+Al2O4
Colour: dark green
Description: A dusting of a dark green mineral is seen in alleghanyite-kutnohorite specimens from the Jail Hill quarry. X-ray diffraction of a mixed sample shows faint peaks that correspond rather well to galaxite.
Galena
Formula:PbS
Localities: Reported from at least46 localities in this region.
Galena var. Silver-bearing Galena
Formula:PbS with Ag
Description: Included in a list by Januzzi with no details, apparently based on early reports by Silliman of minerals actually from Lane's mine of Monroe. No modern data regarding the Ag content of galena from Connecticut has been published.
Galenobismutite ?
Formula:PbBi2S4
'Garnet Group'
Formula:X3Z2(SiO4)3
Localities: Reported from at least66 localities in this region.
Gedrite
Formula:◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
Habit: elongated prismatic
Colour: black to very dark greenish black
Description: In localized, very coarse-grained portions of the Middletown Formation in the Turkey Hill Reservoir area, associated with almandine, magnetite and phlogopite in albite-quartz matrix. Crystals up to several cm. Confirmed by both TEM-EDS and Raman spectroscopy - near the composition boundaries between gedrite, anthophyllite, ferro-anthophyllite and ferro-gedrite fields, under the current amphibole classification, but just within the gedrite range.
Gehlenite
Formula:Ca2Al[AlSiO7]
Habit: tetragonal prisms
Colour: light brown
Description: Tiny crystals in lens-like bodies of calc-silicate rock in the host Collins Hill Formation. Optical and X-ray study by Waldemar T. Schaller at the USGS indicate gehlenite, associated with diopside, grossular, wollastonite, and spurrite.
Gersdorffite
Formula:NiAsS
Habit: grains
Description: "An analysis by Fairchild, published in 1931, and quoted in the Seventh Edition of “Dana’s System of Mineralogy”, gave: iron 3.9, cobalt 0.7, nickel 31.6, antimony 9.1, arsenic 34.9, sulfur 17.1, and bismuth 0.4%" (Schooner 1958); with the ore minerals at Shepard's Lode (Gray 2005).
Gibbsite
Formula:Al(OH)3
Habit: radially fibrous masses, stalactitic and spherical concretions, and as incrustations
'Gmelinite Subgroup' ?
Description: This mineral is unknown from Connecticut trap rock. Likely confusion with chabazite variety phacolite.
Gobbinsite
Formula:Na5(Si11Al5)O32 · 11H2O
Description: Asociated with foitite grading into elbaite, wodginite, cassiterite, and quartz.
Goethite
Formula:Fe3+O(OH)
Localities: Reported from at least72 localities in this region.
Habit: mostly earthy and massive, rarely radially fibrous masses, stalactitic, botryoidal, spherical
Colour: brown to dark brown nearly black, some botryoidal and lustrous specimens are iridescent
Description: Often misclassified as limonite, or "brown hematite" in older literature. Most material is massive dull earthy ore, best specimens have stalactitic to botryoidal forms with a highly lustrous, black surface.
Gonnardite
Formula:(Na,Ca)2(Si,Al)5O10 · 3H2O
Goslarite ?
Formula:ZnSO4 · 7H2O
Description: No details on the find listed in the reference, simply "Found in Monroe".
Graftonite ?
Formula:Fe2+Fe2+2(PO4)2
Description: Reported by Schooner (circa 1980s) as occurring in pieces from the Charles Thomas collection, along with triphylite, scorzalite, siderite, fairfieldite, augelite. Possible they could have come from the Palermo mine.
Graphite
Formula:C
Localities: Reported from at least31 localities in this region.
Habit: massive to flaky
Colour: black
Description: Best seen in masses with coarse-grained quartz.
Grayite
Formula:(Th,Pb,Ca)(PO4) · H2O
Greenockite
Formula:CdS
Localities: Reported from at least10 localities in this region.
Description: "One specimen of this mineral found in western Connecticut occurred as an alteration of sphalerite at the new locality discovered by the author at Judd’s Bridge" (Januzzi 1959). With calcite, quartz, galena, pyrite, pyrrhotite in a hydrothermal vein.
Grossular
Formula:Ca3Al2(SiO4)3
Localities: Reported from at least30 localities in this region.
Habit: dodecahedral
Colour: cinnamon to clove brown
Description: Accessory in calc-silicate layers in the marble. Well-formed, gemmy crystals to 1.5 cm or so. Reported by Shannon (1921b) as "garnet" thus: "Brownish red granular garnet occurs both in the main pit and in the lime-kiln opening in nodular or lenticular masses in marble which may reach a foot in greatest diameter. Where such masses have had the surrounding calcite dissolved away small dodecahedral crystals are revealed."
Grossular var. Hessonite
Formula:Ca3Al2(SiO4)3
Habit: dodecahedral
Colour: orange to cinnamon
Description: Massive matrix material and lustrous crystals to 1.5 inches lining voids or hiding under calcite.
Groutite
Formula:Mn3+O(OH)
Habit: massive crust
Colour: black
Description: Thick black crust on altered lithiophilite with hureaulite and hydroxylapatite.
Grunerite
Formula:◻{Fe2+2}{Fe2+5}(Si8O22)(OH)2
Description: siderite layers up to 1/2 inch were common in a vein of marcasite, cronstedtite, grunerite, and quartz (Schooner, circa 1985).
'Gummite'
Localities: Reported from at least8 localities in this region.
Description: Associated with uraninite, meta-autunite, uranophane, other alteration products. Fine gummite and uranophane pseudomorphs after uraninite have been found here.
Gypsum
Formula:CaSO4 · 2H2O
Localities: Reported from at least27 localities in this region.
Gypsum var. Satin Spar Gypsum
Formula:CaSO4 · 2H2O
Gypsum var. Selenite
Formula:CaSO4 · 2H2O
Halloysite
Formula:Al2(Si2O5)(OH)4
Habit: earthy to waxy masses
Colour: tan
Description: Alteration of pollucite, so occurs as thin crusts and veins with elbaite, pollucite, cleavelandite.
Halotrichite ?
Formula:FeAl2(SO4)4 · 22H2O
Habit: fibrous
Colour: off-white to pale yellow
Description: Spongy mass of tiny fibrous crystals with included weathered-out mica flakes. May be all or in part pickeringite.
Harmotome
Formula:Ba2(Si12Al4)O32 · 12H2O
Habit: Cruciform Marburg twins, with or without re-entrants, or simpler Morvenite twins.
Colour: white
Description: White crystals to about 1 cm, commonly dusted with micro-pyrites. This zeolite has the same morphology as phillipsite, but according to Tschernich's 1992 "Zeolites of the World", harmotome is typical of lead deposits whereas phillipsite occurs in volcanics. This locality is thus favorable for harmotome. Henderson (1979) analyzed crystals and found that "...microprobe analysis shows the Ba:Si ratio to be 1.2:6, and the amounts of K, Na and Ca to be low. This data fits harmotome perfectly, and is not consistent with either phillipsite or wellsite."
Hastingsite
Formula:NaCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2
Habit: subhedral prismatic
Colour: black
Hedenbergite ?
Formula:CaFe2+Si2O6
Habit: radiating clusters
Colour: Greenish- Black
References:
Helvine
Formula:Be3Mn2+4(SiO4)3S
Habit: tetrahedral, slightly cavernous showing trigonal indentations
Colour: honey-brown
Description: Two parallel-intergrown, translucent, 0.8mm crystals found on a single specimen associated with the other common site minerals. Crystal faces are slightly pitted with sub-vitreous luster, dusted with a small amount of sugary white alteration. Shows no fluoresence. Specimen is in the Yale Peabody Museum collection.
Hematite
Formula:Fe2O3
Localities: Reported from at least59 localities in this region.
Habit: coatings, botryoidal aggregates, rosettes
Colour: specular to rusty-red
Description: Mostly as rusty-red coatings on calcite and quartz, tiny blebs or as specular to rusty-red rosettes to several mm.
Hematite var. Iron Rose
Formula:Fe2O3
Hematite var. Specularite
Formula:Fe2O3
Description: In the baked arkose below the contact with the diabase.
Hemimorphite
Formula:Zn4Si2O7(OH)2 · H2O
Habit: elongated tabular
Colour: white
Fluorescence: pale blue-white under SW UV light
Description: Microcrystals arranged in spherical to fan-shaped aggregates in thin Alpine clefts.
Herderite
Formula:CaBe(PO4)F
Description: undoubtedly hydroxylherderite as there is still but one or two chemically verified herderite specimen in the world and even the so-called type locality for true herderite does not have the species by modern chemical analyses. "Chemical analysis of herderite, collected by the author, at the State Forest Mine in East Hampton, Connecticut, indicate that it is the hydroxyl variety" (Januzzi 1994).
Heterosite
Formula:Fe3+(PO4)
Colour: purple
Description: secondary after triphylite (Foye 1922)
Heulandite-Ca
Formula:(Ca,Na)5(Si27Al9)O72 · 26H2O
Localities: Reported from at least15 localities in this region.
Habit: coffin-shaped prisms
Colour: white to almond, colorless
Description: Confirmed in 2018 via SEM-EDS analyses. Late forming crystals to 2 cm perched on quartz or prehnite with other zeolites and fluoapophyllite-K.
'Heulandite Subgroup'
Formula:(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
Localities: Reported from at least29 localities in this region.
Habit: coffin-shaped prisms
Colour: white to almond
Description: Late forming crystals to 2 cm perched on quartz or prehnite with other zeolites and apophyllite.
Hexahydrite ?
Formula:MgSO4 · 6H2O
Description: Discovered by Richard Schooner as an "efflorescence on schist" at an undisclosed Portland location, reported by Januzzi, but details lacking.
'Hornblende Root Name Group'
Formula:◻Ca2(Z2+4Z3+)(AlSi7O22)(OH,F,Cl)2
Localities: Reported from at least28 localities in this region.
Description: Present in most of the noted mineral assemblages, generally as "amphibole".
Hureaulite
Formula:Mn2+5(PO3OH)2(PO4)2 · 4H2O
Habit: microcrystals
Colour: reddish brown
Description: Schooner (1958) – "A rather recent x-ray study of some altered triplite from the Swanson Mine in East Hampton, made for the author by Mary E. Mrose of the U. S. Geological Survey, showed the presence of hureaulite as tiny reddish-brown crystals."
Hübnerite ?
Formula:MnWO4
Description: Only confirmed ferberite pseudomorphs after scheelite have ever been found in the area, and only within the adjacent Old Mine Park. Analyses are needed to substantiate this mineral.
References:
Hydrokenoelsmoreite ?
Formula:2W2O6(H2O)
Description: Reference includes a list of minerals reportedly found by Dick Schooner in a quartz vein in East Hampton, but with no supporting details. The mineral is listed as "ferritungstite".
Hydrokenoelsmoreite var. Ferritungstite ?
Formula:2(W,Fe3+)2(O,OH)6(H2O)
Hydrotungstite
Formula:WO3 · 2H2O
Description: Dehydrates to tungstite, whose presence outside of neighboring Old Mine Park has not been validated.
References:
Hydroxylapatite
Formula:Ca5(PO4)3(OH)
Habit: elongated hexagonal prisms with rounded edges and terminations
Colour: pale yellow with frosty terminations
Fluorescence: none
Description: Frosty, translucent, pale yellow micro crystals encrusting pocket quartz, cleavelandite, and a much larger, glassy fluorapatite crystal. Originally labeled as calcite, but does not react to HCl, has hardness 5, no visible cleaveage, and does not fluoresce.
Hydroxylherderite
Formula:CaBe(PO4)(OH)
Habit: flat prisms with dome terminations
Colour: pale yellow
Description: Specimens analyzed by Leavens, et al. (1978) from New England were analyzed and found to be true hydroxylherderite. As the study was made after the reference cited and as there are only one or two analyzed true herderites in the world, the entry was changed to conform to modern nomenclature.Leavens, et al., 1978, Compositional and Refractive Index Variations of the Herderite-Hydroxyl-herderite Series, American Mineralogist, v 63, p. 913-917."Chemical analysis of herderite, collected by the author, at the State Forest Mine in East Hampton, Connecticut, indicate that it is the hydroxyl variety" (Januzzi 1994).Described (as herderite) by Schooner (1958) as "twenty five 1/32 inch pale yellow tabular crystals in a vug of albite and altered siderite, near a contact with semi-columnar beryl"
Hydrozincite
Formula:Zn5(CO3)2(OH)6
Habit: colloform crusts
Colour: white
Fluorescence: blue-white
Description: Colloform white crusts on schist collected by Ronald Januzzi.
'Hypersthene'
Formula:(Mg,Fe)SiO3
Ilmenite
Formula:Fe2+TiO3
Localities: Reported from at least35 localities in this region.
Habit: platy to tabular
Colour: black submetallic
Description: Found in three modes: 1. As small (<1 cm) crystals scattered in schist, gneiss and amphibolite. 2. As deformed platy concentrations in quartz/albite/mica boudins in schist. Loose boudins as boulders vary in size from "turtle shell" pieces, to boulders pushing a meter across with overlapping, curved crystals or aggregates on the order of 10 cm.3. As undeformed, tabular crystals exceeding 10-15 cm (mostly broken so hard to say exactly), 1 to 15 mm thick, that grew rooted in the chlorite-rich contact of schist with discordant quartz masses. These crystals typically oriented edge-on to the contact and surrounded by massive quartz that evidently filled in after they crystallized. Most of these "ilmenite" crystals are actually pseudomorphed by, to varying degrees, magnetite, hematite, rutile, chlorite, even within the same crystal. As ilmenite is weakly magnetic, it is easy to tell the strongly magnetic magnetite pseudos from ilmenite. The rutile/hematite pseudos are reddish and non-magnetic and blood-red, acicular microcrystals can be seen in them under a scope.
Ilmenite var. Iron(III)-bearing Ilmenite
Formula:(Fe2+,Fe3+)TiO3
Ishikawaite
Formula:U4+Fe2+Nb2O8
Habit: tabular
Colour: black with brown coating
Description: metamict crystals with obsidian-like conchoidal fracture
'Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series'
Habit: tabular
Colour: black
Description: Schooner (circa 1990) - "Several beautiful ixiolite crystals, in compact grayish lepidolite, were collected at the Swanson mine, by Anthony J. Albini. These range up to half an inch; they are black, brilliant, flattened, and striated, much resembling wolframite. The identification was by X-ray methods."
'Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series var. Wolframoixiolite'
Formula:(Nb,W,Ta,Fe,Mn)2O4
Habit: acicular
Colour: black
Description: Elongated, thin crystals in albite/quartz/annite matrix, with unknown translucent, orange-red coating.
Jacobsite
Formula:Mn2+Fe3+2O4
Description: "Specimens of tephroite from the Jail Hill quarry contain magnetic grains, shown (by X-ray and microprobe study at the University of Michigan) to be jacobsite. The material ranges from ferroan jacobsite to manganoan magnetite, within individual grains. A few specimens show it rather abundantly."Specimens are in the Harvard Mineralogical Museum.
Jarosite
Formula:KFe3+3(SO4)2(OH)6
Habit: Coatings and crusts.
Colour: shades of yellow
Description: Details of the find are needed. Visually confused with tungstite. If found in the upper mine area analysis is need to show the composition. Tungstite probably has not been found here since the 19th century.
Johannite
Formula:Cu(UO2)2(SO4)2(OH)2 · 8H2O
Description: "was attributed to some locality in Middletown...by C. U. Shephard, in 1850. In a recent communication to the author, Clifford Frondel of Harvard University said, 'The old reported occurrences of uranium sulfates are not valid'." Schooner (1958)
Johannsenite ?
Formula:CaMn2+Si2O6
Colour: tan or gray
Description: Fibrous tan or gray johannsenite is intergrown with pink bustamite in a few specimens from the Jail Hill quarry. The X-ray pattern indicates a clinopyroxene, and spectrographic analysis shows calcium and manganese as the principal cations of both minerals. The association is entirely characteristic.
Julgoldite-(Fe2+)
Formula:Ca2Fe2+Fe3+2[Si2O6OH][SiO4](OH)2(OH)
Habit: micro radiating acicular aggregates or botryoidal
Colour: dark green to black
Description: Associated with prehnite, calcite, quartz, pumpelleyite-(Fe3+) and sometimes with babingtonite. Few specimens have been confirmed by analyses to differentiate it from several other possible pumpellyite group minerals.
'Julgoldite Subgroup'
Formula:Ca2XFe3+2[Si2O6(OH)][SiO4](OH)2A
Habit: isolated botryoidal or "bow-tie" radiating crystal aggregates.
Colour: very dark green
Description: Identified by Raman spectroscopy as pumpellyite.
Kaersutite
Formula:NaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Kaolinite
Formula:Al2(Si2O5)(OH)4
Localities: Reported from at least17 localities in this region.
'K Feldspar'
Localities: Reported from at least29 localities in this region.
Habit: "cauliflower-like" aggregates
Colour: Peach to tan
Description: Found in basalt cavities usually on top of datolite or prehnite indicating late crystallization.
'K Feldspar var. Adularia'
Formula:KAlSi3O8
Localities: Reported from at least28 localities in this region.
Habit: "cauliflower-like" aggregates
Colour: Peach to tan
Description: Found in basalt cavities usually on top of datolite or prehnite indicating late crystallization.
Kutnohorite
Formula:CaMn2+(CO3)2
Habit: massive
Colour: pink
Description: "Light pink kutnohorite (verified at the University of Michigan) is the matrix for abundant reddish grains of alleghanyite (or an alleghanyite-like mineral) in the material collected, around 1960, at the Jail Hill quarry. Tephroite, jacobsite, and pyrophanite are also associated."
Kyanite
Formula:Al2(SiO4)O
Localities: Reported from at least64 localities in this region.
Habit: elngated, tabular prisms
Colour: gray to pale blue-green with sky blue cores
Description: Occurs in two modes: 1. As gray crystals in schist and quartz/albite/mica boudins, randomly oriented along the foliation, crystals typically reaching 5 cm. These resistant crystals form rough surfaces on schist boulders where they are abundant. 2: As very long crystals to 10s of cms, commonly concentrated in parallel to subparallel arrangement in massive quartz and adjacent schist. These crystals are pale blue-green with sky blue cores along their lengths. There are +/- 1-meter cone to fan-shaped boulders with solid concentrations of these crystals.
Lacroixite
Formula:NaAl(PO4)F
Habit: granular
Colour: pale yellow
Description: From Schooner (circa 1985): "Mary E. Mrose [USGS] studied some exceptional material collected at the Strickland quarry by Charles Thomas, when the last sporadic work was done in the non-flooded pit. Lacroixite formed rather granular pale yellow areas in a mixture of augelite, brazilianite, and hydroxylapatite (?), replacing natromontebrasite. Her paper redefined the species, which had been in question." Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite.
Landesite ?
Formula:Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Habit: alteration
Colour: dark brown
Description: "Landesite may occur as a dark brown alteration product of reddingite at Branchville."
Langite
Formula:Cu4(SO4)(OH)6 · 2H2O
Description: SEM-EDS showed a copper sulfate. Visual identification compared to crystal drawing #1 under Langite (Goldschmidt) on Mindat.
'Lanthanite' ?
Habit: rectangular, blocky
Colour: colorless
Description: A single microcrystal specimen from the Bill Henderson micromount collection is held by the Yale Peabody Museum. Harold Moritz examined it on October 16, 2025. It consists of a 1mm cluster of very clear, pearly, colorless crystals sandwiched between some yellow mica in the typical Alpine-type clefts at this locality. The crystals appear rectangular and blocky (apparently orthorhombic) with some striations parallel to their long axes.Some kind of analysis was apparently done because a label on the micromount box reads:LanthaniteStratfordConnAnalysis indices fitA second small label says:n[?] 1.573 > 1.573Are these RI values?
Larnite
Formula:Ca2SiO4
Colour: grayish
Description: Schooner (circa 1985): "One of the calc-silicate pods at the Strickland quarry contained the usual fine-grained diopside, grossularite, and wollastonite, with the addition of a 1/2 inch zone of grayish cleavable larnite, giving a distinct X-ray pattern." Studied by Waldemar T. Schaller of USGS.
Laueite
Formula:Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Habit: microscopic elongated prisms
Colour: red-orange
Description: "Tiny orange crystals are associated with strunzite fibers in vugs of altered messelite, with siderite and mitridatite" (Schooner 1961)
Laumontite
Formula:CaAl2Si4O12 · 4H2O
Localities: Reported from at least27 localities in this region.
Habit: prismatic
Colour: white
Description: Common in many vesicles, some are filled with late forming crystals to 2-3 cm, which eventually crumble, sadly.
Lazulite ?
Formula:MgAl2(PO4)2(OH)2
Colour: blue
Description: "(?) This occurrence, unlike the vivianite, was observed embedded in altered rim of amblygonite (montebrasite). Not enough material for positive ID." Januzzi (1994)
Lechatelierite
Formula:SiO2
Lepidocrocite
Formula:Fe3+O(OH)
Description: Not analysed; may be questionable [Uwe Kolitsch].
'Lepidolite'
Localities: Reported from at least15 localities in this region.
Habit: pseudo-hexagonal crystals, granular
Colour: purple
Description: As distinct crystals, up to 10 cm across; as overgrowths on a core of green muscovite and in turn overgrown by parallel schernikite fibers - all cleavable as one unit. As peach-blossom red crystals, often penetrated by elbaite. Fine-grained, granular masses in matrix with smoky quartz, cleavelandite, elbatite, beryl, fluorapatite.
Liandratite
Formula:U(Nb,Ta)2O8
'Limonite'
Localities: Reported from at least53 localities in this region.
Linarite
Formula:PbCu(SO4)(OH)2
Linnaeite
Formula:Co2+Co3+2S4
Litharge
Formula:PbO
Colour: tan
Description: From Schooner (circa 1980s): "Massicot was the most abundant of the lead oxides from the now-collapsed tunnel of the lead mine nearest the river. X-ray study, however, showed the presence of minor litharge. A sample of weathered galena, picked up on the cobalt mine dump below Great Hill, had a rather thick tan crust. It gave a very good X-ray pattern of litharge."
Lithiophilite (TL)
Formula:LiMn2+PO4
Habit: irregular blocky to rounded masses
Colour: bright salmon, honey-yellow, yellowish-brown to umber-brown
Description: The anhedral to subhedral masses are typically 1 to 3 inches in diameter and coated with a black alteration. Alteration sometimes has penetrated deep into the mass so that original color is only in the core. Secondary Mn phosphates are associated. Original type material analyzed in Brush and Dana (1878) had Mn/Mn + Fe ratio of about 0.9. Landes (1925) analyzed lithiophilite from this locality and found the Mn/Mn + Fe ratio was 0.72
Lithiophilite var. Sicklerite
Formula:Li1-x(Mn3+xMn2+1-x)PO4
Habit: crusts
Colour: brown, yellow-brown, reddish-brown
Description: An alteration product forming brown rinds around nodules of lithiophilite.
'Lithiophilite-Triphylite Series'
Description: Confusion with triplite and elbaite.
Lithiophorite ?
Formula:(Al,Li)MnO2(OH)2
Description: Listed as associated with rhabdophane but no site-specific details given.
Lizardite
Formula:Mg3(Si2O5)(OH)4
Habit: massive
Colour: yellow to dark green
Description: nodules or irregular masses, massive to variegated and mixed with calcite
Löllingite
Formula:FeAs2
Localities: Reported from at least6 localities in this region.
Habit: tabular microcrystals
Colour: iridescent
Description: Some beautifully developed crystals have come from the Strickland Quarry, including small brilliant ones in granular lepidolite (Schooner, 1961). A few years ago, some tiny iridescent tabular crystals were noted in specimens of coarsely granular golden-brown zinnwaldite from the Strickland quarry. X-ray study indicates they are loellingite (Schooner. circa 1985).
Loveringite
Formula:(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
Ludlamite
Formula:Fe2+3(PO4)2 · 4H2O
Habit: cleavable masses
Colour: pale green
Description: "Light green cleavages were associated with siderite and triphylite. It also formed thin borders along messelite areas in hydrothermally altered triphylite." (Schooner 1961)
References:
Maghemite
Formula:(Fe3+0.670.33)Fe3+2O4
Habit: massive
Colour: brown
Description: Alteration of magnetite found on biotite gneiss in the rock quarry uphill from the pegmatite. Referenced and photographed by Weissmand and Nikischer of Excalibur Mineral Corp. Harold Moritz collection contains a similar specimen purchased from them.
Magnesio-hornblende
Formula:◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Localities: Reported from at least7 localities in this region.
Habit: elongated prismatic
Colour: black
Description: Mostly as a metamorphic retrograde alteration of pyroxene in the host metagabbro, but also as an uncommon mineral in the open vein assemblage - a rarity in the state. Crystals to 1 cm.
Magnesite
Formula:MgCO3
Habit: rhombohedral
Colour: tan to brown
Description: Small rhombs<1 cm common, but crystals can reach several cm. Much more common than reported ankerite. Iron typically in the range of 0.05-0.30 apfu, though reportedly a few samples have outer rims grading to pure siderite.
Magnesite var. Iron-bearing Magnesite
Formula:(Mg,Fe)CO3
Habit: rhombohedral
Colour: tan to light brown
Description: Crystals to several cm. Much more common than reported ankerite. Iron typically in the range of 0.05-0.30 apfu, though reportedly a few samples have outer rims grading to pure siderite.
Magnetite
Formula:Fe2+Fe3+2O4
Localities: Reported from at least78 localities in this region.
Habit: Striated octahedrons to dodecahedrons
Colour: metallic gray to black
Description: Typically coated with a thin layer of muscovite that can be carefully removed.
Malachite
Formula:Cu2(CO3)(OH)2
Localities: Reported from at least64 localities in this region.
Habit: needle druses
Colour: light green
Description: small, light green, velvety needles in druses
'Manganese Oxides'
Localities: Reported from at least11 localities in this region.
'Manganese Oxides var. Manganese Dendrites'
Localities: Reported from at least10 localities in this region.
Habit: dendritic coatings
Colour: black to dark brown
Manganite
Formula:Mn3+O(OH)
Description: No data.
Marcasite
Formula:FeS2
Localities: Reported from at least13 localities in this region.
Margarite
Formula:CaAl2(Al2Si2O10)(OH)2
Habit: micaceous, fibrous, compact
Colour: white, gray, pale green
Description: As bands of soft but brittle parallel fibers with pearly luster surrounding and/or replacing some topaz crystals. Grading to micaceous to granular, the latter especially in the cores of altered crystals. Associated with unaltered topaz, muscovite, quartz, fluorite in cross-cutting hydrothermal veins. Confirmed using Raman spectroscopy by Paul Bartholomew, U. New Haven, 2014.
'Margarodite'
Description: A supposed variety of muscovite found along the contact of cross-cutting quartz-topaz-fluorite-muscovite veins with the host amphibolite. It is an old term that has not significance and should be abandoned.
Marialite
Formula:Na4Al3Si9O24Cl
Habit: radiating acicular
Colour: white, pale to dark green
Fluorescence: pink to lavender
Description: As large radiating acicular masses in the amphibolite associated with microcline, oligoclase, quartz, sulfides and clinochlore. Also along contact zones of the amphibolite with the cross-cutting quartz-topaz-fluorite-muscovite veins associated with phlogopite and beryl.
Massicot
Formula:PbO
Colour: yellowish
Description: From Schooner (circa 1980s)" "Some rich specimens, showing soft yellowish massicot in cellular quartz, derived from the alteration of galena, were found in the last lead mine tunnel toward the river. X-ray study indicates a mixture of massicot and litharge, with massicot predominating."
Masutomilite
Formula:K(LiAlMn2+)[AlSi3O10]F2
Meionite
Formula:Ca4Al6Si6O24CO3
Melanterite
Formula:Fe2+(H2O)6SO4 · H2O
Localities: Reported from at least16 localities in this region.
Mesolite
Formula:Na2Ca2Si9Al6O30 · 8H2O
Habit: acicular, radiating
Colour: white
Description: At least some of what has been considered natrolite (visually) from this locality proved to be mesolite (EDS), though other crystals could still be natrolite.
Messelite
Formula:Ca2Fe2+(PO4)2 · 2H2O
Habit: massive curved, lamellar aggregates, acicular microcrystals
Colour: white to tan, sometimes a green coating of an unknown.
Description: "Many solid white or tan masses, with a curved lamellar structure, were collected; some were two inches across. The messelite was intergrown with siderite, or embedded in triphylite. Distinct crystals, with a pearly luster, were noted in vugs of the massive mineral." Schooner (1961). Associated with triphylite, siderite, strunzite, laueite, mitridatite, ludlamite, vivianite.A green mineral thought to be beraunite was tested by XRD (with some matrix) at the National Museum Prague (dr. Jiri Sejkora) and found to be "no beraunite but something similar to messelite". The green may be only a coating.
References:
Meta-autunite
Formula:Ca(UO2)2(PO4)2 · 6H2O
Localities: Reported from at least29 localities in this region.
Habit: thin flakes
Colour: pale yellow-green
Fluorescence: green
Description: used to be collected in genuine museum pieces
Metaswitzerite
Formula:Mn2+3(PO4)2 · 4H2O
Description: Januzzi reported it as switzerite, which dehydrates to metaswitzerite according to Zanazzi (1986). Januzzi reference provides no details. Caption for http://www.mindat.org/photo-199679.html indicates confirmation by unknown methods.
Metatorbernite
Formula:Cu(UO2)2(PO4)2 · 8H2O
Localities: Reported from at least15 localities in this region.
Habit: tabular
Colour: emerald green
Description: micaceous flakes are quite large, being about one-eighth inch across (Jones (1960))magnificent specimens...was common, around l94l or 1942 (Schooner (1958)sometimes covers the specimens so thickly as to give them a solid green appearance (Little 1942)
'Mica Group'
Microcline
Formula:K(AlSi3O8)
Localities: Reported from at least193 localities in this region.
Colour: white to pale tan
Description: Good subhedral crystals where formed against the quartz cores of the pegmatites. Stugard (1958) established that microcline is the K-feldspar of tbe pegmatite district.
Microcline var. Amazonite
Formula:K(AlSi3O8)
Habit: massive to subhedral prismatic
Colour: pale green
Description: Concentrated at the intermediate/quartz core zone boundary where inward oriented, subhedral prismatic crystals reach 30 cm. Color is generally pale and patchy within crytals, but some zones approach aqua.
Microcline var. Hyalophane
Formula:(K,Ba)[Al(Si,Al)Si2O8]
Habit: prismatic
Colour: pale yellow-white
Description: "A few nicely formed yellowish hyalophane crystals (adularia type) were found in vugs of spessartine crystals at the Jail Hill quarry in Haddam, associated with a lens of manganese silicates and oxides. Spectrographic analysis indicates the hyalophane is manganoan." Schooner (circa 1985). Crystals reach about 1 cm.
'Microlite Group'
Formula:A2-mTa2X6-wZ-n
Localities: Reported from at least21 localities in this region.
Habit: octahedral
Colour: yellow-green to brownish black
Description: Usually tiny crystal<5 mm. A crystal from the White Rocks Quarry further up the same pegmatite dike was analyzed by EDS and found to be calciomicrolite.
Milarite
Formula:K(◻H2O)Ca2(Be2Al)[Si12O30]
Mimetite ?
Formula:Pb5(AsO4)3Cl
Description: Included in a list of minerals with no details on occurrence of confirmation.
Minium ?
Formula:Pb3O4
Colour: orange-red
Description: From Schooner (circa 1980s): "Dull orange-red minium is one of the lead oxides found at the lowest of the tunnels between River Road and the Connecticut River, in Middletown. This material did not yield the good X-ray pattern of the other lead oxides, massicot, litharge, and plattnerite. It is assumed to be fine-grained or impure. Interestingly, no hematite peaks were seen."
Mitridatite
Formula:Ca2Fe3+3(PO4)3O2 · 3H2O
Habit: coatings
Colour: greenish yellow
Description: Greenish yellow coatings on the phosphate minerals in the Yale collection, some are labeled as mitridatite.
Molybdenite
Formula:MoS2
Localities: Reported from at least34 localities in this region.
Habit: hexagonal, tabular
Colour: metallic gray
Description: Excellent euhedral crystals to 5 cm
Monazite-(Ce)
Formula:Ce(PO4)
Localities: Reported from at least18 localities in this region.
Habit: subhedral, blocky
Colour: brown-red
Description: Recent collecting aided by ionizing radiation detectors (May 2012) has turned up an approximately 15-cm-long, subhedral crystal weighing around 4 kg and a few other smaller crystals to 8 cm. These are the first crystals found in the pegmatite since 1933 and may be the largest from Connecticut.
'Monazite Group'
Formula:REE(PO4)
Localities: Reported from at least10 localities in this region.
Colour: yellow-brown
Description: "beautiful yellowish-brown monazite crystals, up to a couple of inches long and quite glassy, are sometimes found. [David] Seaman has established their identity by an x-ray test." Schooner (1961).
Montebrasite
Formula:LiAl(PO4)(OH)
Habit: typically anhedral
Colour: white or pinkish, with brown rind
Description: called amblygonite, but shown by others to be montebrasite
Montmorillonite
Formula:(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Localities: Reported from at least8 localities in this region.
Colour: brownish
Description: encrustations on pegmatite (Zodac 1941)
'Moonstone'
Moraesite
Formula:Be2(PO4)(OH) · 4H2O
Habit: Acicular, encrustations
Colour: white
Description: Merged sprays of acicular crystals forming a white crust on massive beryl, with hydroxylherderite.
Mordenite
Formula:(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Morinite ?
Formula:NaCa2Al2(PO4)2(OH)F4 · 2H2O
Description: Unconfirmed. According to Schooner (circa 1985): "A few masses of Strickland quarry natromontebraesite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose [USGS]. Ronald E. Januzzi had earlier collected material, on the old dumps, in which the brazilianite occurs as confused white aggregates, with hydroxylapatite and possibly morinite."
Muscovite
Formula:KAl2(AlSi3O10)(OH)2
Localities: Reported from at least215 localities in this region.
Habit: pseudohexagonal tabular to elongated crystals
Colour: dark silver to bronze
Description: Sharp, dark, well-formed crystals.
Muscovite var. Damourite
Formula:KAl2(AlSi3O10)(OH)2
Habit: anhedral scales, pseudomorphs after kyanite
Description: "as pearly scales in quartz and as more compact talc-like masses that are apparently pseudomorphs after kyanite", Januzzi, 1959.
Muscovite var. Fuchsite
Formula:K(Al,Cr)3Si3O10(OH)2
Habit: micaceous grains
Colour: emerald green
Description: Streaks and zones of green color in muscovite-annite schist. XRF reveals 0.56% Cr oxide. This may have lead miners to chase what they thought was "copper ore" in what today is obviously barren schist (though there is some malachite here as well). Also confirmed as muscovite via Raman spectroscopy.
Muscovite var. Illite
Formula:K0.65Al2.0[Al0.65Si3.35O10](OH)2
Habit: earthy
Colour: pastel pink
Description: clay-like masses in small voids in the aplitic zone of the pegmatite.
Muscovite var. Schernikite (FRL)
Formula:KAl2(AlSi3O10)(OH)2
Habit: Rhombic fibers in parallel or twin-position
Colour: white, tan, pink
Description: A variety of pink fibrous muscovite so far unique to Gillette, as described by Scovil (1992): "Bowman (1902) goes into great detail in his analysis of muscovite and lepidolite from Gillette. The two form interesting overgrowths, with pale green muscovite at the center. This core is surrounded by a sharply defined zone of pink lepidolite. The lepidolite was subsequently overgrown by pink fibrous muscovite. The fibers are rhombic in cross section and are in parallel or twin-position so that the mass can be cleaved as if a single crystal...The fibrous muscovite also occurs as inclusions in quartz crystals. The muscovite starts at a pin point in the quartz crystals interior and becomes a divergent sub-parallel bundle of fibers as it reaches the surface where it is often the preferred site for a cookeite hemisphere."
Muscovite var. Sericite
Formula:KAl2(AlSi3O10)(OH)2
Description: Included in a list of minerals without details, but plausible for the geology.
Nacrite ?
Formula:Al2(Si2O5)(OH)4
Description: Dick Schooner reports (via Januzzi, 1976) finding nacrite in an unspecified pegmatite, no details are provided.
Nantokite
Formula:CuCl
Habit: micro tetrahedra, etched to skeletal or in parallel groups
Colour: colorless to white
Description: Henderson (1967) reports: colorless translucent to white opaque 0.5 mm tetrahedra with and on cuprite and atacamite. Some of the crystals showed triangular etch pits on the tetrahedron faces (Fig. 1) and many were skeletal (Fig. 2) or occurred in parallel growth.Identification was made as follows. Very few white tetrahedral minerals are known, and of these, only nantokite CuCl and marshite CuI were likely to form from copper in the presence of sea water. Both these minerals are optically isotropic, and the above material was found to be so. In addition, the index of refraction was found to be about 1.93. Nantokite has an index of 1.930 while marshite has an index of 2.346. As a matter of fact, the index of refraction is alone sufficient to identify this mineral as nantokite since only a handful of minerals have indices as high as 1.9, and the above are the only tetrahedral minerals in the group.Many of the nantokite crystals were altered in part or entirely to a lime green mineral, and a few to a sulfur yellow material. It is interesting to note that nantokite has been reported to alter in air to the green mineral paratacamite.
Native Antimony ?
Formula:Sb
Habit: broad plates
Description: Reference notes that the validity needs confirmation, but this was apparently either not done of found to be something else (ilmenite?).
Native Arsenic ?
Formula:As
Native Bismuth
Formula:Bi
Localities: Reported from at least9 localities in this region.
Habit: plates, or small lamellar masses
Description: "disseminated in a vein of quartz, in brilliant plates, or small lamellar masses, seldom more than an inch in diameter" Robinson (1825)
Native Copper
Formula:Cu
Localities: Reported from at least16 localities in this region.
Habit: massive
Colour: Coated with green malachite.
Description: A few very large nuggets found in glacial till or attached to arkosic bedrock. The largest was found in 1870 0.5 mile north of East Rock and weighed about 200 pounds (90 kg).
Native Gold
Formula:Au
Description: Gold nuggets panned in a river stream. Originally found by Nekkhi Murtishi in 2019.
Native Iron
Formula:Fe
Native Iron var. Kamacite
Formula:(Fe,Ni)
Native Silver
Formula:Ag
Description: trace amounts associated with acanthite
Native Sulphur
Formula:S8
Localities: Reported from at least9 localities in this region.
Native Tellurium
Formula:Te
Description: A careful reading of Silliman (1819a, 1819b, 1819c) indicates the tellurium was not native but chemically extracted from ferberite, which was also not from Monroe, but from the unique ferberite after scheelite deposit in Trumbull also worked by Ephraim Lane. Their origin was cleared up by Hitchcock and Silliman (1826).Januzzi misreads Silliman and mentions "tellurides" in his publications. Because the ferberite crystals from Lane's Mine of Trumbull have the shape of scheelite crystals (they are pseudomorphs with which he had no experience and was quite perplexed by) he thought he had a new mineral with tellurium in it. Silliman never mentions tellurides and his extraction of tellurium from ferberite has never been replicated.
Natrolite
Formula:Na2Al2Si3O10 · 2H2O
Localities: Reported from at least14 localities in this region.
Habit: acicular prisms with tetragonal pyramidal terminations
Colour: white
Description: single and bundles of crystals to 1 inch or so, associated with analcime, prehnite, micro heulandite
'Natromontebrasite'
Description: Schooner (circa 1985) reports: "A few years ago, John Gillespie did a spectrographic analysis on a sample submitted by the author, finding much Na and hardly any Li. It is quite possible that natromontebrasite was fairly common... A few masses of Strickland quarry natromontebrasite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose [USGS]." This mineral was discredited in 2007 as a mixture of montebrasite, lacroixite and wardite.
Natrophilite (TL)
Formula:NaMn2+PO4
Habit: massive, local alterations within lithiophilite
Colour: deep, wine-yellow
Description: Small regions within lithiophilite nodules. Description of type material from Brush and Dana (1890): "The luster is brilliant resinous to nearly adamantine; it was, in fact, the brilliancy of the luster which first attracted our attention, and which is, so far as the eye is concerned, its most distinguishing character. The mineral itself is perfectly clear and transparent, but the masses are much fractured and rifted. The surfaces are often covered by a very thin scale of an undetermined mineral, having a fine fibrous form, a delicate yellowish color and silky luster. This same mineral penetrates the masses wherever there is a fracture surface of cleavage or otherwise. What the exact nature of this mineral is we are unable to say, since the amount is too small to admit of a satisfactory determination - it appears to be a manganesian phosphate. It is evidently an alteration-product and would seem to imply that natrophilite is rather subject to easy chemical change. In any case this silky film is one of the characteristic features of the mineral, and directs attention to it at once even over the surface of a hand specimen where it is associated with lithiophilite and perhaps three or four other of these phosphates."
Nepheline
Formula:Na3K(Al4Si4O16)
Habit: anhedral to subhedral grains
Colour: pale gray
Description: Major component of the rock.
Nickeline
Formula:NiAs
Nickelskutterudite
Formula:NiAs3
Habit: grains
Description: "Shepard [1837] initially identified the Co-Ni bearing arsenide as the cubic di-arsenide, smaltite but after obtaining and studying additional material from his own mine he pronounced it to be a new orthorhombic tri-arsenide for which he proposed the name "Chathamite"....In the mid 1850s Genth (in Goodrich, 1854) questioned Shepard's identification and suggested that Chathamite was simply an iron rich variety of the cubic arsenide chloanthite (a misconception that perpetuated up to, and including, the 7th edition of Dana's Manual of Mineralogy). As it turns out, Shepard's Chathamite is indeed orthorhombic, but today would be classified as a nickel-cobalt rich loellingite." Gray (2005)
Nontronite
Formula:Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Habit: clay
Colour: greenish
Description: A greenish clay mineral, forming a vein or zone, near the contact of a nepheline-bearing dike and granite gneiss has been identified as nontronite. It was studied by X-ray diffraction.
Opal
Formula:SiO2 · nH2O
Localities: Reported from at least56 localities in this region.
Habit: bubbly coatings
Colour: colorless to aqua
Fluorescence: green
Description: Coatings mostly invisible unless illuminated by SW UV, rarely colored blue-green in daylight and if thick enough has a translucent, fine-grained bubbly appearance.
Opal var. Hyalite
Formula:SiO2 · nH2O
Opal var. Opal-AN
Formula:SiO2 · nH2O
Localities: Reported from at least52 localities in this region.
Habit: encrustations
Colour: colorless
Fluorescence: bright green
Description: Gelatinous coatings and encrustations, some easily visible without using a UV lamp, on both pegmatite and host gneiss. UV response best in SW, progressively less in MW to LW.
Orthoclase
Formula:K(AlSi3O8)
Localities: Reported from at least20 localities in this region.
'Orthopyroxene Subgroup'
Oxy-dravite
Formula:Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
Palermoite
Formula:Li2SrAl4(PO4)4(OH)4
Colour: colorless
Description: "A colorless acicular mineral, found by the author in a vug of messelite, at the State Forest Mine in East Hampton, does not fit the description of any typical species except palermoite. Unfortunately, very little was obtained; an excellent sample was sent away for testing, but was evidently lost" (Schooner 1961). Most likely, this was a very poor guess.
References:
Palygorskite ?
Formula:◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
Habit: fibrous
Colour: white
Description: Included in a list of minerals without details. Most likely this fibrous mineral is actually sepiolite. TEM-EDS analysis of a similar sample from the marble in Danbury proved to be sepiolite.
Paragonite
Formula:NaAl2(AlSi3O10)(OH)2
Habit: anhedral
Colour: white to gray
Description: Sillimanite, collected in a quartz vein through schist, is altered, in a few samples, to a very soft, greasy-feeling, white or gray material. X-ray study indicates a mixture of fine-grained paragonite and subsidiary pyrophyllite. A fingernail easily scratches it.
Paratacamite ?
Formula:Cu3(Cu,Zn)(OH)6Cl2
Colour: lime green
Description: Many of the nantokite crystals were altered in part or entirely to a lime green mineral, which may be paratacamite.
Pargasite ?
Formula:NaCa2(Mg4Al)(Si6Al2)O22(OH)2
Colour: bright green
Description: Included in lists, with no details. Probably confusion with diopside.
Parsonsite
Formula:Pb2(UO2)(PO4)2
Habit: alteration of uraninite
Description: Schooner (circa 1985) reports: "A soft uraninite alteration, on a Wesleyan University sample from the Strickland quarry, gave the X-ray pattern of parsonsite. The available material was consumed in testing."
Pectolite
Formula:NaCa2Si3O8(OH)
Localities: Reported from at least9 localities in this region.
Habit: spherical aggregates of radiating acicular crystals
Colour: white, light tan
Description: "The author was given several fine specimens of radiating white pectolite, with anhydrite and thaumasite, from a road cut, in trap-rock, at Tariffville. The material was very clean, though it has since become tan, and, occurred in extremely hard and non-porous basalt." Schooner (1961).
Pentlandite
Formula:(NixFey)Σ9S8
Petalite
Formula:LiAl(Si4O10)
Habit: massive
Colour: white with brown rind - overall tan appearance
Description: massive, embedded in pollucite
'Petrified Wood'
Habit: banded, massive
Colour: grey, black, reddish
Description: Huge gnarly masses, trunk sections showing grain or distinct branches, with their knots, bark and ligneous layers often visible, sometimes four or five inches in diameter. Small cavities can be lined with minute quartz crystals and layers of chalcedony.
'Petroleum'
'Petroleum var. Bitumen'
Localities: Reported from at least17 localities in this region.
Colour: black
Description: "...found in veins in connection with crystallized quartz; the quartz often appears in geodes whose cavities are filled with coal [bitumen]; narrow veins have their walls lined with crystallized plates of quartz, and are filled with coal [bitumen]; the coal [bitumen] has never been found in large masses: the largest that I have seen not more than two or three pounds. The larger masses are foliated, shining, brittle, and very bituminous; but it more usually has the appearance of cinders so mixed up with silicious matter as to be hardly combustible." Percival, 1822.
Petscheckite
Formula:UFe(Nb,Ta)2O8
Pharmacosiderite
Formula:KFe3+4(AsO4)3(OH)4 · 6-7H2O
Habit: drusy coatings
Colour: grass-green to gray
Description: "observed in drusy coatings on this ore at the arsenic-mine in Derby. Its color is grass-green with a shade of gray" Shepard (1837)
Phenakite
Formula:Be2SiO4
Description: Richard Schooner collected a specimen showing a few "tiny colorless" crystals described as "short-prismatic, with compound terminations" in a vug with spessartine crystals. Gunnar Bjareby identified them as phenakite. Anthony Albini now possesses this specimen.
'Phillipsite Subgroup'
Formula:(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
Description: This zeolite has the same morphology as harmotome, but according to Tschernich's 1992 "Zeolites of the World", harmotome is typical of lead deposits whereas phillipsite occurs in volcanics. This locality is thus favorable for harmotome. Henderson (1979) analyzed crystals and found that "...microprobe analysis shows the Ba:Si ratio to be 1.2:6, and the amounts of K, Na and Ca to be low. This data fits harmotome perfectly, and is not consistent with either phillipsite or wellsite."
Phlogopite
Formula:KMg3(AlSi3O10)(OH)2
Localities: Reported from at least24 localities in this region.
Phosphophyllite
Formula:Zn2Fe2+(PO4)2 · 4H2O
Colour: green
Description: "occurs as a hydrothermal alteration of sphalerite and triphylite, in vugs of messelite, with vivianite, at the State Forest Mine in East Hampton. Very few specimens have been found, and they are small; the crystals are green and quite glassy, the largest being about an eighth of an inch in diameter. The author suspected the identity of this material from the time he discovered it, several years ago, but it was not confirmed until recently. Some of the optical data follows: R. I. 1.615; optical angle 45 degrees, more or less; optic sign negative; birefringence high." (Schooner 1961)
Phosphuranylite
Formula:KCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
Description: "Phosphouranylite is associated with autunite, torbernite, and uranophane (or their dehydrated forms) on old specimens from...the Rock Landing quarry. The identification was made by Clifford Frondel." Schooner (circa 1980s).
Pickeringite
Formula:MgAl2(SO4)4 · 22H2O
Localities: Reported from at least9 localities in this region.
Habit: fibrous
Colour: pale yellow
Description: Spongy mass of tiny fibrous crystals with included weathered-out mica flakes.
Piemontite
Formula:(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
Pigeonite
Formula:(CaxMgyFez)(Mgy1Fez1)Si2O6
Habit: grains
Colour: colorless to white
Description: Common accessory in local diabasic and basaltic rocks.
'Pinite'
Habit: massive, fine-grained alteration of spodumene
Colour: grayish shades of green, yellow, purple
Description: Multi-colored alteration pseudomorphs after spodumene, with a soapy feel, like serpentine. Schooner (1958) elaborates: "During the active period at the locality, a bewildering array of 'pinite' specimens were encountered. They were of all colors and resembled jade, petrified wood, and other things. Many were perfect pseudomorphs after the original mineral."
Pitticite ?
Formula:(Fe, AsO4, H2O) (?)
Description: Reported by Dick Schooner in Januzzi (1976) but no details provided.
'Plagioclase'
Formula:(Na,Ca)[(Si,Al)AlSi2]O8
Localities: Reported from at least10 localities in this region.
Planerite
Formula:Al6(PO4)2(PO3OH)2(OH)8 · 4H2O
Description: Schooner (circa 1985) writes that "A Boston Mineral Club list of Strickland quarry minerals, dating from about 1940, describes planerite as green crusts on fractured quartz. Several pieces of that material, resembling variscite, were collected at the time; unfortunately, none is now available for study."
Plattnerite ?
Formula:PbO2
Colour: sooty black
Description: From Schooner (circa 1980s): "Plattnerite formed a sooty black coating on altered galena, with considerable massicot and litharge, at one of the Middletown lead mines. The identity was established by X-ray study."
'Plessite'
Plumbogummite
Formula:PbAl3(PO4)(PO3OH)(OH)6
Habit: rhombohedral
Colour: bluish-green
Description: Very microscopic crystals forming crusts on quartz.
Pollucite
Formula:(Cs,Na)2(Al2Si4O12) · 2H2O
Colour: colorless
Description: In the lithium mineral zone of the western pegmatite. Masses and cleavages to as much as a foot in length and six to eight inches in width have been recovered. It is closely associated with spodumene crystals, rubellite and other colored lithium tourmalines, caesium beryl, lepidolite, montebrasite, blue and white cleavelandite, and smoky quartz. It has a platy structure or it occurs as fractured masses, the fractures often being filled by dull white chalcedony.
Powellite
Formula:Ca(MoO4)
Habit: powdery
Colour: white, yellowish or greenish
Description: powdery white, yellowish or greenish material lining vugs, or as excellent plates alternating with plates of molybdenite.
Prehnite
Formula:Ca2Al2Si3O10(OH)2
Localities: Reported from at least62 localities in this region.
Habit: botryoidal masses
Colour: pale blue through pale green to pale yellow to white
Description: Excellent specimens in a variety of colors and sizes, associated with zeolites, datolite, apophyllite, calcite, quartz, pumpellyite.
Pseudomalachite ?
Formula:Cu5(PO4)2(OH)4
'Pumpellyite Group'
Formula:Ca2XZ2[Si2O6(OH)][SiO4](OH)2A
Habit: microfibrous, botryoidal, bowtie aggergates
Colour: dark olive green, blue-green, black
Description: The group includes pumpellyite series and julgoldite series. The former usually lines cavities while that latter may form late on top of other minerals. Few specimens are differentiated by analyses, however.
Pumpellyite-(Mg)
Formula:Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)
Habit: fibrous micro-crystals
Colour: dark olive green
Description: Based on the chemical formula given in Garabedian (1998), the species is pumpellyite-(Mg). Few specimens have been confirmed by analyses to differentiate it from several other possible pumpellyite group minerals. One of the first minerals to crystallize in vesicles, so is typically present between later minerals and the basalt matrix, a second stage crystallization came after early calcite, anhydrite, chalcedony, a trapezohedral zeolite, and datolite and so may coat or replace these minerals. May by itself fill entire vesicles.
'Pumpellyite Subgroup'
Formula:Ca2XAl2[Si2O6(OH)][SiO4](OH)2A
Localities: Reported from at least11 localities in this region.
Description: common in local traprock as micro aggregates and druses.
Purpurite
Formula:Mn3+(PO4)
Habit: encrustations, coatings
Colour: purple
Description: "Supergene alteration resulted in the formation of manganese oxide and purpurite from lithiophilite" Shainin (1946). Yale collection has a few specimens that show purple coating on black exterior of altered lithiophilite nodules.
Pyrite
Formula:FeS2
Localities: Reported from at least154 localities in this region.
Habit: pyritohedral and in combination with cube
Colour: pale brassy
Description: Excellent striated to smooth-faced pyritohedrons up to several cm across, commonly in aggregates, embedded in siderite and sphalerite
'Pyrobitumen var. Albertite'
'Pyrochlore Group'
Formula:A2Nb2(O,OH)6Z
'Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)'
Formula:(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
References:
Harold Moritz CollectionIdentified by Harold Moritz: Visual Identification
Pyrolusite
Formula:Mn4+O2
Localities: Reported from at least26 localities in this region.
Habit: massive, botryoidal or as lustrous tabular crystals to 3mm in pockets in goethite.
Colour: black
Description: According to Schairer (1931): "Occurs crystallized (probably pseudomorphous) at Salisbury and Kent, also as aggregates of coarse columnar grains or needles or as coatings on limonite. The quality of the iron produced at the iron mines of northwestern Connecticut was due to the presence of this mineral in the ore."
Pyromorphite
Formula:Pb5(PO4)3Cl
Localities: Reported from at least12 localities in this region.
Habit: radiating groups of elongated prismatic
Colour: green
Description: Fine green crystals, some of which comprise radiating groups. Schooner (1961) describes "beautiful specimens...These are equally small, compared with pyromorphite from classical localities, but they are clean and quite attractive. Some show the mineral, associated with wulfenite crystals, in vugs of pegmatite, near ore veins; others have pyromorphite filling seams in green and purple fluorite."
Pyrope
Formula:Mg3Al2(SiO4)3
Description: Although many local amateur gem cutters believe the garnets here to be pyrope-dominant, analyses show them to be almandine-dominant.
Pyrophanite
Formula:Mn2+TiO3
Habit: tabular
Colour: dark red to black
Description: "Very small brilliant tabular crystals, looking black through dark red under strong magnification, are commonly embedded in tephroite, kutnohorite, pyroxymangite, and spessartine from the Jail Hill quarry.Studies at the USGS and the University of Michigan have confirmed the identification."
Pyrophyllite
Formula:Al2Si4O10(OH)2
Description: Sillimanite, collected in a quartz vein through schist, is altered, in a few samples, to a very soft, greasy-feeling, white or gray material. X-ray study indicates a mixture of fine-grained paragonite and subsidiary pyrophyllite. A fingernail easily scratches it.
'Pyroxene Group'
Formula:ADSi2O6
Localities: Reported from at least8 localities in this region.
Description: rounded grains in a calcite vein.
Pyroxmangite
Formula:Mn2+SiO3
Habit: cleavable masses
Colour: pink
Description: Bustamite and pyroxmangite occurred at the Jail Hill quarry; one light pink, with spessartine and dolomite; the other a deeper pink, and with a more fibrous cleavage, associated with tephroite and yellow spessartine. X-ray patterns were carefully studied and spectrographic tests made. Only a few rich specimens were found. Earlier, both of these minerals had been dismissed as "rhodonite".
Pyrrhotite
Formula:Fe1-xS
Localities: Reported from at least41 localities in this region.
Habit: tabular pseudohexagonal
Colour: bronzy
Description: A rare accessory mineral of the open vein assemblage. Euhedral crystals to 1.5 cm very rare in Connecticut - this may be the only such locality.
Quartz
Formula:SiO2
Localities: Reported from at least418 localities in this region.
Habit: stubby prismatic, complex parallel-growth, corn cob
Colour: colorless to milky (typically in an outer zone)
Description: large complex crystals to 10 cm or more, smaller crystals radially encrusted acicular laumontite creating coarse columns of crystals
Quartz var. Agate
Formula:SiO2
Localities: Reported from at least14 localities in this region.
Colour: Typical (for the Orenaug Basalt) bands of white, blue-gray, smoky brown.
Quartz var. Amethyst
Formula:SiO2
Localities: Reported from at least47 localities in this region.
Habit: scepters
Colour: purple
Description: hoppered, complex scepters on milky quartz to 9 cm
Quartz var. Blue Quartz
Formula:SiO2
Quartz var. Carnelian
Formula:SiO2
Description: Found as loose rocks in glacial till.
Quartz var. Chalcedony
Formula:SiO2
Localities: Reported from at least33 localities in this region.
Habit: banded fortification agate
Colour: blue, white to gray
Description: Formed early in the paragenesis, typically lining vesicle walls as blue to gray fortification agate, encrusted by fine-grained, white chalky-looking quartz or quartz crystal druses. Commonly pseudomorphed by quartz, datolite, pumpellyite. May encrust "water level" calcite wafers.
Quartz var. Citrine
Formula:SiO2
Description: Schooner (1958): "Citrine, of fine gem quality, was formerly found at the Strickland Quarry, and a few stones were facetted from it... evidently the “topaz” which some people say was taken from there."
Quartz var. Ferruginous Quartz
Formula:SiO2
Quartz var. Milky Quartz
Formula:SiO2
Localities: Reported from at least9 localities in this region.
Habit: stubby prismatic, complex parallel-growth, corn cob
Colour: colorless to milky
Description: large complex crystals to 10 cm or more, smaller crystals radially encrusted acicular laumontite creating coarse columns of crystals
Quartz var. Rock Crystal
Formula:SiO2
Habit: large distorted crystals and delicate elongated micro-crystals
Colour: colorless
Description: Large blocky, distorted crystals that are overgrowths on earlier fragmented quartz can be colorless, though they are typically smoky. In vugs with secondary minerals such as K-rich albite, bertrandite, micas, cookeite, etc., it occurs as delicate, glassy, doubly-terminated microcrystals sometimes in spindly aggregates.
Quartz var. Rose Quartz
Formula:SiO2
Localities: Reported from at least17 localities in this region.
Quartz var. Rutilated Quartz
Formula:SiO2
Quartz var. Sard
Formula:SiO2
Colour: deep red, bluish red, and yellow
Description: Found as loose rocks in glacial till.
Quartz var. Sardonyx
Formula:SiO2
Colour: deep red, bluish red, and yellow
Description: Found as loose rocks in glacial till.
Quartz var. Sceptre Quartz
Formula:SiO2
Quartz var. Smoky Quartz
Formula:SiO2
Localities: Reported from at least74 localities in this region.
Habit: scepters, reverse scepters, Tessin habit
Colour: smoky
Description: A common mineral in the open vein assemblage. Mostly small<1-1.5 cm crystals with wide variety of complex forms, Tessin and scepters, reverse scepters and combinations. Many are doubly-terminated. Larger crystals can reach up to 7 cm and are typically Tessin habit showing the various steep positive rhombohedra, such as {20bar21}, {30bar31} and {50bar53} and their negative equivalents {03bar32}, {02bar21}, {03bar31} and {05bar53}.
Rammelsbergite ?
Formula:NiAs2
Description: Reported by Dick Schooner in Januzzi (1976) p. 235, no details provided.
Realgar ?
Formula:As4S4
Description: According to an unconfirmed report by Schooner (circa 1980s), very sparingly associated with arsenopyrite.
Reddingite (TL)
Formula:(Mn2+,Fe2+)3(PO4)2 · 3H2O
Habit: bipyramidal, pseudo-octahedral - in tiny pockets in massive material
Colour: pale rose-pink to yellowish-white, sometimes brown
Description: From the type material description in Brush and Dana (1878): "Reddingite occurs sparingly in minute octahedral crystals; belonging to the orthorhombic system. It is also found more generally massive with granular structure; it is associated with dickinsonite, and sometimes with triploidite. As compared with the other species which have been described it is a decidedly rare mineral. The massive mineral shows a distinct cleavage in one plane...crystals are occasionally coated dark from surface alteration" Difficult to distinguish from pink hureaulite or yellowish fillowite.
Rhabdophane-(La) (TL)
Formula:La(PO4) · H2O
Type Locality:
Habit: botryoidal to stalagtitic
Colour: brownish to pale yellow-white, pinkish
Rhabdophane-(Nd) (TL)
Formula:Nd(PO4) · H2O
Type Locality:
Habit: botryoidal to stalagtitic
Colour: brownish to pale yellow-white, pinkish
Rhodochrosite
Formula:MnCO3
Rhodonite
Formula:CaMn3Mn[Si5O15]
Description: An historical error. May have been confused with thulite, which has been found in calc-silicate rocks (in Haddam) within the Collins Hill formation that hosts the western pegmatites in this area.
Rockbridgeite
Formula:(Fe2+0.5Fe3+0.5)2Fe3+3(PO4)3(OH)5
Habit: stains and encrustations
Colour: dark greenish-black to black
Description: Mostly as thin crusts and stains in matrix near triphylite pods and as a black rind around the pods, associated with vivianite. "found intimately associated with vivianite where it occurs in small greenish black masses, and in stalactitic form with a radial fibrous structure. The surface of the incrustations are composed of indistinct microcrystallized individuals of rockbridgeite" Januzzi and Seaman (1976)
Romanèchite
Formula:(Ba,H2O)2(Mn4+,Mn3+)5O10
Habit: botryoidal
Colour: very dark brown to black
Description: As masses with conchoidal fracture and black streak in quartz with azurite and malachite. Analyzed 2016 by Peter Cristofono and Tom Mortimer using EDS. Closest other analytical possibility is hollandite, which has a slightly higher Ba:Mn ratio, and doesn't match the physical properties of this material as well as romanechite does.
Rosasite
Formula:(Cu,Zn)2(CO3)(OH)2
Habit: micro duses to radiating acicular aggregates
Colour: pale blue
Description: Henderson (1967) reports: found in several habits. Druses of very small, pale blue, velvety crystals were common; on occasion, the larger crystals of acicular habit formed radiating aggregates. A few single crystals were noted: these formed tapering prisms with wedge shape terminations. An occasional arborescent group of crystals was noted (Fig. 4). The rosasite tended to be further from copper and cuprite than either the nantokite or atacamite and often occurred in the seams of half-consumed coke.The material was identified as rosasite by its color, crystal form and positive test for carbonate and negative test for sulfate. Its optical properties were those of rosasite. It was distinguished from the high-zinc end member of the series, aurichalcite, by its color, aurichalcite tend¬ing toward green.
Roscherite ?
Formula:Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Description: Needs verification because of lack of data. May be greifensteinite described after the reference date.
Rozenite
Formula:FeSO4 · 4H2O
References:
Rutherfordine
Formula:(UO2)CO3
Description: Speculation.
Rutile
Formula:TiO2
Localities: Reported from at least42 localities in this region.
Rutile var. Strüverite
Formula:(Ti,Ta,Fe)O2
Safflorite ?
Formula:(Co,Ni,Fe)As2
Description: Reported by Dick Schooner in Januzzi (1976) p. 235, no details provided.
Samarskite-(Y)
Formula:YFe3+Nb2O8
Localities: Reported from at least13 localities in this region.
Habit: radiating to subparallel prismatic groups with dome terminations
Colour: black
Description: Crystals usually in aggregates (up to 15 cm) typically well terminated but very brittle and easily damaged due to incipient fractures and metamict nature. Fractures conchoidally with lustrous, pitch-black surface. Commonly associated with columbite-(Fe) that has a duller luster especially on the fracture face. Coated with clays from altered surrounding feldspars that are reddish colored, and thin muscovite, both can be removed with micro-blasting using soft abrasive.
Saponite
Formula:Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Locality:Cheshire, New Haven County, Connecticut, USA - erroneously reported
Description: confusion with pumpellyite
Sarcolite
Formula:Na4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Habit: fibrous
Colour: white
Description: According to Januzzi and Seaman (1976), X-ray studies were conducted by Professor Horace Winchell at the mineralogical laboratories at Yale. Associated with triphylite and vivianite. Under the microscope appears as tiny masses of matted fibers and exceedingly fine crystals.
'Scapolite'
Localities: Reported from at least38 localities in this region.
Habit: elongated prismatic with square cross-section
Colour: white
Fluorescence: pink under SW, white under MW and LW UV
Description: Bar-shaped crystals to about 3 cm in quartz. From an unrecorded locality, formerly in the John Legro collection from the 1920s.
Scheelite
Formula:Ca(WO4)
Localities: Reported from at least18 localities in this region.
Colour: White to Honey Yellow
Fluorescence: Light Blue
Description: Excellent crystals of this scheelite are well-known among New England collectors. Primary Tungsten-bearing mineral from the locality. Occasionally, one may find a Wolframite after Scheelite crystal.
Schorl
Formula:NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
Localities: Reported from at least118 localities in this region.
Habit: short trigonal prisms, doubly-terminated
Colour: black
Description: "Excellent doubly-terminated crystals of black tourmaline, 1 to 2 inches in length, and 1/2 to 1 inch in diameter are found at the Iolite locality, often covered with incrustation of autunite." (Davis, 1901).
Scolecite
Formula:CaAl2Si3O10 · 3H2O
Scorodite
Formula:Fe3+AsO4 · 2H2O
Localities: Reported from at least7 localities in this region.
Scorzalite ?
Formula:Fe2+Al2(PO4)2(OH)2
Colour: blue
Description: "Several lean examples of scorzalite and siderite, labeled "Rock Landing quarry", came from the Charles Thomas collection. They had been obtained when the locality was active in the late 1930s. The scorzalite, erroneously called "vivianite" on the label, is of a rich blue color and partly crystallized. The X-ray pattern suggests a composition somewhere between scorzalite and lazulite. A little augelite is intergrown." Schooner (circa 1980s).
Sepiolite
Formula:Mg4(Si6O15)(OH)2 · 6H2O
Habit: fibrous mats
Colour: white to pale gray-brown
Description: Found as a thin layer sandwiched between opposing calcite crystals. Analyzed in 2017 via TEM-EDS. Januzzi (1994) incorrectly called it palygorskite and includes a photo.
'Serpentine Subgroup'
Formula:D3[Si2O5](OH)4
Localities: Reported from at least16 localities in this region.
Habit: columnar
Colour: pale green
Description: In parallel veins up to 5 cm thick cross-cutting lizardite.
'Serpentine Subgroup var. Picrolite'
Formula:D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Habit: columnar
Colour: pale green
Description: In parallel veins up to 5 cm thick cross-cutting lizardite.
Siderite
Formula:FeCO3
Localities: Reported from at least25 localities in this region.
Habit: rhombohedrons
Colour: tan to light brown
Description: Typically as cleavable masses, some lustrous, curved rhombohedral crystals are found in small cavities or frozen in quartz
Sillénite ?
Formula:Bi12SiO20
Habit: coating
Colour: white or yellowish
Description: According to Schooner (circa 1980s) a "thin white or yellowish coating on bismuthinite crystals" may be this mineral. Needs confirmation.
Sillimanite (TL)
Formula:Al2(SiO4)O
Localities: Reported from at least36 localities in this region.
Skutterudite
Formula:CoAs3
Description: "Shepard [1837] initially identified the Co-Ni bearing arsenide as the cubic di-arsenide, smaltite but after obtaining and studying additional material from his own mine he pronounced it to be a new orthorhombic tri-arsenide for which he proposed the name "Chathamite"....In the mid 1850s Genth (in Goodrich, 1854) questioned Shepard's identification and suggested that Chathamite was simply an iron rich variety of the cubic arsenide chloanthite (a misconception that perpetuated up to, and including, the 7th edition of Dana's Manual of Mineralogy). As it turns out, Shepard's Chathamite is indeed orthorhombic, but today would be classified as a nickel-cobalt rich loellingite." Gray (2005)
Smithsonite
Formula:ZnCO3
'Soapstone'
Sodalite
Formula:Na4(Si3Al3)O12Cl
Colour: white
Description: Much altered to zeolites.
Spessartine
Formula:Mn2+3Al2(SiO4)3
Localities: Reported from at least24 localities in this region.
Habit: Dodecahedral
Colour: blood red
Description: Crystals are translucent and partly gemmy, some perfectly formed, reached up to 15 cm across. Seybert's (1823) analysis showed twice as much Mn oxide as Fe oxide, unusual as most garnets from the Middletown pegmatite district are almandine.
Sphalerite
Formula:ZnS
Localities: Reported from at least56 localities in this region.
Habit: pagoda-like polysynthetic twins on (111) resulting in pseudo-hexagonal "prisms" with re-entrant striae
Colour: dark reddish-brown, dark brown, black
Description: In hydrothermal fault veins associated with barite, calcite, fluorite, galena, pyrite, quartz, and zeolites. Pete Dunn analyzed crystals in 1973: “It has been said that the wurtzite from Thomaston Dam, Connecticut, was of a type that changed to sphalerite under the crushing necessary for a powder x-ray photo. This thought intrigued me and I checked it out by taking a regular powder photo after crushing the sample in the usual fashion, and then took another x-ray using the Gandolfi camera which gives powder photos from single crystals. Result — both photos perfect sphalerite patterns, and identical" (Yedlin, 1973a). Henderson (1979) showed diagrams of sphalerite crystals epitaxial on supposed wurtzite, and the other way around, with a (0001) (pinacoidal) face of "wurtzite" matching a (111) (tetrahedral) face of sphalerite. In any case, the crystals from this locality, commonly labeled "wurtzite" appear to be polysynthetically twinning, combined positive and negative tetrahedra of sphalerite on a 6-sided (111) face. Note the re-entrant angles that circumscribe the "prisms" of these crystals, which are indicative of twinning.
Spinel
Formula:MgAl2O4
Habit: subhedral octahedral to euhedral
Colour: greenish-black, blue-gray, pale blue
Description: "It occurs here as greenish-black subhedral to euhedral crystals in limestone associated with chondrodite and perhaps what may be forsterite. The spinel ranges in size from tiny grain-like crystals to those that on occasion exceed the size of a pea." Januzzi (1976).Pale blue octahedral microcrystals in calcite and yellow chondrodite(?) in the Bill Henderson micromount collection at Yale Peabody Museum.
Spodumene
Formula:LiAlSi2O6
Localities: Reported from at least11 localities in this region.
Habit: elongated prisms
Colour: exterior tan to pale grey, interior white to lavender
Fluorescence: lavender-pink in SW, orange-pink in LW
Description: Tons of fragmented crystals were in the dumps, many well terminated. Most crystals etched on the exterior to a "woody" appearance, some crystals altered to pinite. The interior of good crystals is white to lavender and translucent with some rare gem material. Schooner (1958) says that "Rather large crystals, a yard long and a foot wide, were abundant when the locality was active. During the last period of operation, in l954, a great deal of the mineral was uncovered in the lower east wall of the main pit. Part of a wedge-shaped vein of lithium minerals was composed of virtually solid white spodumene. Green and lavender material was also present there, associated with pollucite, amblygonite, lepidolite, and cleavelandite. Most of the green and some of the pink has a good orange fluorescence and a vivid and long sustained orange phosphorescence under short-wave ultra-violet light. Cleavages are still found in the old dumps. Several fine specimens of translucent to semi-transparent light purple kunzite have been secured in recent years."
Spodumene var. Kunzite
Formula:LiAlSi2O6
Habit: elongated prisms
Colour: lavender
Fluorescence: pale orange-pink
Description: Found in the cores of normal spodumene
Spurrite
Formula:Ca5(SiO4)2(CO3)
Colour: bluish-gray
Description: Schooner (circa 1985): "In some of the wollastonite pods at the Strickland quarry, bluish-gray spurrite occurs as very thin layers with grossularite and larnite. X-ray confirmation was obtained from a number of samples. Spurrite also is mixed with the granular wollastonite and its embedded minute gehlenite crystals; only X-ray peaks revealed its presence in that material." Studied by Waldemar T. Schaller of USGS.
Srilankite
Formula:ZrTi2O6
Staurolite
Formula:Fe2+2Al9Si4O23(OH)
Localities: Reported from at least44 localities in this region.
Habit: elongated prismatic
Colour: dark brown
Description: Elongated porphyroblastic crystals to several cm.
Stellerite ?
Formula:Ca4(Si28Al8)O72 · 28H2O
Habit: bowties and sheaf aggregates
Colour: orange
Description: This specimen https://www.mindat.org/photo-618484.html was analyzed by SEM-EDS and showed no more than a trace of Na or K, making it a good candidate for stellerite, although this method alone is not definitive. Stellerite cannot be visually distinguished from stilbite-Ca.
Stewartite ?
Formula:Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Colour: pale yellow
Description: According to Schooner (circa 1985) occurs as tiny yellow crystals in altered hureaulite. Specimens of hureaulite from the dump bulldozed in 1984 show small areas of a yellow alteration, possibly stewartite. So far an SEM-EDS analysis (2017) of yellow grains in lithiophilite have proven to be natrophilite.
Stibnite ?
Formula:Sb2S3
Description: Reference notes that the validity needs confirmation, but this was apparently either not done of found to be something else.
Stilbite-Ca
Formula:NaCa4(Si27Al9)O72 · 28H2O
Localities: Reported from at least14 localities in this region.
Habit: wheat sheave or bowtie aggregates
Colour: tan to orange
Description: Two specimens were analyzed via SEM-EDS in 2019 and both were shown to be stilbite-Ca. See stilbite subgroup for other comments.
'Stilbite Subgroup'
Formula:M6-7[Al8-9Si27-28O72] · nH2O
Localities: Reported from at least64 localities in this region.
Habit: divergent fan-like to bow-tie aggregates of bladed, tabular crystals with pointed terminations
Colour: white to creamy yellow
Description: Crystal aggregates to about 2.5 cm associated with barite, calcite, pyrite, quartz, sphalerite, and fluorite. Some of the best Connecticut stilbite was found here sometimes richly mineralized in voids in hydrothermal veins and fractures, covering other hydrothermal minerals or on schist, pegmatite or granite.
Stilpnomelane
Formula:(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Localities: Reported from at least9 localities in this region.
Strengite
Formula:FePO4 · 2H2O
Strunzite
Formula:Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Habit: radiating acicular needles and fibers
Colour: golden to yellow-orange
Description: "occurs as typical aggregates of golden fibers, associated with [messelite] and siderite, as well as sulfides....The strunzite is rare, and no more than half a dozen specimens have been secured...and none of them could be described as of outstanding quality. The identity of this material was confirmed by Clifford Frondel of Harvard University." (Schooner 1958) Associated with triphylite secondaries.
Switzerite
Formula:Mn2+3(PO4)2 · 7H2O
Sylvanite ?
Formula:AgAuTe4
Description: "supposedly occurs"
'Synchysite'
Formula:Ca(Ce/Nd/Y/REE)(CO3)2F
'Synchysite Group'
Habit: tabular hexagonal
Colour: chalky white
Description: Microcrystalline aggregates in thin Alpine clefts.
Synchysite-(Y)
Formula:CaY(CO3)2F
Habit: aggregates of hexagonal plates
Colour: white (due to alteration)
Description: Micro-crystals with adularia, anatase, quartz in thin alpine clefts.
Szomolnokite
Formula:FeSO4 · H2O
Taenite
Formula:(Ni,Fe)
Talc
Formula:Mg3Si4O10(OH)2
Localities: Reported from at least31 localities in this region.
Habit: fibrous. massive, as steatite.
Colour: gray-green
Description: As fibers intergrown with radiating spheres of fibrous talc. Confirmed in 2016 using EDS and selected area electron diffraction (SAED) zone patterns. Rarely found as steatite.
Talc var. Steatite
Formula:Mg3(Si4O10)(OH)2
References:
'Tantalite'
Formula:(Mn,Fe)(Ta,Nb)2O6
Localities: Reported from at least8 localities in this region.
Tantalite-(Fe)
Formula:Fe2+Ta2O6
Habit: rectangular prismatic
Colour: black with bluish iridescence
Description: One columbite-tantalite crystal (https://www.mindat.org/photo-275489.html) suspected from its high SG of being tantalite was analyzed by SEM-EDS and found to be tantalite-(Fe). There may be more as each crystal would need to be tested to confirm and few have been.
Tantalite-(Mn)
Formula:Mn2+Ta2O6
Habit: elongated to tabular prisms
Colour: deep maroon with iridescence
Description: Usually as small (<1") but well-formed crystals in the mineralized part of the cleavelandite-quartz intermediate zone. Analyses, even just SG, are generally lacking. Schooner (1958) reports: "W. G. Foye reported [it] in 1929. An analysis of such material, made for Ronald Januzzi, showed the manganese oxide content to be 13.96% [but what are the other elements' abundances?]. Many rich specimens have been found on the old dumps. The author obtained several superb examples at the vein of lithium minerals in the bottom of the quarry, in 1954. Half inch crystals, and larger masses, were embedded in a matrix of cleavelandite and amblygonite [montebrasite]. The material showed a gradation from dark brown to bright red... the latter nearly transparent and of great beauty. Some was iridescent. The luster was resinous and the manganotantalite exhibited a perfect parting which gave it a micaceous appearance." But some more brown crystals have later proven to be wodginite, which was not recognized in 1958. Many reddish crystals with some transparency have been labeled tantalite-(Mn) but visually could be columbite-(Mn) and such crystals without supporting analyses should be labeled as columbite-(Mn)-tantalite-(Mn) series.
Tanteuxenite-(Y)
Formula:Y(Ta,Nb,Ti)2(O,OH)6
Habit: subhedral grains
Colour: dark brown
Description: Semi-quantitative data from SEM/EDS analyzed using the method of Ercit (2005).
'Tapiolite'
Formula:(Fe,Mn)(Ta,Nb)2O6
Description: Bruce Jarnot did find and confirm tapiolite from the Hale Quarry. There were two specimens, one a complex crystal group (about 0.5 inches) and the other a similar size group that had altered 50% to pyrochlore. It resembled a hard yellow marble that, when split, showed the remains of tapiolite xls in the center. The IDs were made by EDX (element ratios) and X-ray unit crystal pattern.
Tapiolite-(Fe)
Formula:Fe2+Ta2O6
Habit: Complex, twinned short prisms or pyramidal tetragonal.
Colour: black
Description: Three specimens are known, with very similar with crystals about 3-4 cm, in quartz, albite and/or muscovite. Two are complexly crystallized apparently twinned, that somewhat resemble garnets, but of course black and submetallic. Other than one specimen from the Hale Quarry, this is the only known Connecticut location for this mineral. An additional three specimens were collected in the 1980's by David Busha but remained unidentified until 2019.
Tephroite
Formula:Mn2+2SiO4
Habit: anhedral
Colour: tan, brown, dark brown
Description: Reported by Dick Schooner. Specimens mostly are pure masses of anhedral grains, or scattered grains associated with bustamite and spessartine, all with black staining. According to Schooner:"Several bodies of more complex mineralogy, within the spessartine, consisted for the most part of brownish tephroite, intimately intergrown with dolomite and kutnohorite, as well as yellow spessartine, alleghanyite, jacobsite, pyrophanite, etc. A few solid dark gray resinous-looking cleavages, up to an inch, were obtained. The main concentration was eventually removed as a boulder, over two feet in diameter, which may well hold the world's record for toughness; it took the author two days of steady pounding to reduce it!"
Tetrataenite
Formula:FeNi
Thaumasite
Formula:Ca3(SO4)[Si(OH)6](CO3) · 12H2O
Thorite
Formula:Th(SiO4)
Habit: anhedral grains
Colour: dark brown to brownish black
Description: "as anhedral (without external faces) grains and small masses having a dark brown to brownish black color and vitreous to resinous luster. Because of the anhedral nature of the material I should strongly suspect the thorite to be of the uranothorite variety. The samples sent to Dr. Brian Mason for confirmation clearly demonstrated that they were almost metamict, with a refractive index of about 1.78, and gave good X-ray patterns of thorite after heating for about two hours at 1100 degrees. The thorite occurs here intimately associated with quartz, feldspar, pyroxene, amphibole, sphene, zircon and biotite. Regular and irregular distribution of color areas ranging from orange to yellow material of varying luster occurs in many of the hand specimens containing apparently unaltered thorite." Januzzi (1976). Januzzi (1994) includes a photo. Thorite grains, in coarse-grained albite with minor zircon, reach about 1 cm.
Thorite var. Calciothorite
Formula:(Th,Ca2)SiO4 · 3.5H2O
Description: Speculation.
Thorite var. Thorogummite
Formula:(Th,U)(SiO4)1-x(OH)4x
Habit: psuedomorphs after thorite
Colour: yellowish
Description: "as small yellowish pulverulent masses having a dull luster, to material of a more compact nature with a waxy luster; it is evidently pseudomorphous after crystals of thorite." Januzzi (1976)
Titanite
Formula:CaTi(SiO4)O
Localities: Reported from at least55 localities in this region.
Description: "A few very lean examples" Schooner (1958), probably from the surrounding metamorphic rocks.
Titanite var. Lederite (of Shepard)
Formula:CaTi(SiO4)O
Todorokite ?
Formula:(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Colour: black
Description: Reportedly one of the black Mn-rich alteration crusts.
Topaz
Formula:Al2(SiO4)(F,OH)2
Localities: Reported from at least18 localities in this region.
Habit: equant or flattened with multiple terminal forms
Colour: colorless to pale blue, orange (altered)
Description: First found in the mid-1950s and so often unrecognized in earlier collections, topaz occurs rarely as equant, rhombic cross-section crystals up to 1 cm in the cavities or more commonly up to 5.6 cm embedded in quartz-albite-muscovite matrix. Greasy, orange-brown crystals are partially or wholly altered to muscovite and were earlier mistaken for "pinite" pseudomorphs after spodumene.
Torbernite
Formula:Cu(UO2)2(PO4)2 · 12H2O
Localities: Reported from at least14 localities in this region.
Description: Dick Schooner reports (via Betts, 1999) good crystals found here, but that may be in allusion to Foye (1922), who is actually referring to an alternate name for the Howe #1 quarry.
'Tourmalinated Quartz'
'Tourmaline'
Formula:AD3G6(T6O18)(BO3)3X3Z
Localities: Reported from at least51 localities in this region.
Habit: elongated, striated, trigonal prisms capped by pinacoids or rhombohedra
Colour: black to green, rarely pink to colorless, with yellow, pink, pale green, blue terminations
Description: See comments under elbaite and schorl.
'Tourmaline var. Achroite'
Formula:A(D3)G6(T6O18)(BO3)3X3Z
'Tourmaline var. Indicolite'
Formula:A(D3)G6(T6O18)(BO3)3X3Z
'Tourmaline var. Rubellite'
Formula:A(D3)G6(T6O18)(BO3)3X3Z
Habit: elongated prisms
Colour: red to pink
Description: typically with blue color "cap" on the pedion
'Tourmaline var. Verdelite'
Formula:A(D3)G6(T6O18)(BO3)3X3Z
'Tourmaline var. Watermelon Tourmaline'
Formula:A(D3)G6(T6O18)(BO3)3X3Z
Habit: unterminated, elongated prisms
Colour: pink core, pale green rims
Description: In the mineralized core zone.
Tremolite
Formula:◻Ca2Mg5(Si8O22)(OH)2
Localities: Reported from at least38 localities in this region.
Description: Sharp green blades. None terminated
Tridymite ?
Formula:SiO2
Triphylite
Formula:LiFe2+PO4
Localities: Reported from at least8 localities in this region.
Habit: anhedral masses
Colour: greenish-gray
Description: Anhedral masses to a few cm, translucent fresh material is greenish-gray altering around the edges mostly to blue vivianite and black rockbridgeite (much nearby albite stained by the latter) and associated with pyrite in local fracture fillings.
Triphylite var. Ferrisicklerite
Formula:Li1-x(Fe3+xFe2+1-x)PO4
Description: sparingly with the triphylite
Triplite
Formula:Mn2+2(PO4)F
Habit: massive
Colour: reddish to maroon
Description: As irregular masses, commonly in bunches intergrown with blue elbaite and dark purple lepidolite and hosted by cleavelandite/elbaite/quartz. Tan alteration rind around the edges is probably hydroxylapatite (see below) and Schooner reports finding hureaulite. These minerals are characteristic of alteration from primary lithiophilite but none has ever been reported, so it is difficult to say if the triplite is primary. Masses of garnet may appear similar, but are harder and show a network of rhombic etch patterns on fracture surfaces. Descriptions from the literature are below:Shannon (1920) - "bunches and masses up to several inches across of a flesh red to brownish red material resembling massive garnet, which upon analysis proves to be triplite...In places the triplite has oxidized to a black manganese oxide, which stains the cleavelandite."Foye (1922) - "intimately intergrown with a dark blue, massive tourmaline".Schooner (1958) – "Large masses, up to a foot square, occurred in a mixture of that mineral and cleavelandite. The author was fortunate in securing a large specimen of completely fresh material from a weathered boulder on the oldest dump. Most examples show what are probably crude crystals, bordered with blue tourmaline. Much of the triplite is altered to a cellular tan mineral which has not been thoroughly identified. One piece, evidently from deep in the pegmatite, has undergone a more complex alteration to a foliated dull green substance…negatively identified as not being dickinsonite. Such material could easily be confused with chloritized garnet. Indeed, the fresh triplite resembles massive garnet; its comparative softness and its cleavages should distinguish it. Mary E. Mrose x-rayed this triplite for the author and found it to give a characteristic pattern. E. V. Shannon, who originally described the occurrence in 1920, gave the following analysis: calcium oxide 3.18, magnesium oxide 0.58, iron oxide 4.95, manganese oxide 52.40, phosphorous oxide 32.81, fluorine 9.09, water 0.35, and remainder 1.17. The specific gravity of the sample was 3.58."Schooner (1961) - "Reddish-brown cleavages, bordered with blue tourmaline, definitely identified as such, were apparently quite common in the original lepidolite pit, where that mineral, together with quartz and cleavelandite, occurred as coarse intergrowths. The author found a solid mass, over six inches across, in the old dump there; some of the triplite bodies must easily have been a foot in diameter. In many cases, the triplite is partially or completely altered to a granular yellow or tan mineral; x-ray study proves this to be apatite, of a surprisingly normal kind. This work was done by Peacor."
Triploidite (TL)
Formula:Mn2+2(PO4)(OH)
Type Locality:
Habit: divergent to parallel-fibrous to columnar crystalline aggregates, compact, massive. rarely prismatic
Colour: yellowish to reddish-brown, topaz- to wine-yellow, hyacinth-red
Description: mostly columnar, fibrous, radiating, rare isolated but typically vitreous and transparent crystals to a length of an inch or more. Associated with quartz and the other Mn phosphates and rhododchrosite.
Troilite
Formula:FeS
Tungstenite ?
Formula:WS2
Colour: Dark-Metallic
Description: Very rare microcrystals possibly of this mineral occasionally found in marble. Analyses needed. This ID is very doubtful given that the only report of tungstenite (a rare alteration of scheelite or ferberite) from the adjacent Old Mine Park by Schairer (1931) (a summary of other information) is almost certainly a misspelling of tungstite. The scheelite (or ferberite) is restricted to the amphibolite and does not occur in the marble. These could be primary ferberite micro-crystals (see photos).
Tungstite (TL)
Formula:WO3 · H2O
Habit: massive
Colour: orange-yellow, chrome yellow, yellowish gray
Description: An alteration of ferberite pseudomorphs after sheelite, coating and occupying cavities in these crystals from the upper mine pit. Looks like "broken sulfur". Very little of this material has been found since the mid-19th century as the highly weathered portion of the outcrop worked then by Charles Lane has long been removed by subsequent mining. Originally and incorrectly attributed to Lane's mine in Monroe, neither ferberite pseudomorphs after scheelite, nor scheelite occur there and so the type locality for this mineral is actually here.
Tyuyamunite
Formula:Ca(UO2)2(VO4)2 · 5-8H2O
References:
Uraninite
Formula:UO2
Localities: Reported from at least42 localities in this region.
Habit: octahedral
Colour: black
Description: Excellent crystals, up to half an inch in diameter, they were easy to obtain around 1941 and 1942.
'Uranmicrolite (of Hogarth 1977)'
Formula:(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
Uranophane
Formula:Ca(UO2)2(SiO3OH)2 · 5H2O
Localities: Reported from at least25 localities in this region.
Description: Associated with uraninite, meta-autunite, "gummite", other alteration products. Fine gummite and uranophane pseudomorphs after uraninite have been found here.
Vanadinite ?
Formula:Pb5(VO4)3Cl
Description: "In the [Marcelle and Charles] Weber collection, the author saw a specimen of oxidized metallic minerals, from the Thomaston Dam railroad cut, containing tiny brown prisms of what may be the endlichite variety of this mineral. This remains in the problematical category." Schooner (1961)
Vandendriesscheite
Formula:PbU7O22 · 12H2O
Habit: pseudomorphs after uraninite
Colour: yellow
Description: "In a study at Harvard University, in 1964, both fourmarierite and vandendriesscheite were identified, by X-ray diffraction, as components of hard "gummite" pseudomorphs after uraninite from the Rock Landing quarry. Fourmarierite is reddish; vandendriesscheite, yellow. The material came from the Charles Thomas collection." Schooner (circa 1980s).
Vesuvianite
Formula:Ca19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Localities: Reported from at least11 localities in this region.
Violarite
Formula:Fe2+Ni3+2S4
Vivianite
Formula:Fe2+Fe2+2(PO4)2 · 8H2O
Localities: Reported from at least8 localities in this region.
Habit: elongated, terminated prisms and cleavable masses
Colour: dark blue
Description: "transparent blue vivianite crystals, some spear-shaped, in vugs of messelite and siderite...While the vivianite crystals are small, they are of fine quality." (Schooner 1961) Also as coatings on triphylite and associated with messelite, siderite, mitridatite, strunzite and sulfides.
'Wad'
Wardite
Formula:NaAl3(PO4)2(OH)4 · 2H2O
Description: Schooner (circa 1985) reports that "Wardite and wavellite occurred in a fine-grained replacement of natromontebrasite from the Strickland quarry. The rest of the sample was quartz. X-ray study revealed their existence." Natromontebrasite was discredited in 2007 as a mixture of wardite, montebrasite and lacroixite, which were all documented here by the study Schooner mentions.
Whitmoreite
Formula:Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Habit: radiating acicular crystals in micro spherical "naval mine" aggregates
Colour: golden brown
Description: Reported by Dick Schooner, no details in the references. Identified by Van King from posted photographs.
Willemite
Formula:Zn2SiO4
Habit: aggregates of acicular crystals
Colour: white
Fluorescence: green
Wodginite
Formula:Mn2+Sn4+Ta2O8
Habit: tapered, elongated prisms
Colour: dark brown with iridescence
Description: Fantastic tapered crystals, 2 to 6 cm long, translucent and sometimes showing a little iridescence. Typically in cleavelandite, associated with cassiterite, foitite grading into elbaite, gobbinsite and quartz. Long misidentified as cassiterite or tantalite-(Mn) (going back to even 1935 - see Jarnot (2011)) and too bad as it was not "discovered" until 1963 in Canada and Australia. Strickland could have been the type locality had it been recognized as a new mineral when the quarry was active.Schooner (circa 1990) summarizes its identification:A decade ago, the author found a loose 4 inch mass of montebrasite, studded with sharply formed little dark brown crystals, on one of the Strickland quarry dumps. These were tentatively classified as manganotantalite, despite visual differences. The X-ray pattern was later rechecked, with wodginite in mind, and the fit was close enough to warrant a spectrographic test, which showed the presence of tin. Pete J. Dunn and Peter Cerny have since made probe studies of the material. The original mass was broken into several rich specimens. The wodginite is in equant crystals, transparent under magnification, with a few little tabular amber crystals of manganotantalite. This material obviously represented only part of a concentration of wodginite in montebrasite.Several years ago, Bruce Jarnot encountered a small cleavelandite boulder, on the long narrow dump along the western edge of the hill, yielding maybe a dozen superb thumbnails of sharp, euhedral, reddish-black wodginite crystals, of a pyramidal aspect, up to almost an inch. These, too, were thought to be manganotantalite, until X-ray study proved them to be wodginite.At that point, the author became suspicious of an iridescent brown mineral, embedded in columnar green elbaite, collected around 1950. The X-ray pattern shows it to be wodginite, in yet another habit.Obviously, the mineral has been mistaken for other things!
'Wolframite Group'
Habit: bipyramidal pseudomorphs after scheelite
Colour: dark brown to black
Description: Actually long known to be the iron-rich end-member species ferberite. The use of the term "wolframite" for crystals from here should be abandoned. See more description under ferberite.
Wollastonite
Formula:Ca3(Si3O9)
Localities: Reported from at least6 localities in this region.
Description: Included in a list of minerals without details, but plausible for the geology.
Wulfenite
Formula:Pb(MoO4)
Localities: Reported from at least8 localities in this region.
Habit: peudocubic, bipyramidal
Colour: orange-red
Description: "Here and there small microscopic wulfenites occur both as pseudocubic (similar to the Loudville, Massachusetts, material only considerably smaller) as well as bipyramidal crystals (Marcelle Weber, personal communication, 1984)." (Segeler & Molon, 1985). At least one former Ron Januzzi specimen of a platy orange mineral in crude micro-crystals turned out to be calcite.
Wurtzite ?
Formula:(Zn,Fe)S
Description: Included in a list of minerals with no details on occurrence of confirmation.
Wurtzite var. Voltzite ?
Formula:(Zn,Fe,Mn) S [with O C H ]
Description: Included in a list of minerals with no details on occurrence of confirmation.
Xanthoxenite ?
Formula:Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Description: may occur associated with lithiophilite
'Xenotime'
Xenotime-(Y)
Formula:Y(PO4)
Localities: Reported from at least11 localities in this region.
Habit: bipyramidal
Colour: brown
Description: Microcrystals in pegmatite matrix found in 2019. SEM-EDS spectra herehttps://www.mindat.org/photo-1007556.htmlhttps://www.mindat.org/photo-1007557.html
'Yttrocolumbite-(Y)' ?
Formula:Y(U4+,Fe2+)Nb2O8
Description: Extremely rare mineral. No chemical data available.
'Zinnwaldite'
Habit: micaceous
Colour: golden-brown, purplish-grey
Description: Found in the cleavelandite-quartz intermediate zone. Schooner (circa 1985) reports that "X-ray and spectrographic study, quite recently, have identified rich specimens, consisting of coarse golden-brown aggregates with zoned elbaite-schorl tourmaline. It can also be purplish-gray."
Zircon
Formula:Zr(SiO4)
Localities: Reported from at least60 localities in this region.
Habit: long or short prismatic terminated at either end by a simple pyramid
Colour: dark brown
Fluorescence: yellow
Description: "Dark brown euhedral crystals, some in excess of one inch in length, were found on the western side of the intersection of Hayestown Avenue, North Street and Padanarum Road in Danbury. The typical habit is either long or short prismatic terminated at either end by a simple pyramid" Januzzi (1994), which includes a photo. Associated with quartz, feldspar, pyroxene, amphibole, sphene, thorite and biotite.
Zircon var. Calyptolite
Formula:Zr(SiO4)
Zircon var. Cyrtolite
Formula:Zr[(SiO4),(OH)4]
Localities: Reported from at least17 localities in this region.
Zoisite
Formula:(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Localities: Reported from at least14 localities in this region.
Habit: subhedral, striated, elongated prismatic
Colour: pink
Fluorescence: purple
Description: Crystals in matrix can reach a few cm. Associated with anorthite, quartz, actinolite, scapolite.
Zoisite var. Thulite
Formula:{Ca2}{Al,Mn3+3}(Si2O7)(SiO4)O(OH)
Habit: subhedral, striated, elongated prismatic
Colour: pink
Fluorescence: purple
Description: Crystals in matrix can reach a few cm. Associated with anorthite, quartz, actinolite, scapolite.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Native Copper1.AA.05Cu
Native Gold1.AA.05Au
Native Silver1.AA.05Ag
Native Iron1.AE.05Fe
var. Kamacite1.AE.05(Fe,Ni)
Taenite1.AE.10(Ni,Fe)
Tetrataenite1.AE.10FeNi
Native Antimony ?1.CA.05Sb
Native Arsenic ?1.CA.05As
Native Bismuth1.CA.05Bi
Graphite1.CB.05aC
Diamond1.CB.10aC
Native Sulphur1.CC.05S8
Native Tellurium ?1.CC.10Te
Group 2 - Sulphides and Sulfosalts
Chalcocite2.BA.05Cu2S
Djurleite2.BA.05Cu31S16
Digenite2.BA.10Cu9S5
Bornite2.BA.15Cu5FeS4
Acanthite2.BA.35Ag2S
Pentlandite2.BB.15(NixFey)Σ9S8
Covellite2.CA.05aCuS
Sphalerite2.CB.05aZnS
Chalcopyrite2.CB.10aCuFeS2
var. Blistered Copper2.CB.10aCuFeS2
Greenockite2.CB.45CdS
Wurtzite
var. Voltzite ?
2.CB.45(Zn,Fe,Mn) S [with O C H ]
?2.CB.45(Zn,Fe)S
Breithauptite ?2.CC.05NiSb
Nickeline2.CC.05NiAs
Pyrrhotite2.CC.10Fe1-xS
Troilite2.CC.10FeS
Galena2.CD.10PbS
var. Silver-bearing Galena2.CD.10PbS with Ag
Linnaeite2.DA.05Co2+Co3+2S4
Violarite2.DA.05Fe2+Ni3+2S4
Bismuthinite2.DB.05Bi2S3
Stibnite ?2.DB.05Sb2S3
Sylvanite ?2.EA.05AgAuTe4
Molybdenite2.EA.30MoS2
Tungstenite ?2.EA.30WS2
Pyrite2.EB.05aFeS2
Marcasite2.EB.10aFeS2
Löllingite2.EB.15aFeAs2
Rammelsbergite ?2.EB.15aNiAs2
Safflorite ?2.EB.15a(Co,Ni,Fe)As2
Arsenopyrite2.EB.20FeAsS
var. Danaite2.EB.20(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
Cobaltite2.EB.25CoAsS
Gersdorffite2.EB.25NiAsS
Nickelskutterudite ?2.EC.05NiAs3
Skutterudite ?2.EC.05CoAs3
Realgar ?2.FA.15aAs4S4
Cuprobismutite2.JA.10aCu8AgBi13S24
Galenobismutite ?2.JC.25ePbBi2S4
Group 3 - Halides
Nantokite3.AA.05CuCl
Fluorite
var. Chlorophane
3.AB.25CaF2
3.AB.25CaF2
Atacamite3.DA.10aCu2(OH)3Cl
Paratacamite ?3.DA.10cCu3(Cu,Zn)(OH)6Cl2
Group 4 - Oxides and Hydroxides
'Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series'4..
'var. Wolframoixiolite'4..(Nb,W,Ta,Fe,Mn)2O4
Goethite4.00.Fe3+O(OH)
'Microlite Group'4.00.A2-mTa2X6-wZ-n
'Pyrochlore Group'4.00.A2Nb2(O,OH)6Z
'var. Uranpyrochlore (of Hogarth 1977)'4.00.(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Cuprite
var. Chalcotrichite
4.AA.10Cu2O
4.AA.10Cu2O
Litharge4.AC.20PbO
Massicot4.AC.25PbO
Chrysoberyl4.BA.05BeAl2O4
Chromite4.BB.05Fe2+Cr3+2O4
Gahnite4.BB.05ZnAl2O4
Galaxite ?4.BB.05Mn2+Al2O4
Jacobsite4.BB.05Mn2+Fe3+2O4
Magnetite4.BB.05Fe2+Fe3+2O4
Spinel4.BB.05MgAl2O4
Maghemite4.BB.15(Fe3+0.670.33)Fe3+2O4
Minium ?4.BD.05Pb3O4
Corundum4.CB.05Al2O3
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
var. Iron(III)-bearing Ilmenite4.CB.05(Fe2+,Fe3+)TiO3
Pyrophanite4.CB.05Mn2+TiO3
Corundum
var. Sapphire
4.CB.05Al2O3
Hematite
var. Specularite
4.CB.05Fe2O3
var. Iron Rose4.CB.05Fe2O3
Claudetite ?4.CB.45As2O3
Arsenolite ?4.CB.50As2O3
Bismite4.CB.60Bi2O3
Sillénite ?4.CB.70Bi12SiO20
Davidite-(Ce)4.CC.40Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Davidite-(La)4.CC.40La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Loveringite4.CC.40(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
Quartz
var. Agate
4.DA.05SiO2
var. Amethyst4.DA.05SiO2
var. Chalcedony4.DA.05SiO2
var. Citrine4.DA.05SiO2
4.DA.05SiO2
var. Rose Quartz4.DA.05SiO2
var. Rutilated Quartz4.DA.05SiO2
var. Smoky Quartz4.DA.05SiO2
var. Rock Crystal4.DA.05SiO2
var. Milky Quartz4.DA.05SiO2
var. Sardonyx4.DA.05SiO2
var. Sard4.DA.05SiO2
var. Sceptre Quartz4.DA.05SiO2
var. Carnelian4.DA.05SiO2
var. Blue Quartz4.DA.05SiO2
var. Ferruginous Quartz4.DA.05SiO2
Opal
var. Opal-AN
4.DA.10SiO2 · nH2O
4.DA.10SiO2 · nH2O
Tridymite ?4.DA.10SiO2
Opal
var. Hyalite
4.DA.10SiO2 · nH2O
Lechatelierite4.DA.30SiO2
Cassiterite4.DB.05SnO2
Plattnerite ?4.DB.05PbO2
Pyrolusite4.DB.05Mn4+O2
Rutile4.DB.05TiO2
var. Strüverite4.DB.05(Ti,Ta,Fe)O2
Tapiolite-(Fe)4.DB.10Fe2+Ta2O6
Ishikawaite4.DB.25U4+Fe2+Nb2O8
Samarskite-(Y)4.DB.25YFe3+Nb2O8
Srilankite4.DB.25ZrTi2O6
'Yttrocolumbite-(Y)' ?4.DB.25Y(U4+,Fe2+)Nb2O8
Ferberite4.DB.30FeWO4
Hübnerite ?4.DB.30MnWO4
'Wolframite Group'4.DB.30 va
Columbite-(Fe)4.DB.35Fe2+Nb2O6
Tantalite-(Fe)4.DB.35Fe2+Ta2O6
Columbite-(Mn)4.DB.35Mn2+Nb2O6
Tantalite-(Mn)4.DB.35Mn2+Ta2O6
Wodginite4.DB.40Mn2+Sn4+Ta2O8
Anatase4.DD.05TiO2
Brookite4.DD.10TiO2
Bismutotantalite4.DE.30BiTaO4
Baddeleyite4.DE.35ZrO2
Euxenite-(Y) ?4.DG.05(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Tanteuxenite-(Y)4.DG.05Y(Ta,Nb,Ti)2(O,OH)6
Hydrokenoelsmoreite
var. Ferritungstite ?
4.DH.152(W,Fe3+)2(O,OH)6(H2O)
?4.DH.152W2O6(H2O)
Liandratite4.DH.35U(Nb,Ta)2O8
Petscheckite4.DH.35UFe(Nb,Ta)2O8
Cryptomelane4.DK.05aK(Mn4+7Mn3+)O16
Romanèchite4.DK.10(Ba,H2O)2(Mn4+,Mn3+)5O10
Todorokite ?4.DK.10(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Uraninite4.DL.05UO2
Diaspore4.FD.10AlO(OH)
Groutite4.FD.10Mn3+O(OH)
Manganite ?4.FD.15Mn3+O(OH)
Brucite ?4.FE.05Mg(OH)2
Gibbsite4.FE.10Al(OH)3
Lepidocrocite4.FE.15Fe3+O(OH)
Lithiophorite ?4.FE.25(Al,Li)MnO2(OH)2
Tungstite (TL)4.FJ.10WO3 · H2O
Hydrotungstite ?4.FJ.15WO3 · 2H2O
Birnessite4.FL.45(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Becquerelite4.GB.10Ca(UO2)6O4(OH)6 · 8H2O
Fourmarierite4.GB.25Pb(UO2)4O3(OH)4 · 4H2O
Vandendriesscheite4.GB.40PbU7O22 · 12H2O
Carnotite4.HB.05K2(UO2)2(VO4)2 · 3H2O
Tyuyamunite4.HB.25Ca(UO2)2(VO4)2 · 5-8H2O
Group 5 - Nitrates and Carbonates
Magnesite
var. Iron-bearing Magnesite
5.AB.05(Mg,Fe)CO3
Calcite5.AB.05CaCO3
Magnesite5.AB.05MgCO3
Rhodochrosite5.AB.05MnCO3
Siderite5.AB.05FeCO3
Smithsonite5.AB.05ZnCO3
Calcite
var. Iron-bearing Calcite
5.AB.05(Ca,Fe)CO3
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Dolomite5.AB.10CaMg(CO3)2
Kutnohorite5.AB.10CaMn2+(CO3)2
Dolomite
var. Iron-bearing Dolomite
5.AB.10Ca(Mg,Fe)(CO3)2
Aragonite5.AB.15CaCO3
Cerussite5.AB.15PbCO3
Azurite5.BA.05Cu3(CO3)2(OH)2
Malachite5.BA.10Cu2(CO3)(OH)2
Rosasite5.BA.10(Cu,Zn)2(CO3)(OH)2
Aurichalcite5.BA.15(Zn,Cu)5(CO3)2(OH)6
Hydrozincite5.BA.15Zn5(CO3)2(OH)6
Bastnäsite-(Ce)5.BD.20aCe(CO3)F
Synchysite-(Y)5.BD.20cCaY(CO3)2F
Bismutite5.BE.25(BiO)2CO3
Beyerite ?5.BE.35Ca(BiO)2(CO3)2
Rutherfordine ?5.EB.05(UO2)CO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anhydrite7.AD.30CaSO4
Anglesite7.AD.35PbSO4
Baryte7.AD.35BaSO4
Celestine7.AD.35SrSO4
Brochantite7.BB.25Cu4(SO4)(OH)6
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Linarite7.BC.65PbCu(SO4)(OH)2
Szomolnokite7.CB.05FeSO4 · H2O
Rozenite7.CB.15FeSO4 · 4H2O
Chalcanthite7.CB.20CuSO4 · 5H2O
Hexahydrite ?7.CB.25MgSO4 · 6H2O
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Epsomite7.CB.40MgSO4 · 7H2O
Goslarite ?7.CB.40ZnSO4 · 7H2O
Halotrichite ?7.CB.85FeAl2(SO4)4 · 22H2O
Pickeringite7.CB.85MgAl2(SO4)4 · 22H2O
Gypsum7.CD.40CaSO4 · 2H2O
var. Selenite7.CD.40CaSO4 · 2H2O
var. Satin Spar Gypsum7.CD.40CaSO4 · 2H2O
Copiapite7.DB.35Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Ferricopiapite ?7.DB.35Fe3+0.67Fe3+4(SO4)6(OH)2 · 20H2O
Langite7.DD.10Cu4(SO4)(OH)6 · 2H2O
Devilline7.DD.30CaCu4(SO4)2(OH)6 · 3H2O
Thaumasite7.DG.15Ca3(SO4)[Si(OH)6](CO3) · 12H2O
Johannite ?7.EB.05Cu(UO2)2(SO4)2(OH)2 · 8H2O
Powellite7.GA.05Ca(MoO4)
Scheelite7.GA.05Ca(WO4)
Wulfenite7.GA.05Pb(MoO4)
Ferrimolybdite7.GB.30Fe2(MoO4)3 · nH2O
Group 8 - Phosphates, Arsenates and Vanadates
Triphylite
var. Ferrisicklerite
8.AB.10Li1-x(Fe3+xFe2+1-x)PO4
Heterosite8.AB.10Fe3+(PO4)
Lithiophilite (TL)8.AB.10LiMn2+PO4
Natrophilite (TL)8.AB.10NaMn2+PO4
Purpurite8.AB.10Mn3+(PO4)
Lithiophilite
var. Sicklerite
8.AB.10Li1-x(Mn3+xMn2+1-x)PO4
Triphylite8.AB.10LiFe2+PO4
Graftonite ?8.AB.20Fe2+Fe2+2(PO4)2
Alluaudite ?8.AC.10(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Fillowite (TL)8.AC.50Na3CaMn2+11(PO4)9
Xenotime-(Y)8.AD.35Y(PO4)
Monazite-(Ce)8.AD.50Ce(PO4)
Herderite ?8.BA.10CaBe(PO4)F
Hydroxylherderite8.BA.10CaBe(PO4)(OH)
Amblygonite ?8.BB.05LiAl(PO4)F
Montebrasite8.BB.05LiAl(PO4)(OH)
Triplite8.BB.10Mn2+2(PO4)F
Triploidite (TL)8.BB.15Mn2+2(PO4)(OH)
Lazulite ?8.BB.40MgAl2(PO4)2(OH)2
Scorzalite ?8.BB.40Fe2+Al2(PO4)2(OH)2
Rockbridgeite8.BC.10(Fe2+0.5Fe3+0.5)2Fe3+3(PO4)3(OH)5
Pseudomalachite ?8.BD.05Cu5(PO4)2(OH)4
Augelite8.BE.05Al2(PO4)(OH)3
Arrojadite-(KFe) ?8.BF.05(KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2
Dickinsonite-(KMnNa) (TL)8.BF.05(KNa)(Mn2+◻)Ca(Na2Na)Mn2+13Al(PO4)11(PO4)(OH)2
Lacroixite8.BH.10NaAl(PO4)F
Palermoite ?8.BH.25Li2SrAl4(PO4)4(OH)4
Brazilianite8.BK.05NaAl3(PO4)2(OH)4
Crandallite ?8.BL.10CaAl3(PO4)(PO3OH)(OH)6
Plumbogummite8.BL.10PbAl3(PO4)(PO3OH)(OH)6
Fluorapatite8.BN.05Ca5(PO4)3F
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
Fluorapatite
var. Manganese-bearing Fluorapatite
8.BN.05(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Mimetite ?8.BN.05Pb5(AsO4)3Cl
Pyromorphite8.BN.05Pb5(PO4)3Cl
Vanadinite ?8.BN.05Pb5(VO4)3Cl
Phosphophyllite8.CA.40Zn2Fe2+(PO4)2 · 4H2O
Hureaulite8.CB.10Mn2+5(PO3OH)2(PO4)2 · 4H2O
Landesite ?8.CC.05Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Reddingite (TL)8.CC.05(Mn2+,Fe2+)3(PO4)2 · 3H2O
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Strengite8.CD.10FePO4 · 2H2O
Ludlamite8.CD.20Fe2+3(PO4)2 · 4H2O
Metaswitzerite8.CE.25Mn2+3(PO4)2 · 4H2O
Switzerite ?8.CE.25Mn2+3(PO4)2 · 7H2O
Annabergite8.CE.40Ni3(AsO4)2 · 8H2O
Erythrite8.CE.40Co3(AsO4)2 · 8H2O
Vivianite8.CE.40Fe2+Fe2+2(PO4)2 · 8H2O
Fairfieldite (TL)8.CG.05Ca2Mn2+(PO4)2 · 2H2O
Messelite8.CG.05Ca2Fe2+(PO4)2 · 2H2O
Grayite8.CJ.45(Th,Pb,Ca)(PO4) · H2O
Rhabdophane-(La) (TL)8.CJ.45La(PO4) · H2O
Rhabdophane-(Nd) (TL)8.CJ.45Nd(PO4) · H2O
Churchite-(Y)8.CJ.50Y(PO4) · 2H2O
Moraesite8.DA.05Be2(PO4)(OH) · 4H2O
Roscherite ?8.DA.10Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Diadochite8.DB.05Fe3+2(PO4)(SO4)(OH) · 6H2O
Pitticite ?8.DB.05(Fe, AsO4, H2O) (?)
Whitmoreite8.DC.15Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Strunzite8.DC.25Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Beraunite ?8.DC.27Fe3+6(PO4)4O(OH)4 · 6H2O
Laueite8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Stewartite ?8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Planerite ?8.DD.15Al6(PO4)2(PO3OH)2(OH)8 · 4H2O
Eosphorite (TL)8.DD.20Mn2+Al(PO4)(OH)2 · H2O
Ferroberaunite8.DH.Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Mitridatite8.DH.30Ca2Fe3+3(PO4)3O2 · 3H2O
Xanthoxenite ?8.DH.40Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Pharmacosiderite8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Wardite8.DL.10NaAl3(PO4)2(OH)4 · 2H2O
Morinite ?8.DM.05NaCa2Al2(PO4)2(OH)F4 · 2H2O
Parsonsite8.EA.10Pb2(UO2)(PO4)2
Autunite8.EB.05Ca(UO2)2(PO4)2 · 10-12H2O
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Meta-autunite8.EB.10Ca(UO2)2(PO4)2 · 6H2O
Metatorbernite8.EB.10Cu(UO2)2(PO4)2 · 8H2O
Phosphuranylite8.EC.10KCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
Group 9 - Silicates
Chrysotile9.00.Mg3(Si2O5)(OH)4
Eucryptite (TL)9.AA.05LiAlSiO4
Phenakite9.AA.05Be2SiO4
Willemite9.AA.05Zn2SiO4
Forsterite9.AC.05Mg2SiO4
Tephroite9.AC.05Mn2+2SiO4
Forsterite
var. Peridot
9.AC.05Mg2SiO4
Larnite9.AD.05Ca2SiO4
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Almandine9.AD.25Fe2+3Al2(SiO4)3
Grossular9.AD.25Ca3Al2(SiO4)3
var. Hessonite9.AD.25Ca3Al2(SiO4)3
Pyrope ?9.AD.25Mg3Al2(SiO4)3
Spessartine9.AD.25Mn2+3Al2(SiO4)3
Andradite
var. Melanite
9.AD.25Ca3Fe3+2(SiO4)3
var. Topazolite9.AD.25Ca3Fe3+2(SiO4)3
Thorite
var. Calciothorite ?
9.AD.30(Th,Ca2)SiO4 · 3.5H2O
Coffinite9.AD.30U(SiO4) · nH2O
Thorite9.AD.30Th(SiO4)
var. Thorogummite9.AD.30(Th,U)(SiO4)1-x(OH)4x
Zircon9.AD.30Zr(SiO4)
var. Calyptolite9.AD.30Zr(SiO4)
var. Cyrtolite9.AD.30Zr[(SiO4),(OH)4]
Euclase ?9.AE.10BeAl(SiO4)(OH)
Sillimanite (TL)9.AF.05Al2(SiO4)O
Andalusite9.AF.10Al2(SiO4)O
Kyanite9.AF.15Al2(SiO4)O
Staurolite9.AF.30Fe2+2Al9Si4O23(OH)
Topaz9.AF.35Al2(SiO4)(F,OH)2
Alleghanyite9.AF.45Mn2+5(SiO4)2(OH)2
Chondrodite9.AF.45Mg5(SiO4)2F2
Titanite9.AG.15CaTi(SiO4)O
var. Lederite (of Shepard)9.AG.15CaTi(SiO4)O
Cerite-(CeCa) ?9.AG.20(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
Spurrite9.AH.15Ca5(SiO4)2(CO3)
Dumortierite ?9.AJ.10Al(Al2O)(Al2O)2(SiO4)3(BO3)
Datolite9.AJ.20CaB(SiO4)(OH)
Uranophane9.AK.15Ca(UO2)2(SiO3OH)2 · 5H2O
Gehlenite9.BB.10Ca2Al[AlSiO7]
Bertrandite9.BD.05Be4(Si2O7)(OH)2
Hemimorphite9.BD.10Zn4Si2O7(OH)2 · H2O
Axinite-(Fe)9.BD.20Ca2Fe2+Al2BSi4O15OH
Clinozoisite9.BG.05a(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Epidote9.BG.05a(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Piemontite9.BG.05a(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
Epidote
var. Tawmawite
9.BG.05a{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
Clinozoisite
var. Clinothulite
9.BG.05a{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Allanite-(Ce)9.BG.05b(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Zoisite
var. Thulite
9.BG.10{Ca2}{Al,Mn3+3}(Si2O7)(SiO4)O(OH)
9.BG.10(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Julgoldite-(Fe2+)9.BG.20Ca2Fe2+Fe3+2[Si2O6OH][SiO4](OH)2(OH)
Pumpellyite-(Mg)9.BG.20Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)
Vesuvianite9.BG.35Ca19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Beryl
var. Aquamarine
9.CJ.05Be3Al2Si6O18
Bazzite9.CJ.05Be3Sc2(Si6O18)
Beryl9.CJ.05Be3Al2(Si6O18)
var. Emerald9.CJ.05Be3Al2(Si6O18)
var. Morganite9.CJ.05Be3Al2(Si6O18)
var. Heliodor9.CJ.05Be3Al2(Si6O18)
var. Goshenite9.CJ.05Be3Al2(Si6O18)
Cordierite9.CJ.10Mg2Al4Si5O18
Dravite9.CK.05NaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
Elbaite9.CK.05Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Foitite9.CK.05◻(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Schorl9.CK.05NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
Oxy-dravite9.CK.05Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
Milarite9.CM.05K(◻H2O)Ca2(Be2Al)[Si12O30]
Enstatite9.DA.05Mg2Si2O6
var. Bronzite9.DA.05(Mg,Fe2+)2[SiO3]2
Pigeonite9.DA.10(CaxMgyFez)(Mgy1Fez1)Si2O6
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Diopside9.DA.15CaMgSi2O6
Hedenbergite ?9.DA.15CaFe2+Si2O6
Johannsenite ?9.DA.15CaMn2+Si2O6
Augite
var. Fassaite
9.DA.15(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
var. Titanium-bearing Augite9.DA.15(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Diopside
var. Canaanite
9.DA.15CaMgSi2O6
Aegirine-augite9.DA.20(NaaCabFe2+cMgd)(Fe3+eAlfFe2+gMgh)Si2O6
Aegirine9.DA.25NaFe3+Si2O6
Spodumene
var. Kunzite
9.DA.30LiAlSi2O6
9.DA.30LiAlSi2O6
Anthophyllite9.DD.05◻{Mg2}{Mg5}(Si8O22)(OH)2
Gedrite9.DD.05◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
Cummingtonite9.DE.05◻{Mg2}{Mg5}(Si8O22)(OH)2
Grunerite9.DE.05◻{Fe2+2}{Fe2+5}(Si8O22)(OH)2
Actinolite9.DE.10◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Ferro-actinolite9.DE.10◻Ca2Fe2+5(Si8O22)(OH)2
Ferro-hornblende9.DE.10◻Ca2(Fe2+4Al)(Si7Al)O22(OH)2
Magnesio-hornblende9.DE.10◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Tremolite9.DE.10◻Ca2Mg5(Si8O22)(OH)2
Hastingsite9.DE.15NaCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2
Kaersutite9.DE.15NaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Pargasite ?9.DE.15NaCa2(Mg4Al)(Si6Al2)O22(OH)2
Ferri-ghoseite9.DE.20◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
Bavenite9.DF.25Ca4Be2Al2Si9O26(OH)2
Bustamite9.DG.05CaMn2+(Si2O6)
Pectolite9.DG.05NaCa2Si3O8(OH)
Wollastonite9.DG.05Ca3(Si3O9)
Babingtonite9.DK.05Ca2Fe2+Fe3+Si5O14(OH)
Rhodonite9.DK.05CaMn3Mn[Si5O15]
Pyroxmangite9.DO.05Mn2+SiO3
Prehnite9.DP.20Ca2Al2Si3O10(OH)2
Fluorapophyllite-(K)9.EA.15KCa4(Si8O20)(F,OH) · 8H2O
Talc
var. Steatite
9.EC.05Mg3(Si4O10)(OH)2
9.EC.05Mg3Si4O10(OH)2
Pyrophyllite9.EC.10Al2Si4O10(OH)2
Celadonite9.EC.15K(MgFe3+◻)(Si4O10)(OH)2
Muscovite
var. Fuchsite
9.EC.15K(Al,Cr)3Si3O10(OH)2
var. Illite9.EC.15K0.65Al2.0[Al0.65Si3.35O10](OH)2
9.EC.15KAl2(AlSi3O10)(OH)2
Paragonite9.EC.15NaAl2(AlSi3O10)(OH)2
Muscovite
var. Schernikite (TL)
9.EC.15KAl2(AlSi3O10)(OH)2
var. Damourite9.EC.15KAl2(AlSi3O10)(OH)2
var. Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Annite9.EC.20KFe2+3(AlSi3O10)(OH)2
Masutomilite9.EC.20K(LiAlMn2+)[AlSi3O10]F2
Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
Margarite9.EC.30CaAl2(Al2Si2O10)(OH)2
Bityite9.EC.35CaLiAl2(AlBeSi2O10)(OH)2
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Saponite ?9.EC.45Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Ferrosaponite ?9.EC.45Ca0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
Cookeite9.EC.55(LiAl4◻)[AlSi3O10](OH)8
Clinochlore
var. Diabantite ?
9.EC.55(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
var. Ripidolite9.EC.55(Mg,Fe,Al)6(Si,Al)4O10(OH)8
Dickite9.ED.05Al2(Si2O5)(OH)4
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Nacrite ?9.ED.05Al2(Si2O5)(OH)4
Halloysite9.ED.10Al2(Si2O5)(OH)4
Antigorite9.ED.15Mg3(Si2O5)(OH)4
Caryopilite9.ED.15Mn2+3Si2O5(OH)4
Cronstedtite9.ED.15Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Lizardite9.ED.15Mg3(Si2O5)(OH)4
Allophane9.ED.20(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x < 1
Bismutoferrite9.ED.25Fe3+2Bi(SiO4)2(OH)
Bementite ?9.EE.05Mn7Si6O15(OH)8
Palygorskite ?9.EE.20◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
Sepiolite9.EE.25Mg4(Si6O15)(OH)2 · 6H2O
Petalite9.EF.05LiAl(Si4O10)
Stilpnomelane9.EG.40(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
'Chalcodite'9.EG.40K(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
Sarcolite9.EH.15Na4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Bonaccorsiite9.FA.KK2Na3(Al6Si36)O84
Nepheline9.FA.05Na3K(Al4Si4O16)
Microcline
var. Amazonite
9.FA.30K(AlSi3O8)
var. Hyalophane9.FA.30(K,Ba)[Al(Si,Al)Si2O8]
9.FA.30K(AlSi3O8)
Orthoclase9.FA.30K(AlSi3O8)
Albite9.FA.35Na(AlSi3O8)
var. Andesine9.FA.35(Na,Ca)[Al(Si,Al)Si2O8]
Anorthite9.FA.35Ca(Al2Si2O8)
var. Bytownite9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
var. Labradorite9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
Albite
var. Oligoclase
9.FA.35(Na,Ca)[Al(Si,Al)Si2O8]
var. Peristerite9.FA.35Na(AlSi3O8)
var. Cleavelandite9.FA.35Na(AlSi3O8)
Danburite (TL)9.FA.65CaB2Si2O8
Helvine9.FB.10Be3Mn2+4(SiO4)3S
Sodalite9.FB.10Na4(Si3Al3)O12Cl
Marialite9.FB.15Na4Al3Si9O24Cl
Meionite9.FB.15Ca4Al6Si6O24CO3
Gonnardite9.GA.05(Na,Ca)2(Si,Al)5O10 · 3H2O
Mesolite9.GA.05Na2Ca2Si9Al6O30 · 8H2O
Natrolite9.GA.05Na2Al2Si3O10 · 2H2O
Scolecite9.GA.05CaAl2Si3O10 · 3H2O
Analcime9.GB.05Na(AlSi2O6) · H2O
Pollucite9.GB.05(Cs,Na)2(Al2Si4O12) · 2H2O
Laumontite9.GB.10CaAl2Si4O12 · 4H2O
Gobbinsite9.GC.05Na5(Si11Al5)O32 · 11H2O
Harmotome9.GC.10Ba2(Si12Al4)O32 · 12H2O
Chabazite-Ca9.GD.10(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Mordenite9.GD.35(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Epistilbite9.GD.45CaAl2Si6O16 · 5H2O
Heulandite-Ca9.GE.05(Ca,Na)5(Si27Al9)O72 · 26H2O
Stilbite-Ca9.GE.10NaCa4(Si27Al9)O72 · 28H2O
Stellerite ?9.GE.15Ca4(Si28Al8)O72 · 28H2O
Unclassified
'K Feldspar
var. Adularia'
-KAlSi3O8
'Aeschynite' ?-
'Alkali Feldspar'-
'Alum Group'-XAl(SO4)2 · 12H2O
'Amphibole Supergroup'-AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Apophyllite Group'-AB4[Si8O22]X · 8H2O
'Asbestos'-
'Tourmaline
var. Achroite'
-A(D3)G6(T6O18)(BO3)3X3Z
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
'Brewsterite Subgroup' ?-
'Chrysoprase'-
'Chabazite'-
'Chlorophyllite'-
'Chlorite Group'-
'Fahlunite'-(Mg,Fe)Al2Si3O10 · 2H2O
'Feldspar Group'-
'Gmelinite Subgroup' ?-
'Gummite'-
'Heulandite Subgroup'-(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
'Calcium Amphibole Subgroup
var. Hornblende'
-AnCa2(Z2+5-mZ3+m)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
'Hypersthene'-(Mg,Fe)SiO3
'Tourmaline
var. Indicolite'
-A(D3)G6(T6O18)(BO3)3X3Z
'Lepidolite'-
'Limonite'-
'Monazite Group'-REE(PO4)
'Moonstone'-
'Natromontebrasite'-
'Phillipsite Subgroup' ?-(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
'Pumpellyite Subgroup'-Ca2XAl2[Si2O6(OH)][SiO4](OH)2A
'Tourmaline
var. Rubellite'
-A(D3)G6(T6O18)(BO3)3X3Z
'Stilbite Subgroup'-M6-7[Al8-9Si27-28O72] · nH2O
'Tantalite'-(Mn,Fe)(Ta,Nb)2O6
'Tapiolite'-(Fe,Mn)(Ta,Nb)2O6
'Tourmaline'-AD3G6(T6O18)(BO3)3X3Z
'Amphibole Supergroup
var. Uralite' ?
-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Uranmicrolite (of Hogarth 1977)'-(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
'Fluor-uvite-Uvite Series' ?-
'Tourmaline
var. Verdelite'
-A(D3)G6(T6O18)(BO3)3X3Z
'Wad'-
'Zinnwaldite'-
'Cymatolite'-
'Xenotime'-
'Feldspar Group
var. Perthite'
-
'Almandine-Pyrope Series
var. Rhodolite' ?
-Mg3Al2(SiO4)3
'Mica Group'-
'Synchysite'-Ca(Ce/Nd/Y/REE)(CO3)2F
'Bloodstone'-SiO2
'Clinopyroxene Subgroup'-
'Petrified Wood'-
'Calamine'-
'Almandine-Spessartine Series'-
'Ferro-actinolite-Tremolite Series'-
'Fayalite-Forsterite Series'-
'Columbite-(Fe)-Columbite-(Mn) Series'-
'Dravite-Schorl Series'-
'Scapolite'-
'Hornblende Root Name Group'-◻Ca2(Z2+4Z3+)(AlSi7O22)(OH,F,Cl)2
'Asbestos
var. Mountain Leather'
-
'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8
'Soapstone'-
'Pinite'-
'Petroleum
var. Bitumen'
-
'Elaterite'-(C,H,O,S)
'Petroleum'-
'K Feldspar'-
'Pyroxene Group'-ADSi2O6
'Garnet Group'-X3Z2(SiO4)3
'Columbite-Tantalite'-
'Amphibole Supergroup
var. Byssolite'
-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Tourmaline
var. Watermelon Tourmaline'
-A(D3)G6(T6O18)(BO3)3X3Z
'Fergusonite' ?-
'Plessite'-
'Orthopyroxene Subgroup'-
'Lanthanite' ?-
'Chabazite
var. Phacolite'
-
'Serpentine Subgroup'-D3[Si2O5](OH)4
'Pyrobitumen
var. Albertite'
-
'Tourmalinated Quartz'-
'Manganese Oxides
var. Manganese Dendrites'
-
'Margarodite'-
'Manganese Oxides'-
'Serpentine Subgroup
var. Picrolite'
-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
'Crichtonite Group'-AD21O38 or A{DE2G6 Ti12}O38
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Axinite Group' ?-
'Copiapite Group'-
'Pumpellyite Group'-Ca2XZ2[Si2O6(OH)][SiO4](OH)2A
'Calcium Amphibole Subgroup'-AnCa2(Z2+5-mZ3+m)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
'Lithiophilite-Triphylite Series' ?-
'Synchysite Group'-
'Julgoldite Subgroup' ?-Ca2XFe3+2[Si2O6(OH)][SiO4](OH)2A
'Columbite-(Mn)-Tantalite-(Mn) Series'-
'Calciomicrolite'-
'Columbite Group'-
'Allanite Group'-(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)

List of minerals for each chemical element

HHydrogen
HActinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
HAllanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
HAlleghanyiteMn52+(SiO4)2(OH)2
HAllophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
HAlum GroupXAl(SO4)2 · 12H2O
HAmphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
HAnalcimeNa(AlSi2O6) · H2O
HAnnabergiteNi3(AsO4)2 · 8H2O
HAnniteKFe32+(AlSi3O10)(OH)2
HAnthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
HAntigoriteMg3(Si2O5)(OH)4
HApophyllite GroupAB4[Si8O22]X · 8H2O
HArrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
HAtacamiteCu2(OH)3Cl
HAurichalcite(Zn,Cu)5(CO3)2(OH)6
HAutuniteCa(UO2)2(PO4)2 · 10-12H2O
HAzuriteCu3(CO3)2(OH)2
HAugeliteAl2(PO4)(OH)3
HBabingtoniteCa2Fe2+Fe3+Si5O14(OH)
HBaveniteCa4Be2Al2Si9O26(OH)2
HBecquereliteCa(UO2)6O4(OH)6 · 8H2O
HBementiteMn7Si6O15(OH)8
HBerauniteFe63+(PO4)4O(OH)4 · 6H2O
HBertranditeBe4(Si2O7)(OH)2
HBismutoferriteFe23+Bi(SiO4)2(OH)
HBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
HBirnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
HBityiteCaLiAl2(AlBeSi2O10)(OH)2
HBrazilianiteNaAl3(PO4)2(OH)4
HBrochantiteCu4(SO4)(OH)6
HBruciteMg(OH)2
HThorite var.Calciothorite(Th,Ca2)SiO4 · 3.5H2O
HCarnotiteK2(UO2)2(VO4)2 · 3H2O
HCaryopiliteMn32+Si2O5(OH)4
HCeladoniteK(MgFe3+◻)(Si4O10)(OH)2
HCerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
HChalcanthiteCuSO4 · 5H2O
HChrysotileMg3(Si2O5)(OH)4
HChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x< 1
HChurchite-(Y)Y(PO4) · 2H2O
HClinochloreMg5Al(AlSi3O10)(OH)8
HClinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
HCoffiniteU(SiO4) · nH2O
HCookeite(LiAl4◻)[AlSi3O10](OH)8
HCopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
HCrandalliteCaAl3(PO4)(PO3OH)(OH)6
HCronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
HCummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2
HDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
HDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
HDevillineCaCu4(SO4)2(OH)6 · 3H2O
HClinochlore var.Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
HDiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
HDiasporeAlO(OH)
HDickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
HDickiteAl2(Si2O5)(OH)4
HDraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
HDatoliteCaB(SiO4)(OH)
HElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
HEosphoriteMn2+Al(PO4)(OH)2 · H2O
HEpidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
HEpistilbiteCaAl2Si6O16 · 5H2O
HEpsomiteMgSO4 · 7H2O
HErythriteCo3(AsO4)2 · 8H2O
HEuclaseBeAl(SiO4)(OH)
HFahlunite(Mg,Fe)Al2Si3O10 · 2H2O
HFairfielditeCa2Mn2+(PO4)2 · 2H2O
HAxinite-(Fe)Ca2Fe2+Al2BSi4O15OH
HFerricopiapiteFe3+0.67Fe43+(SO4)6(OH)2 · 20H2O
HFerrimolybditeFe2(MoO4)3 · nH2O
HHydrokenoelsmoreite var.Ferritungstite2(W,Fe3+)2(O,OH)6(H2O)
HFerro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
HFerro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
HFluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
HFoitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
HFourmarieritePb(UO2)4O3(OH)4 · 4H2O
HMuscovite var.FuchsiteK(Al,Cr)3Si3O10(OH)2
HGedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
HGibbsiteAl(OH)3
HGobbinsiteNa5(Si11Al5)O32 · 11H2O
HGoethiteFe3+O(OH)
HGonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
HGoslariteZnSO4 · 7H2O
HGrayite(Th,Pb,Ca)(PO4) · H2O
HGroutiteMn3+O(OH)
HGrunerite◻{Fe22+}{Fe52+}(Si8O22)(OH)2
HGypsumCaSO4 · 2H2O
HHalloysiteAl2(Si2O5)(OH)4
HHalotrichiteFeAl2(SO4)4 · 22H2O
HHarmotomeBa2(Si12Al4)O32 · 12H2O
HHastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
HHemimorphiteZn4Si2O7(OH)2 · H2O
HHeulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
HHexahydriteMgSO4 · 6H2O
HCalcium Amphibole Subgroup var.HornblendeAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
HHureauliteMn52+(PO3OH)2(PO4)2 · 4H2O
HOpal var.Opal-ANSiO2 · nH2O
HHydroxylherderiteCaBe(PO4)(OH)
HHydrotungstiteWO3 · 2H2O
HHydroxylapatiteCa5(PO4)3(OH)
HHydrozinciteZn5(CO3)2(OH)6
HMuscovite var.IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
HJarositeKFe33+(SO4)2(OH)6
HJohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
HJulgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
HKaoliniteAl2(Si2O5)(OH)4
HLandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
HLangiteCu4(SO4)(OH)6 · 2H2O
HLaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
HLaumontiteCaAl2Si4O12 · 4H2O
HLazuliteMgAl2(PO4)2(OH)2
HLepidocrociteFe3+O(OH)
HLinaritePbCu(SO4)(OH)2
HLithiophorite(Al,Li)MnO2(OH)2
HLizarditeMg3(Si2O5)(OH)4
HLudlamiteFe32+(PO4)2 · 4H2O
HManganiteMn3+O(OH)
HMagnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
HMalachiteCu2(CO3)(OH)2
HFluorapatite var.Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
HMargariteCaAl2(Al2Si2O10)(OH)2
HMelanteriteFe2+(H2O)6SO4 · H2O
HMesoliteNa2Ca2Si9Al6O30 · 8H2O
HMesseliteCa2Fe2+(PO4)2 · 2H2O
HMeta-autuniteCa(UO2)2(PO4)2 · 6H2O
HMetaswitzeriteMn32+(PO4)2 · 4H2O
HMetatorberniteCu(UO2)2(PO4)2 · 8H2O
HMilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
HMitridatiteCa2Fe33+(PO4)3O2 · 3H2O
HMontebrasiteLiAl(PO4)(OH)
HMoraesiteBe2(PO4)(OH) · 4H2O
HMordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
HMoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
HMuscoviteKAl2(AlSi3O10)(OH)2
HMontmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
HNacriteAl2(Si2O5)(OH)4
HNontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
HNatroliteNa2Al2Si3O10 · 2H2O
HOpalSiO2 · nH2O
HPalermoiteLi2SrAl4(PO4)4(OH)4
HPalygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
HParagoniteNaAl2(AlSi3O10)(OH)2
HParatacamiteCu3(Cu,Zn)(OH)6Cl2
HPargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
HPectoliteNaCa2Si3O8(OH)
HPhosphophylliteZn2Fe2+(PO4)2 · 4H2O
HPhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
HPharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
HPhillipsite Subgroup(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
HPhlogopiteKMg3(AlSi3O10)(OH)2
HPickeringiteMgAl2(SO4)4 · 22H2O
HPiemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
HPitticite(Fe, AsO4, H2O) (?)
HPlaneriteAl6(PO4)2(PO3OH)2(OH)8 · 4H2O
HPlumbogummitePbAl3(PO4)(PO3OH)(OH)6
HPollucite(Cs,Na)2(Al2Si4O12) · 2H2O
HPrehniteCa2Al2Si3O10(OH)2
HPseudomalachiteCu5(PO4)2(OH)4
HPumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
HPumpellyite-(Mg)Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)
HPyrochlore GroupA2Nb2(O,OH)6Z
HPyrophylliteAl2Si4O10(OH)2
HReddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
HRhabdophane-(La)La(PO4) · H2O
HRhabdophane-(Nd)Nd(PO4) · H2O
HClinochlore var.Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
HRockbridgeite(Fe2+0.5Fe3+0.5)2Fe33+(PO4)3(OH)5
HRomanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
HRosasite(Cu,Zn)2(CO3)(OH)2
HRoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
HRozeniteFeSO4 · 4H2O
HSaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
HSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
HMuscovite var.SchernikiteKAl2(AlSi3O10)(OH)2
HSchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
HScoleciteCaAl2Si3O10 · 3H2O
HScoroditeFe3+AsO4 · 2H2O
HScorzaliteFe2+Al2(PO4)2(OH)2
HSepioliteMg4(Si6O15)(OH)2 · 6H2O
HStauroliteFe22+Al9Si4O23(OH)
HTalc var.SteatiteMg3(Si4O10)(OH)2
HStelleriteCa4(Si28Al8)O72 · 28H2O
HStewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
HStilbite SubgroupM6-7[Al8-9Si27-28O72] · nH2O
HStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
HStrengiteFePO4 · 2H2O
HStrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
HSwitzeriteMn32+(PO4)2 · 7H2O
HSzomolnokiteFeSO4 · H2O
HTalcMg3Si4O10(OH)2
HTanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
HThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
HThorite var.Thorogummite(Th,U)(SiO4)1-x(OH)4x
HZoisite var.Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
HTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
HTopazAl2(SiO4)(F,OH)2
HTorberniteCu(UO2)2(PO4)2 · 12H2O
HTremolite◻Ca2Mg5(Si8O22)(OH)2
HTriploiditeMn22+(PO4)(OH)
HTungstiteWO3 · H2O
HTyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
HAmphibole Supergroup var.UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
HUranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
HUranophaneCa(UO2)2(SiO3OH)2 · 5H2O
HPyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
HFluor-uvite-Uvite Series
HVandendriesscheitePbU7O22 · 12H2O
HVivianiteFe2+Fe22+(PO4)2 · 8H2O
HWurtzite var.Voltzite(Zn,Fe,Mn) S [with O C H ]
HVesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
HWarditeNaAl3(PO4)2(OH)4 · 2H2O
HWhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
HXanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
HZinnwaldite
HZoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
HGypsum var.SeleniteCaSO4 · 2H2O
HChabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
HHeulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
HStilbite-CaNaCa4(Si27Al9)O72 · 28H2O
HZircon var.CyrtoliteZr[(SiO4),(OH)4]
HGypsum var.Satin Spar GypsumCaSO4 · 2H2O
HMuscovite var.DamouriteKAl2(AlSi3O10)(OH)2
HFerro-actinolite-Tremolite Series
HDravite-Schorl Series
HHornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
HMuscovite var.SericiteKAl2(AlSi3O10)(OH)2
HElaterite(C,H,O,S)
HEpidote var.Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
HAmphibole Supergroup var.ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
HOxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
HSerpentine SubgroupD3[Si2O5](OH)4
HFerri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
HSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
HClinozoisite var.Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
HHydrokenoelsmoreite2W2O6(H2O)
HFerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
HApatiteCa5(PO4)3(Cl/F/OH)
HPumpellyite GroupCa2XZ2[Si2O6(OH)][SiO4](OH)2A
HCalcium Amphibole SubgroupAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
HOpal var.HyaliteSiO2 · nH2O
HChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
HJulgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
HAllanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
HFerroberauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
LiLithium
LiAmblygoniteLiAl(PO4)F
LiBityiteCaLiAl2(AlBeSi2O10)(OH)2
LiCookeite(LiAl4◻)[AlSi3O10](OH)8
LiElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
LiEucryptiteLiAlSiO4
LiTriphylite var.FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
LiSpodumene var.KunziteLiAlSi2O6
LiLithiophiliteLiMn2+PO4
LiLithiophorite(Al,Li)MnO2(OH)2
LiMasutomiliteK(LiAlMn2+)[AlSi3O10]F2
LiMontebrasiteLiAl(PO4)(OH)
LiPalermoiteLi2SrAl4(PO4)4(OH)4
LiPetaliteLiAl(Si4O10)
LiLithiophilite var.SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
LiSpodumeneLiAlSi2O6
LiTriphyliteLiFe2+PO4
LiZinnwaldite
LiLithiophilite-Triphylite Series
BeBeryllium
BeBeryl var.AquamarineBe3Al2Si6O18
BeBaveniteCa4Be2Al2Si9O26(OH)2
BeBazziteBe3Sc2(Si6O18)
BeBertranditeBe4(Si2O7)(OH)2
BeBityiteCaLiAl2(AlBeSi2O10)(OH)2
BeBerylBe3Al2(Si6O18)
BeChrysoberylBeAl2O4
BeBeryl var.EmeraldBe3Al2(Si6O18)
BeEuclaseBeAl(SiO4)(OH)
BeHelvineBe3Mn42+(SiO4)3S
BeHerderiteCaBe(PO4)F
BeHydroxylherderiteCaBe(PO4)(OH)
BeMilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
BeMoraesiteBe2(PO4)(OH) · 4H2O
BeBeryl var.MorganiteBe3Al2(Si6O18)
BePhenakiteBe2SiO4
BeRoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
BeBeryl var.HeliodorBe3Al2(Si6O18)
BeBeryl var.GosheniteBe3Al2(Si6O18)
BBoron
BTourmaline var.AchroiteA(D3)G6(T6O18)(BO3)3X3Z
BDanburiteCaB2Si2O8
BDraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
BDumortieriteAl(Al2O)(Al2O)2(SiO4)3(BO3)
BDatoliteCaB(SiO4)(OH)
BElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
BAxinite-(Fe)Ca2Fe2+Al2BSi4O15OH
BFoitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
BTourmaline var.IndicoliteA(D3)G6(T6O18)(BO3)3X3Z
BTourmaline var.RubelliteA(D3)G6(T6O18)(BO3)3X3Z
BSchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
BTourmalineAD3G6(T6O18)(BO3)3X3Z
BFluor-uvite-Uvite Series
BTourmaline var.VerdeliteA(D3)G6(T6O18)(BO3)3X3Z
BDravite-Schorl Series
BTourmaline var.Watermelon TourmalineA(D3)G6(T6O18)(BO3)3X3Z
BOxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
CCarbon
CAnkeriteCa(Fe2+,Mg)(CO3)2
CAragoniteCaCO3
CAurichalcite(Zn,Cu)5(CO3)2(OH)6
CAzuriteCu3(CO3)2(OH)2
CBastnäsite-(Ce)Ce(CO3)F
CBeyeriteCa(BiO)2(CO3)2
CBismutite(BiO)2CO3
CMagnesite var.Iron-bearing Magnesite(Mg,Fe)CO3
CCalciteCaCO3
CCerussitePbCO3
CDiamondC
CDolomiteCaMg(CO3)2
CGraphiteC
CHydrozinciteZn5(CO3)2(OH)6
CKutnohoriteCaMn2+(CO3)2
CMagnesiteMgCO3
CMalachiteCu2(CO3)(OH)2
CMeioniteCa4Al6Si6O24CO3
CRhodochrositeMnCO3
CRosasite(Cu,Zn)2(CO3)(OH)2
CRutherfordine(UO2)CO3
CSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
CSideriteFeCO3
CSmithsoniteZnCO3
CSpurriteCa5(SiO4)2(CO3)
CSynchysite-(Y)CaY(CO3)2F
CThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
CWurtzite var.Voltzite(Zn,Fe,Mn) S [with O C H ]
CSynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
CElaterite(C,H,O,S)
CCalcite var.Iron-bearing Calcite(Ca,Fe)CO3
CDolomite var.Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
OOxygen
OActinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
OK Feldspar var.AdulariaKAlSi3O8
OAegirineNaFe3+Si2O6
OAegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
OQuartz var.AgateSiO2
OAlbiteNa(AlSi3O8)
OAllanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
OAlleghanyiteMn52+(SiO4)2(OH)2
OAllophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
OAlluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
OAlum GroupXAl(SO4)2 · 12H2O
OMicrocline var.AmazoniteK(AlSi3O8)
OAmblygoniteLiAl(PO4)F
OQuartz var.AmethystSiO2
OAmphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
OAnalcimeNa(AlSi2O6) · H2O
OAnataseTiO2
OAndalusiteAl2(SiO4)O
OAlbite var.Andesine(Na,Ca)[Al(Si,Al)Si2O8]
OAndraditeCa3Fe23+(SiO4)3
OAnglesitePbSO4
OAnhydriteCaSO4
OAnkeriteCa(Fe2+,Mg)(CO3)2
OAnnabergiteNi3(AsO4)2 · 8H2O
OAnniteKFe32+(AlSi3O10)(OH)2
OAnorthiteCa(Al2Si2O8)
OAnthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
OAntigoriteMg3(Si2O5)(OH)4
OApophyllite GroupAB4[Si8O22]X · 8H2O
OBeryl var.AquamarineBe3Al2Si6O18
OArsenoliteAs2O3
OAragoniteCaCO3
OArrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
OAtacamiteCu2(OH)3Cl
OAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
OAurichalcite(Zn,Cu)5(CO3)2(OH)6
OAutuniteCa(UO2)2(PO4)2 · 10-12H2O
OAzuriteCu3(CO3)2(OH)2
OAugeliteAl2(PO4)(OH)3
OAlmandineFe32+Al2(SiO4)3
OTourmaline var.AchroiteA(D3)G6(T6O18)(BO3)3X3Z
OBabingtoniteCa2Fe2+Fe3+Si5O14(OH)
OBaddeleyiteZrO2
OBaryteBaSO4
OBastnäsite-(Ce)Ce(CO3)F
OBaveniteCa4Be2Al2Si9O26(OH)2
OBazziteBe3Sc2(Si6O18)
OBecquereliteCa(UO2)6O4(OH)6 · 8H2O
OBementiteMn7Si6O15(OH)8
OBerauniteFe63+(PO4)4O(OH)4 · 6H2O
OBertranditeBe4(Si2O7)(OH)2
OBeyeriteCa(BiO)2(CO3)2
OBismutotantaliteBiTaO4
OBismutoferriteFe23+Bi(SiO4)2(OH)
OBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
OBirnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
OBismiteBi2O3
OBismutite(BiO)2CO3
OBityiteCaLiAl2(AlBeSi2O10)(OH)2
OBrazilianiteNaAl3(PO4)2(OH)4
OMagnesite var.Iron-bearing Magnesite(Mg,Fe)CO3
OBrochantiteCu4(SO4)(OH)6
OBrookiteTiO2
OBustamiteCaMn2+(Si2O6)
OAnorthite var.Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
OBerylBe3Al2(Si6O18)
OBruciteMg(OH)2
OThorite var.Calciothorite(Th,Ca2)SiO4 · 3.5H2O
OCalciteCaCO3
OCarnotiteK2(UO2)2(VO4)2 · 3H2O
OCaryopiliteMn32+Si2O5(OH)4
OCassiteriteSnO2
OCeladoniteK(MgFe3+◻)(Si4O10)(OH)2
OCelestineSrSO4
OCerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
OCerussitePbCO3
OChalcanthiteCuSO4 · 5H2O
OQuartz var.ChalcedonySiO2
OChrysotileMg3(Si2O5)(OH)4
OCuprite var.ChalcotrichiteCu2O
OChondroditeMg5(SiO4)2F2
OChromiteFe2+Cr23+O4
OChrysoberylBeAl2O4
OChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x< 1
OChurchite-(Y)Y(PO4) · 2H2O
OQuartz var.CitrineSiO2
OClaudetiteAs2O3
OClinochloreMg5Al(AlSi3O10)(OH)8
OClinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
OCoffiniteU(SiO4) · nH2O
OCookeite(LiAl4◻)[AlSi3O10](OH)8
OCopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
OCordieriteMg2Al4Si5O18
OCorundumAl2O3
OCrandalliteCaAl3(PO4)(PO3OH)(OH)6
OCronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
OCryptomelaneK(Mn74+Mn3+)O16
OCummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2
OCupriteCu2O
ODanburiteCaB2Si2O8
ODavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
ODavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
ODevillineCaCu4(SO4)2(OH)6 · 3H2O
OClinochlore var.Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
ODiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
ODiasporeAlO(OH)
ODickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
ODickiteAl2(Si2O5)(OH)4
ODiopsideCaMgSi2O6
ODolomiteCaMg(CO3)2
ODraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
ODumortieriteAl(Al2O)(Al2O)2(SiO4)3(BO3)
ODatoliteCaB(SiO4)(OH)
OElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
OBeryl var.EmeraldBe3Al2(Si6O18)
OEnstatiteMg2Si2O6
OEosphoriteMn2+Al(PO4)(OH)2 · H2O
OEpidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
OEpistilbiteCaAl2Si6O16 · 5H2O
OEpsomiteMgSO4 · 7H2O
OErythriteCo3(AsO4)2 · 8H2O
OEuclaseBeAl(SiO4)(OH)
OEucryptiteLiAlSiO4
OEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
OFahlunite(Mg,Fe)Al2Si3O10 · 2H2O
OFairfielditeCa2Mn2+(PO4)2 · 2H2O
OAxinite-(Fe)Ca2Fe2+Al2BSi4O15OH
OFerberiteFeWO4
OFerricopiapiteFe3+0.67Fe43+(SO4)6(OH)2 · 20H2O
OFerrimolybditeFe2(MoO4)3 · nH2O
OTriphylite var.FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
OHydrokenoelsmoreite var.Ferritungstite2(W,Fe3+)2(O,OH)6(H2O)
OFerro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
OColumbite-(Fe)Fe2+Nb2O6
OFerro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
OTantalite-(Fe)Fe2+Ta2O6
OTapiolite-(Fe)Fe2+Ta2O6
OFillowiteNa3CaMn112+(PO4)9
OFluorapatiteCa5(PO4)3F
OFluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
OFoitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
OForsteriteMg2SiO4
OFourmarieritePb(UO2)4O3(OH)4 · 4H2O
OMuscovite var.FuchsiteK(Al,Cr)3Si3O10(OH)2
OGahniteZnAl2O4
OGalaxiteMn2+Al2O4
OGedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
OGehleniteCa2Al[AlSiO7]
OGibbsiteAl(OH)3
OGobbinsiteNa5(Si11Al5)O32 · 11H2O
OGoethiteFe3+O(OH)
OGonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
OGoslariteZnSO4 · 7H2O
OGraftoniteFe2+Fe22+(PO4)2
OGrayite(Th,Pb,Ca)(PO4) · H2O
OGrossularCa3Al2(SiO4)3
OGroutiteMn3+O(OH)
OGrunerite◻{Fe22+}{Fe52+}(Si8O22)(OH)2
OGypsumCaSO4 · 2H2O
OHalloysiteAl2(Si2O5)(OH)4
OHalotrichiteFeAl2(SO4)4 · 22H2O
OHarmotomeBa2(Si12Al4)O32 · 12H2O
OHastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
OHedenbergiteCaFe2+Si2O6
OHelvineBe3Mn42+(SiO4)3S
OHematiteFe2O3
OHemimorphiteZn4Si2O7(OH)2 · H2O
OHerderiteCaBe(PO4)F
OGrossular var.HessoniteCa3Al2(SiO4)3
OHeterositeFe3+(PO4)
OHeulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
OHexahydriteMgSO4 · 6H2O
OCalcium Amphibole Subgroup var.HornblendeAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
OHübneriteMnWO4
OHureauliteMn52+(PO3OH)2(PO4)2 · 4H2O
OOpal var.Opal-ANSiO2 · nH2O
OMicrocline var.Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
OHydroxylherderiteCaBe(PO4)(OH)
OHydrotungstiteWO3 · 2H2O
OHydroxylapatiteCa5(PO4)3(OH)
OHydrozinciteZn5(CO3)2(OH)6
OHypersthene(Mg,Fe)SiO3
OMuscovite var.IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
OIlmeniteFe2+TiO3
OTourmaline var.IndicoliteA(D3)G6(T6O18)(BO3)3X3Z
OIshikawaiteU4+Fe2+Nb2O8
OIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series
OJacobsiteMn2+Fe23+O4
OJarositeKFe33+(SO4)2(OH)6
OJohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
OJohannseniteCaMn2+Si2O6
OJulgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
OKaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
OKaoliniteAl2(Si2O5)(OH)4
OSpodumene var.KunziteLiAlSi2O6
OKutnohoriteCaMn2+(CO3)2
OKyaniteAl2(SiO4)O
OAnorthite var.Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
OLacroixiteNaAl(PO4)F
OLandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
OLangiteCu4(SO4)(OH)6 · 2H2O
OLarniteCa2SiO4
OLaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
OLaumontiteCaAl2Si4O12 · 4H2O
OLazuliteMgAl2(PO4)2(OH)2
OLechatelieriteSiO2
OLepidocrociteFe3+O(OH)
OLiandratiteU(Nb,Ta)2O8
OLinaritePbCu(SO4)(OH)2
OLithiophiliteLiMn2+PO4
OLithiophorite(Al,Li)MnO2(OH)2
OLizarditeMg3(Si2O5)(OH)4
OLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
OLudlamiteFe32+(PO4)2 · 4H2O
OLithargePbO
OMagnesiteMgCO3
OManganiteMn3+O(OH)
OColumbite-(Mn)Mn2+Nb2O6
OTantalite-(Mn)Mn2+Ta2O6
OMagnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
OMaghemite(Fe3+0.670.33)Fe23+O4
OMagnetiteFe2+Fe23+O4
OMalachiteCu2(CO3)(OH)2
OIlmenite var.Iron(III)-bearing Ilmenite(Fe2+,Fe3+)TiO3
OFluorapatite var.Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
OMargariteCaAl2(Al2Si2O10)(OH)2
OMarialiteNa4Al3Si9O24Cl
OMassicotPbO
OMasutomiliteK(LiAlMn2+)[AlSi3O10]F2
OMeioniteCa4Al6Si6O24CO3
OMelanteriteFe2+(H2O)6SO4 · H2O
OMesoliteNa2Ca2Si9Al6O30 · 8H2O
OMesseliteCa2Fe2+(PO4)2 · 2H2O
OMeta-autuniteCa(UO2)2(PO4)2 · 6H2O
OMetaswitzeriteMn32+(PO4)2 · 4H2O
OMetatorberniteCu(UO2)2(PO4)2 · 8H2O
OMicroclineK(AlSi3O8)
OMilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
OMimetitePb5(AsO4)3Cl
OMiniumPb3O4
OMitridatiteCa2Fe33+(PO4)3O2 · 3H2O
OMonazite GroupREE(PO4)
OMonazite-(Ce)Ce(PO4)
OMontebrasiteLiAl(PO4)(OH)
OMoraesiteBe2(PO4)(OH) · 4H2O
OMordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
OBeryl var.MorganiteBe3Al2(Si6O18)
OMoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
OMuscoviteKAl2(AlSi3O10)(OH)2
OMontmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
ONacriteAl2(Si2O5)(OH)4
ONatrophiliteNaMn2+PO4
ONephelineNa3K(Al4Si4O16)
ONontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
ONatroliteNa2Al2Si3O10 · 2H2O
OAlbite var.Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
OOpalSiO2 · nH2O
OOrthoclaseK(AlSi3O8)
OPalermoiteLi2SrAl4(PO4)4(OH)4
OPalygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
OParagoniteNaAl2(AlSi3O10)(OH)2
OParatacamiteCu3(Cu,Zn)(OH)6Cl2
OPargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
OParsonsitePb2(UO2)(PO4)2
OPectoliteNaCa2Si3O8(OH)
OPetaliteLiAl(Si4O10)
OPetscheckiteUFe(Nb,Ta)2O8
OPhosphophylliteZn2Fe2+(PO4)2 · 4H2O
OPhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
OPharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
OPhenakiteBe2SiO4
OPhillipsite Subgroup(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
OPhlogopiteKMg3(AlSi3O10)(OH)2
OPickeringiteMgAl2(SO4)4 · 22H2O
OPiemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
OPigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
OPitticite(Fe, AsO4, H2O) (?)
OPlaneriteAl6(PO4)2(PO3OH)2(OH)8 · 4H2O
OPlattneritePbO2
OPlumbogummitePbAl3(PO4)(PO3OH)(OH)6
OPollucite(Cs,Na)2(Al2Si4O12) · 2H2O
OPowelliteCa(MoO4)
OPrehniteCa2Al2Si3O10(OH)2
OPseudomalachiteCu5(PO4)2(OH)4
OPumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
OPumpellyite-(Mg)Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)
OPurpuriteMn3+(PO4)
OPyrochlore GroupA2Nb2(O,OH)6Z
OPyrolusiteMn4+O2
OPyromorphitePb5(PO4)3Cl
OPyropeMg3Al2(SiO4)3
OPyrophaniteMn2+TiO3
OPyrophylliteAl2Si4O10(OH)2
OPyroxmangiteMn2+SiO3
OQuartzSiO2
OReddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
ORhabdophane-(La)La(PO4) · H2O
ORhabdophane-(Nd)Nd(PO4) · H2O
ORhodochrositeMnCO3
ORhodoniteCaMn3Mn[Si5O15]
OClinochlore var.Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
ORockbridgeite(Fe2+0.5Fe3+0.5)2Fe33+(PO4)3(OH)5
ORomanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
ORosasite(Cu,Zn)2(CO3)(OH)2
ORoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
OQuartz var.Rose QuartzSiO2
ORozeniteFeSO4 · 4H2O
OTourmaline var.RubelliteA(D3)G6(T6O18)(BO3)3X3Z
ORutherfordine(UO2)CO3
OQuartz var.Rutilated QuartzSiO2
ORutileTiO2
OSamarskite-(Y)YFe3+Nb2O8
OSaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
OCorundum var.SapphireAl2O3
OSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
OScheeliteCa(WO4)
OMuscovite var.SchernikiteKAl2(AlSi3O10)(OH)2
OSchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
OScoleciteCaAl2Si3O10 · 3H2O
OScoroditeFe3+AsO4 · 2H2O
OScorzaliteFe2+Al2(PO4)2(OH)2
OSepioliteMg4(Si6O15)(OH)2 · 6H2O
OLithiophilite var.SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
OSideriteFeCO3
OSillimaniteAl2(SiO4)O
OSilléniteBi12SiO20
OSmithsoniteZnCO3
OQuartz var.Smoky QuartzSiO2
OSodaliteNa4(Si3Al3)O12Cl
OSpessartineMn32+Al2(SiO4)3
OSpinelMgAl2O4
OSpodumeneLiAlSi2O6
OSpurriteCa5(SiO4)2(CO3)
OSrilankiteZrTi2O6
OStauroliteFe22+Al9Si4O23(OH)
OTalc var.SteatiteMg3(Si4O10)(OH)2
OStelleriteCa4(Si28Al8)O72 · 28H2O
OStewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
OStilbite SubgroupM6-7[Al8-9Si27-28O72] · nH2O
OStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
OStrengiteFePO4 · 2H2O
OStrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
ORutile var.Strüverite(Ti,Ta,Fe)O2
OSwitzeriteMn32+(PO4)2 · 7H2O
OSynchysite-(Y)CaY(CO3)2F
OSzomolnokiteFeSO4 · H2O
OTalcMg3Si4O10(OH)2
OTantalite(Mn,Fe)(Ta,Nb)2O6
OTanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
OTapiolite(Fe,Mn)(Ta,Nb)2O6
OTephroiteMn22+SiO4
OThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
OThoriteTh(SiO4)
OThorite var.Thorogummite(Th,U)(SiO4)1-x(OH)4x
OZoisite var.Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
OTitaniteCaTi(SiO4)O
OTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
OTopazAl2(SiO4)(F,OH)2
OTorberniteCu(UO2)2(PO4)2 · 12H2O
OTourmalineAD3G6(T6O18)(BO3)3X3Z
OTremolite◻Ca2Mg5(Si8O22)(OH)2
OTridymiteSiO2
OTriphyliteLiFe2+PO4
OTripliteMn22+(PO4)F
OTriploiditeMn22+(PO4)(OH)
OTungstiteWO3 · H2O
OTyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
OAmphibole Supergroup var.UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
OUraniniteUO2
OUranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
OUranophaneCa(UO2)2(SiO3OH)2 · 5H2O
OPyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
OFluor-uvite-Uvite Series
OVanadinitePb5(VO4)3Cl
OVandendriesscheitePbU7O22 · 12H2O
OTourmaline var.VerdeliteA(D3)G6(T6O18)(BO3)3X3Z
OVivianiteFe2+Fe22+(PO4)2 · 8H2O
OWurtzite var.Voltzite(Zn,Fe,Mn) S [with O C H ]
OVesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
OWarditeNaAl3(PO4)2(OH)4 · 2H2O
OWhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
OWillemiteZn2SiO4
OWodginiteMn2+Sn4+Ta2O8
OWulfenitePb(MoO4)
OWollastoniteCa3(Si3O9)
OXenotime-(Y)Y(PO4)
OXanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
OYttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
OZinnwaldite
OZirconZr(SiO4)
OZoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
OAlbite var.PeristeriteNa(AlSi3O8)
OEnstatite var.Bronzite(Mg,Fe2+)2[SiO3]2
OGypsum var.SeleniteCaSO4 · 2H2O
OHematite var.SpeculariteFe2O3
OQuartz var.Rock CrystalSiO2
OQuartz var.Milky QuartzSiO2
OAlmandine-Pyrope Series var.RhodoliteMg3Al2(SiO4)3
OBeryl var.HeliodorBe3Al2(Si6O18)
OZircon var.CalyptoliteZr(SiO4)
OChabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
OHeulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
OStilbite-CaNaCa4(Si27Al9)O72 · 28H2O
OIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series var.Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
OAndradite var.MelaniteCa3Fe23+(SiO4)3
OSynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
OZircon var.CyrtoliteZr[(SiO4),(OH)4]
OAndradite var.TopazoliteCa3Fe23+(SiO4)3
OBeryl var.GosheniteBe3Al2(Si6O18)
OQuartz var.SardonyxSiO2
OQuartz var.SardSiO2
OBloodstoneSiO2
OQuartz var.Sceptre QuartzSiO2
OAlbite var.CleavelanditeNa(AlSi3O8)
OForsterite var.PeridotMg2SiO4
OGypsum var.Satin Spar GypsumCaSO4 · 2H2O
OMuscovite var.DamouriteKAl2(AlSi3O10)(OH)2
OAlmandine-Spessartine Series
OFerro-actinolite-Tremolite Series
OFayalite-Forsterite Series
OColumbite-(Fe)-Columbite-(Mn) Series
ODravite-Schorl Series
OHornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
OMuscovite var.SericiteKAl2(AlSi3O10)(OH)2
OPlagioclase(Na,Ca)[(Si,Al)AlSi2]O8
OQuartz var.CarnelianSiO2
OElaterite(C,H,O,S)
OPyroxene GroupADSi2O6
OTitanite var.Lederite (of Shepard)CaTi(SiO4)O
OEpidote var.Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
OGarnet GroupX3Z2(SiO4)3
OCalcite var.Iron-bearing Calcite(Ca,Fe)CO3
OAmphibole Supergroup var.ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
OTourmaline var.Watermelon TourmalineA(D3)G6(T6O18)(BO3)3X3Z
OOxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
OAugite var.Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
OAugite var.Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
ODolomite var.Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
OSerpentine SubgroupD3[Si2O5](OH)4
OFerri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
OQuartz var.Blue QuartzSiO2
OHematite var.Iron RoseFe2O3
OSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
OClinozoisite var.Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
OQuartz var.Ferruginous QuartzSiO2
OHydrokenoelsmoreite2W2O6(H2O)
OFerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
OCrichtonite GroupAD21O38 or A{DE2G6 Ti12}O38
OApatiteCa5(PO4)3(Cl/F/OH)
OPumpellyite GroupCa2XZ2[Si2O6(OH)][SiO4](OH)2A
OCalcium Amphibole SubgroupAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
OLithiophilite-Triphylite Series
OOpal var.HyaliteSiO2 · nH2O
OChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
OJulgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
ODiopside var.CanaaniteCaMgSi2O6
OAllanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
OFerroberauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
OBonaccorsiiteKK2Na3(Al6Si36)O84
FFluorine
FAmblygoniteLiAl(PO4)F
FAmphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
FBastnäsite-(Ce)Ce(CO3)F
FBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
FFluorite var.ChlorophaneCaF2
FChondroditeMg5(SiO4)2F2
FDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
FDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
FFluorapatiteCa5(PO4)3F
FFluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
FFluoriteCaF2
FHerderiteCaBe(PO4)F
FCalcium Amphibole Subgroup var.HornblendeAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
FLacroixiteNaAl(PO4)F
FFluorapatite var.Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
FMasutomiliteK(LiAlMn2+)[AlSi3O10]F2
FMoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
FSynchysite-(Y)CaY(CO3)2F
FTopazAl2(SiO4)(F,OH)2
FTripliteMn22+(PO4)F
FAmphibole Supergroup var.UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
FPyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
FFluor-uvite-Uvite Series
FZinnwaldite
FSynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
FHornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
FAmphibole Supergroup var.ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
FApatiteCa5(PO4)3(Cl/F/OH)
FCalcium Amphibole SubgroupAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
NaSodium
NaAegirineNaFe3+Si2O6
NaAegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
NaAlbiteNa(AlSi3O8)
NaAlluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
NaAnalcimeNa(AlSi2O6) · H2O
NaAlbite var.Andesine(Na,Ca)[Al(Si,Al)Si2O8]
NaArrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
NaBirnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
NaBrazilianiteNaAl3(PO4)2(OH)4
NaAnorthite var.Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
NaDickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
NaDraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
NaElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
NaFillowiteNa3CaMn112+(PO4)9
NaGobbinsiteNa5(Si11Al5)O32 · 11H2O
NaGonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
NaHastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
NaHeulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
NaKaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
NaAnorthite var.Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
NaLacroixiteNaAl(PO4)F
NaMarialiteNa4Al3Si9O24Cl
NaMesoliteNa2Ca2Si9Al6O30 · 8H2O
NaMordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
NaMoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
NaMontmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
NaNatrophiliteNaMn2+PO4
NaNephelineNa3K(Al4Si4O16)
NaNontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
NaNatroliteNa2Al2Si3O10 · 2H2O
NaAlbite var.Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
NaParagoniteNaAl2(AlSi3O10)(OH)2
NaPargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
NaPectoliteNaCa2Si3O8(OH)
NaPhillipsite Subgroup(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
NaPollucite(Cs,Na)2(Al2Si4O12) · 2H2O
NaSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
NaSchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
NaSodaliteNa4(Si3Al3)O12Cl
NaStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
NaTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
NaUranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
NaWarditeNaAl3(PO4)2(OH)4 · 2H2O
NaAlbite var.PeristeriteNa(AlSi3O8)
NaChabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
NaHeulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
NaStilbite-CaNaCa4(Si27Al9)O72 · 28H2O
NaAlbite var.CleavelanditeNa(AlSi3O8)
NaDravite-Schorl Series
NaPlagioclase(Na,Ca)[(Si,Al)AlSi2]O8
NaOxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
NaAugite var.Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
NaAugite var.Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
NaFerri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
NaBonaccorsiiteKK2Na3(Al6Si36)O84
MgMagnesium
MgActinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
MgAegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
MgAlluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
MgAnkeriteCa(Fe2+,Mg)(CO3)2
MgAnthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
MgAntigoriteMg3(Si2O5)(OH)4
MgAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
MgBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
MgMagnesite var.Iron-bearing Magnesite(Mg,Fe)CO3
MgBruciteMg(OH)2
MgCeladoniteK(MgFe3+◻)(Si4O10)(OH)2
MgCerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
MgChrysotileMg3(Si2O5)(OH)4
MgChondroditeMg5(SiO4)2F2
MgClinochloreMg5Al(AlSi3O10)(OH)8
MgCordieriteMg2Al4Si5O18
MgCummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2
MgClinochlore var.Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
MgDiopsideCaMgSi2O6
MgDolomiteCaMg(CO3)2
MgDraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
MgEnstatiteMg2Si2O6
MgEpsomiteMgSO4 · 7H2O
MgFahlunite(Mg,Fe)Al2Si3O10 · 2H2O
MgForsteriteMg2SiO4
MgGedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
MgHexahydriteMgSO4 · 6H2O
MgHypersthene(Mg,Fe)SiO3
MgKaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
MgLazuliteMgAl2(PO4)2(OH)2
MgLizarditeMg3(Si2O5)(OH)4
MgLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
MgMagnesiteMgCO3
MgMagnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
MgMontmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
MgPalygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
MgPargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
MgPhlogopiteKMg3(AlSi3O10)(OH)2
MgPickeringiteMgAl2(SO4)4 · 22H2O
MgPigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
MgPumpellyite-(Mg)Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)
MgPyropeMg3Al2(SiO4)3
MgClinochlore var.Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
MgSaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
MgSepioliteMg4(Si6O15)(OH)2 · 6H2O
MgSpinelMgAl2O4
MgTalc var.SteatiteMg3(Si4O10)(OH)2
MgStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
MgTalcMg3Si4O10(OH)2
MgTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
MgTremolite◻Ca2Mg5(Si8O22)(OH)2
MgFluor-uvite-Uvite Series
MgVesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
MgEnstatite var.Bronzite(Mg,Fe2+)2[SiO3]2
MgAlmandine-Pyrope Series var.RhodoliteMg3Al2(SiO4)3
MgForsterite var.PeridotMg2SiO4
MgFerro-actinolite-Tremolite Series
MgFayalite-Forsterite Series
MgDravite-Schorl Series
MgOxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
MgAugite var.Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
MgAugite var.Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
MgDolomite var.Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
MgFerri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
MgSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
MgFerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
MgChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
MgDiopside var.CanaaniteCaMgSi2O6
AlAluminium
AlK Feldspar var.AdulariaKAlSi3O8
AlAegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
AlAlbiteNa(AlSi3O8)
AlAllanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
AlAllophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
AlAlum GroupXAl(SO4)2 · 12H2O
AlMicrocline var.AmazoniteK(AlSi3O8)
AlAmblygoniteLiAl(PO4)F
AlAmphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
AlAnalcimeNa(AlSi2O6) · H2O
AlAndalusiteAl2(SiO4)O
AlAlbite var.Andesine(Na,Ca)[Al(Si,Al)Si2O8]
AlAnniteKFe32+(AlSi3O10)(OH)2
AlAnorthiteCa(Al2Si2O8)
AlBeryl var.AquamarineBe3Al2Si6O18
AlArrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
AlAugeliteAl2(PO4)(OH)3
AlAlmandineFe32+Al2(SiO4)3
AlBaveniteCa4Be2Al2Si9O26(OH)2
AlBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
AlBityiteCaLiAl2(AlBeSi2O10)(OH)2
AlBrazilianiteNaAl3(PO4)2(OH)4
AlAnorthite var.Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
AlBerylBe3Al2(Si6O18)
AlChrysoberylBeAl2O4
AlChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x< 1
AlClinochloreMg5Al(AlSi3O10)(OH)8
AlClinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
AlCookeite(LiAl4◻)[AlSi3O10](OH)8
AlCordieriteMg2Al4Si5O18
AlCorundumAl2O3
AlCrandalliteCaAl3(PO4)(PO3OH)(OH)6
AlClinochlore var.Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
AlDiasporeAlO(OH)
AlDickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
AlDickiteAl2(Si2O5)(OH)4
AlDraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
AlDumortieriteAl(Al2O)(Al2O)2(SiO4)3(BO3)
AlElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
AlBeryl var.EmeraldBe3Al2(Si6O18)
AlEosphoriteMn2+Al(PO4)(OH)2 · H2O
AlEpidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
AlEpistilbiteCaAl2Si6O16 · 5H2O
AlEuclaseBeAl(SiO4)(OH)
AlEucryptiteLiAlSiO4
AlFahlunite(Mg,Fe)Al2Si3O10 · 2H2O
AlAxinite-(Fe)Ca2Fe2+Al2BSi4O15OH
AlFerro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
AlFoitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
AlMuscovite var.FuchsiteK(Al,Cr)3Si3O10(OH)2
AlGahniteZnAl2O4
AlGalaxiteMn2+Al2O4
AlGedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
AlGehleniteCa2Al[AlSiO7]
AlGibbsiteAl(OH)3
AlGobbinsiteNa5(Si11Al5)O32 · 11H2O
AlGonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
AlGrossularCa3Al2(SiO4)3
AlHalloysiteAl2(Si2O5)(OH)4
AlHalotrichiteFeAl2(SO4)4 · 22H2O
AlHarmotomeBa2(Si12Al4)O32 · 12H2O
AlHastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
AlGrossular var.HessoniteCa3Al2(SiO4)3
AlHeulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
AlCalcium Amphibole Subgroup var.HornblendeAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
AlMicrocline var.Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
AlMuscovite var.IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
AlKaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
AlKaoliniteAl2(Si2O5)(OH)4
AlSpodumene var.KunziteLiAlSi2O6
AlKyaniteAl2(SiO4)O
AlAnorthite var.Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
AlLacroixiteNaAl(PO4)F
AlLaumontiteCaAl2Si4O12 · 4H2O
AlLazuliteMgAl2(PO4)2(OH)2
AlLithiophorite(Al,Li)MnO2(OH)2
AlLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
AlMagnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
AlMargariteCaAl2(Al2Si2O10)(OH)2
AlMarialiteNa4Al3Si9O24Cl
AlMasutomiliteK(LiAlMn2+)[AlSi3O10]F2
AlMeioniteCa4Al6Si6O24CO3
AlMesoliteNa2Ca2Si9Al6O30 · 8H2O
AlMicroclineK(AlSi3O8)
AlMilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
AlMontebrasiteLiAl(PO4)(OH)
AlMordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
AlBeryl var.MorganiteBe3Al2(Si6O18)
AlMoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
AlMuscoviteKAl2(AlSi3O10)(OH)2
AlMontmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
AlNacriteAl2(Si2O5)(OH)4
AlNephelineNa3K(Al4Si4O16)
AlNontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
AlNatroliteNa2Al2Si3O10 · 2H2O
AlAlbite var.Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
AlOrthoclaseK(AlSi3O8)
AlPalermoiteLi2SrAl4(PO4)4(OH)4
AlPalygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
AlParagoniteNaAl2(AlSi3O10)(OH)2
AlPargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
AlPetaliteLiAl(Si4O10)
AlPhillipsite Subgroup(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
AlPhlogopiteKMg3(AlSi3O10)(OH)2
AlPickeringiteMgAl2(SO4)4 · 22H2O
AlPiemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
AlPlaneriteAl6(PO4)2(PO3OH)2(OH)8 · 4H2O
AlPlumbogummitePbAl3(PO4)(PO3OH)(OH)6
AlPollucite(Cs,Na)2(Al2Si4O12) · 2H2O
AlPrehniteCa2Al2Si3O10(OH)2
AlPumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
AlPumpellyite-(Mg)Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)
AlPyropeMg3Al2(SiO4)3
AlPyrophylliteAl2Si4O10(OH)2
AlClinochlore var.Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
AlSaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
AlCorundum var.SapphireAl2O3
AlSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
AlMuscovite var.SchernikiteKAl2(AlSi3O10)(OH)2
AlSchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
AlScoleciteCaAl2Si3O10 · 3H2O
AlScorzaliteFe2+Al2(PO4)2(OH)2
AlSillimaniteAl2(SiO4)O
AlSodaliteNa4(Si3Al3)O12Cl
AlSpessartineMn32+Al2(SiO4)3
AlSpinelMgAl2O4
AlSpodumeneLiAlSi2O6
AlStauroliteFe22+Al9Si4O23(OH)
AlStelleriteCa4(Si28Al8)O72 · 28H2O
AlStilbite SubgroupM6-7[Al8-9Si27-28O72] · nH2O
AlStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
AlZoisite var.Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
AlTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
AlTopazAl2(SiO4)(F,OH)2
AlAmphibole Supergroup var.UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
AlFluor-uvite-Uvite Series
AlVesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
AlWarditeNaAl3(PO4)2(OH)4 · 2H2O
AlZinnwaldite
AlZoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
AlAlbite var.PeristeriteNa(AlSi3O8)
AlAlmandine-Pyrope Series var.RhodoliteMg3Al2(SiO4)3
AlBeryl var.HeliodorBe3Al2(Si6O18)
AlChabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
AlHeulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
AlStilbite-CaNaCa4(Si27Al9)O72 · 28H2O
AlBeryl var.GosheniteBe3Al2(Si6O18)
AlAlbite var.CleavelanditeNa(AlSi3O8)
AlMuscovite var.DamouriteKAl2(AlSi3O10)(OH)2
AlAlmandine-Spessartine Series
AlDravite-Schorl Series
AlHornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
AlMuscovite var.SericiteKAl2(AlSi3O10)(OH)2
AlPlagioclase(Na,Ca)[(Si,Al)AlSi2]O8
AlEpidote var.Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
AlAmphibole Supergroup var.ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
AlOxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
AlAugite var.Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
AlAugite var.Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
AlSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
AlClinozoisite var.Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
AlFerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
AlCalcium Amphibole SubgroupAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
AlChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
AlBonaccorsiiteKK2Na3(Al6Si36)O84
SiSilicon
SiActinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
SiK Feldspar var.AdulariaKAlSi3O8
SiAegirineNaFe3+Si2O6
SiAegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
SiQuartz var.AgateSiO2
SiAlbiteNa(AlSi3O8)
SiAllanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
SiAlleghanyiteMn52+(SiO4)2(OH)2
SiAllophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
SiMicrocline var.AmazoniteK(AlSi3O8)
SiQuartz var.AmethystSiO2
SiAmphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
SiAnalcimeNa(AlSi2O6) · H2O
SiAndalusiteAl2(SiO4)O
SiAlbite var.Andesine(Na,Ca)[Al(Si,Al)Si2O8]
SiAndraditeCa3Fe23+(SiO4)3
SiAnniteKFe32+(AlSi3O10)(OH)2
SiAnorthiteCa(Al2Si2O8)
SiAnthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
SiAntigoriteMg3(Si2O5)(OH)4
SiApophyllite GroupAB4[Si8O22]X · 8H2O
SiBeryl var.AquamarineBe3Al2Si6O18
SiAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
SiAlmandineFe32+Al2(SiO4)3
SiBabingtoniteCa2Fe2+Fe3+Si5O14(OH)
SiBaveniteCa4Be2Al2Si9O26(OH)2
SiBazziteBe3Sc2(Si6O18)
SiBementiteMn7Si6O15(OH)8
SiBertranditeBe4(Si2O7)(OH)2
SiBismutoferriteFe23+Bi(SiO4)2(OH)
SiBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
SiBityiteCaLiAl2(AlBeSi2O10)(OH)2
SiBustamiteCaMn2+(Si2O6)
SiAnorthite var.Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
SiBerylBe3Al2(Si6O18)
SiThorite var.Calciothorite(Th,Ca2)SiO4 · 3.5H2O
SiCaryopiliteMn32+Si2O5(OH)4
SiCeladoniteK(MgFe3+◻)(Si4O10)(OH)2
SiCerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
SiQuartz var.ChalcedonySiO2
SiChrysotileMg3(Si2O5)(OH)4
SiChondroditeMg5(SiO4)2F2
SiChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x< 1
SiQuartz var.CitrineSiO2
SiClinochloreMg5Al(AlSi3O10)(OH)8
SiClinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
SiCoffiniteU(SiO4) · nH2O
SiCookeite(LiAl4◻)[AlSi3O10](OH)8
SiCordieriteMg2Al4Si5O18
SiCronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
SiCummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2
SiDanburiteCaB2Si2O8
SiClinochlore var.Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
SiDickiteAl2(Si2O5)(OH)4
SiDiopsideCaMgSi2O6
SiDraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
SiDumortieriteAl(Al2O)(Al2O)2(SiO4)3(BO3)
SiDatoliteCaB(SiO4)(OH)
SiElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
SiBeryl var.EmeraldBe3Al2(Si6O18)
SiEnstatiteMg2Si2O6
SiEpidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
SiEpistilbiteCaAl2Si6O16 · 5H2O
SiEuclaseBeAl(SiO4)(OH)
SiEucryptiteLiAlSiO4
SiFahlunite(Mg,Fe)Al2Si3O10 · 2H2O
SiAxinite-(Fe)Ca2Fe2+Al2BSi4O15OH
SiFerro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
SiFerro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
SiFluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
SiFoitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
SiForsteriteMg2SiO4
SiMuscovite var.FuchsiteK(Al,Cr)3Si3O10(OH)2
SiGedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
SiGehleniteCa2Al[AlSiO7]
SiGobbinsiteNa5(Si11Al5)O32 · 11H2O
SiGonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
SiGrossularCa3Al2(SiO4)3
SiGrunerite◻{Fe22+}{Fe52+}(Si8O22)(OH)2
SiHalloysiteAl2(Si2O5)(OH)4
SiHarmotomeBa2(Si12Al4)O32 · 12H2O
SiHastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
SiHedenbergiteCaFe2+Si2O6
SiHelvineBe3Mn42+(SiO4)3S
SiHemimorphiteZn4Si2O7(OH)2 · H2O
SiGrossular var.HessoniteCa3Al2(SiO4)3
SiHeulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
SiCalcium Amphibole Subgroup var.HornblendeAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
SiOpal var.Opal-ANSiO2 · nH2O
SiMicrocline var.Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
SiHypersthene(Mg,Fe)SiO3
SiMuscovite var.IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
SiJohannseniteCaMn2+Si2O6
SiJulgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
SiKaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
SiKaoliniteAl2(Si2O5)(OH)4
SiSpodumene var.KunziteLiAlSi2O6
SiKyaniteAl2(SiO4)O
SiAnorthite var.Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
SiLarniteCa2SiO4
SiLaumontiteCaAl2Si4O12 · 4H2O
SiLechatelieriteSiO2
SiLizarditeMg3(Si2O5)(OH)4
SiMagnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
SiMargariteCaAl2(Al2Si2O10)(OH)2
SiMarialiteNa4Al3Si9O24Cl
SiMasutomiliteK(LiAlMn2+)[AlSi3O10]F2
SiMeioniteCa4Al6Si6O24CO3
SiMesoliteNa2Ca2Si9Al6O30 · 8H2O
SiMicroclineK(AlSi3O8)
SiMilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
SiMordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
SiBeryl var.MorganiteBe3Al2(Si6O18)
SiMuscoviteKAl2(AlSi3O10)(OH)2
SiMontmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
SiNacriteAl2(Si2O5)(OH)4
SiNephelineNa3K(Al4Si4O16)
SiNontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
SiNatroliteNa2Al2Si3O10 · 2H2O
SiAlbite var.Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
SiOpalSiO2 · nH2O
SiOrthoclaseK(AlSi3O8)
SiPalygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
SiParagoniteNaAl2(AlSi3O10)(OH)2
SiPargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
SiPectoliteNaCa2Si3O8(OH)
SiPetaliteLiAl(Si4O10)
SiPhenakiteBe2SiO4
SiPhillipsite Subgroup(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
SiPhlogopiteKMg3(AlSi3O10)(OH)2
SiPiemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
SiPigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
SiPollucite(Cs,Na)2(Al2Si4O12) · 2H2O
SiPrehniteCa2Al2Si3O10(OH)2
SiPumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
SiPumpellyite-(Mg)Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)
SiPyropeMg3Al2(SiO4)3
SiPyrophylliteAl2Si4O10(OH)2
SiPyroxmangiteMn2+SiO3
SiQuartzSiO2
SiRhodoniteCaMn3Mn[Si5O15]
SiClinochlore var.Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
SiQuartz var.Rose QuartzSiO2
SiQuartz var.Rutilated QuartzSiO2
SiSaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
SiSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
SiMuscovite var.SchernikiteKAl2(AlSi3O10)(OH)2
SiSchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
SiScoleciteCaAl2Si3O10 · 3H2O
SiSepioliteMg4(Si6O15)(OH)2 · 6H2O
SiSillimaniteAl2(SiO4)O
SiSilléniteBi12SiO20
SiQuartz var.Smoky QuartzSiO2
SiSodaliteNa4(Si3Al3)O12Cl
SiSpessartineMn32+Al2(SiO4)3
SiSpodumeneLiAlSi2O6
SiSpurriteCa5(SiO4)2(CO3)
SiStauroliteFe22+Al9Si4O23(OH)
SiTalc var.SteatiteMg3(Si4O10)(OH)2
SiStelleriteCa4(Si28Al8)O72 · 28H2O
SiStilbite SubgroupM6-7[Al8-9Si27-28O72] · nH2O
SiStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
SiTalcMg3Si4O10(OH)2
SiTephroiteMn22+SiO4
SiThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
SiThoriteTh(SiO4)
SiThorite var.Thorogummite(Th,U)(SiO4)1-x(OH)4x
SiZoisite var.Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
SiTitaniteCaTi(SiO4)O
SiTopazAl2(SiO4)(F,OH)2
SiTremolite◻Ca2Mg5(Si8O22)(OH)2
SiTridymiteSiO2
SiAmphibole Supergroup var.UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
SiUranophaneCa(UO2)2(SiO3OH)2 · 5H2O
SiFluor-uvite-Uvite Series
SiVesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
SiWillemiteZn2SiO4
SiWollastoniteCa3(Si3O9)
SiZinnwaldite
SiZirconZr(SiO4)
SiZoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
SiAlbite var.PeristeriteNa(AlSi3O8)
SiEnstatite var.Bronzite(Mg,Fe2+)2[SiO3]2
SiQuartz var.Rock CrystalSiO2
SiQuartz var.Milky QuartzSiO2
SiAlmandine-Pyrope Series var.RhodoliteMg3Al2(SiO4)3
SiBeryl var.HeliodorBe3Al2(Si6O18)
SiZircon var.CalyptoliteZr(SiO4)
SiChabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
SiHeulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
SiStilbite-CaNaCa4(Si27Al9)O72 · 28H2O
SiAndradite var.MelaniteCa3Fe23+(SiO4)3
SiZircon var.CyrtoliteZr[(SiO4),(OH)4]
SiAndradite var.TopazoliteCa3Fe23+(SiO4)3
SiBeryl var.GosheniteBe3Al2(Si6O18)
SiQuartz var.SardonyxSiO2
SiQuartz var.SardSiO2
SiBloodstoneSiO2
SiQuartz var.Sceptre QuartzSiO2
SiAlbite var.CleavelanditeNa(AlSi3O8)
SiForsterite var.PeridotMg2SiO4
SiMuscovite var.DamouriteKAl2(AlSi3O10)(OH)2
SiAlmandine-Spessartine Series
SiFerro-actinolite-Tremolite Series
SiFayalite-Forsterite Series
SiDravite-Schorl Series
SiHornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
SiMuscovite var.SericiteKAl2(AlSi3O10)(OH)2
SiPlagioclase(Na,Ca)[(Si,Al)AlSi2]O8
SiQuartz var.CarnelianSiO2
SiPyroxene GroupADSi2O6
SiTitanite var.Lederite (of Shepard)CaTi(SiO4)O
SiEpidote var.Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
SiGarnet GroupX3Z2(SiO4)3
SiAmphibole Supergroup var.ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
SiOxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
SiAugite var.Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
SiAugite var.Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
SiSerpentine SubgroupD3[Si2O5](OH)4
SiFerri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
SiQuartz var.Blue QuartzSiO2
SiSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
SiClinozoisite var.Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
SiQuartz var.Ferruginous QuartzSiO2
SiFerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
SiPumpellyite GroupCa2XZ2[Si2O6(OH)][SiO4](OH)2A
SiCalcium Amphibole SubgroupAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
SiOpal var.HyaliteSiO2 · nH2O
SiChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
SiJulgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
SiDiopside var.CanaaniteCaMgSi2O6
SiAllanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
SiBonaccorsiiteKK2Na3(Al6Si36)O84
PPhosphorus
PAlluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
PAmblygoniteLiAl(PO4)F
PArrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
PAutuniteCa(UO2)2(PO4)2 · 10-12H2O
PAugeliteAl2(PO4)(OH)3
PBerauniteFe63+(PO4)4O(OH)4 · 6H2O
PBrazilianiteNaAl3(PO4)2(OH)4
PChurchite-(Y)Y(PO4) · 2H2O
PCrandalliteCaAl3(PO4)(PO3OH)(OH)6
PDiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
PDickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
PEosphoriteMn2+Al(PO4)(OH)2 · H2O
PFairfielditeCa2Mn2+(PO4)2 · 2H2O
PTriphylite var.FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
PFillowiteNa3CaMn112+(PO4)9
PFluorapatiteCa5(PO4)3F
PGraftoniteFe2+Fe22+(PO4)2
PGrayite(Th,Pb,Ca)(PO4) · H2O
PHerderiteCaBe(PO4)F
PHeterositeFe3+(PO4)
PHureauliteMn52+(PO3OH)2(PO4)2 · 4H2O
PHydroxylherderiteCaBe(PO4)(OH)
PHydroxylapatiteCa5(PO4)3(OH)
PLacroixiteNaAl(PO4)F
PLandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
PLaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
PLazuliteMgAl2(PO4)2(OH)2
PLithiophiliteLiMn2+PO4
PLudlamiteFe32+(PO4)2 · 4H2O
PFluorapatite var.Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
PMesseliteCa2Fe2+(PO4)2 · 2H2O
PMeta-autuniteCa(UO2)2(PO4)2 · 6H2O
PMetaswitzeriteMn32+(PO4)2 · 4H2O
PMetatorberniteCu(UO2)2(PO4)2 · 8H2O
PMitridatiteCa2Fe33+(PO4)3O2 · 3H2O
PMonazite GroupREE(PO4)
PMonazite-(Ce)Ce(PO4)
PMontebrasiteLiAl(PO4)(OH)
PMoraesiteBe2(PO4)(OH) · 4H2O
PMoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
PNatrophiliteNaMn2+PO4
PPalermoiteLi2SrAl4(PO4)4(OH)4
PParsonsitePb2(UO2)(PO4)2
PPhosphophylliteZn2Fe2+(PO4)2 · 4H2O
PPhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
PPlaneriteAl6(PO4)2(PO3OH)2(OH)8 · 4H2O
PPlumbogummitePbAl3(PO4)(PO3OH)(OH)6
PPseudomalachiteCu5(PO4)2(OH)4
PPurpuriteMn3+(PO4)
PPyromorphitePb5(PO4)3Cl
PReddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
PRhabdophane-(La)La(PO4) · H2O
PRhabdophane-(Nd)Nd(PO4) · H2O
PRockbridgeite(Fe2+0.5Fe3+0.5)2Fe33+(PO4)3(OH)5
PRoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
PSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
PScorzaliteFe2+Al2(PO4)2(OH)2
PLithiophilite var.SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
PStewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
PStrengiteFePO4 · 2H2O
PStrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
PSwitzeriteMn32+(PO4)2 · 7H2O
PTorberniteCu(UO2)2(PO4)2 · 12H2O
PTriphyliteLiFe2+PO4
PTripliteMn22+(PO4)F
PTriploiditeMn22+(PO4)(OH)
PVivianiteFe2+Fe22+(PO4)2 · 8H2O
PWarditeNaAl3(PO4)2(OH)4 · 2H2O
PWhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
PXenotime-(Y)Y(PO4)
PXanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
PApatiteCa5(PO4)3(Cl/F/OH)
PLithiophilite-Triphylite Series
PFerroberauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
SSulfur
SAcanthiteAg2S
SAlum GroupXAl(SO4)2 · 12H2O
SAnglesitePbSO4
SAnhydriteCaSO4
SArsenopyriteFeAsS
SBaryteBaSO4
SBismuthiniteBi2S3
SBorniteCu5FeS4
SBrochantiteCu4(SO4)(OH)6
SCelestineSrSO4
SChalcopyriteCuFeS2
SChalcanthiteCuSO4 · 5H2O
SChalcociteCu2S
SCobaltiteCoAsS
SCopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
SCovelliteCuS
SCuprobismutiteCu8AgBi13S24
SDevillineCaCu4(SO4)2(OH)6 · 3H2O
SDiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
SDigeniteCu9S5
SDjurleiteCu31S16
SEpsomiteMgSO4 · 7H2O
SFerricopiapiteFe3+0.67Fe43+(SO4)6(OH)2 · 20H2O
SGalenaPbS
SGalenobismutitePbBi2S4
SGersdorffiteNiAsS
SGoslariteZnSO4 · 7H2O
SGreenockiteCdS
SGypsumCaSO4 · 2H2O
SHalotrichiteFeAl2(SO4)4 · 22H2O
SHelvineBe3Mn42+(SiO4)3S
SHexahydriteMgSO4 · 6H2O
SJarositeKFe33+(SO4)2(OH)6
SJohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
SLangiteCu4(SO4)(OH)6 · 2H2O
SLinaritePbCu(SO4)(OH)2
SLinnaeiteCo2+Co23+S4
SMarcasiteFeS2
SMelanteriteFe2+(H2O)6SO4 · H2O
SMolybdeniteMoS2
SPentlandite(NixFey)Σ9S8
SPickeringiteMgAl2(SO4)4 · 22H2O
SPyriteFeS2
SPyrrhotiteFe1-xS
SRealgarAs4S4
SRozeniteFeSO4 · 4H2O
SSphaleriteZnS
SStibniteSb2S3
SNative SulphurS8
SSzomolnokiteFeSO4 · H2O
SThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
STroiliteFeS
STungsteniteWS2
SViolariteFe2+Ni23+S4
SWurtzite var.Voltzite(Zn,Fe,Mn) S [with O C H ]
SWurtzite(Zn,Fe)S
SGypsum var.SeleniteCaSO4 · 2H2O
SChalcopyrite var.Blistered CopperCuFeS2
SGypsum var.Satin Spar GypsumCaSO4 · 2H2O
SElaterite(C,H,O,S)
SGalena var.Silver-bearing GalenaPbS with Ag
SArsenopyrite var.Danaite(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
ClChlorine
ClAmphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
ClAtacamiteCu2(OH)3Cl
ClCalcium Amphibole Subgroup var.HornblendeAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
ClFluorapatite var.Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
ClMarialiteNa4Al3Si9O24Cl
ClMimetitePb5(AsO4)3Cl
ClNantokiteCuCl
ClParatacamiteCu3(Cu,Zn)(OH)6Cl2
ClPyromorphitePb5(PO4)3Cl
ClSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
ClSodaliteNa4(Si3Al3)O12Cl
ClAmphibole Supergroup var.UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
ClVanadinitePb5(VO4)3Cl
ClHornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
ClAmphibole Supergroup var.ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
ClApatiteCa5(PO4)3(Cl/F/OH)
ClCalcium Amphibole SubgroupAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
KPotassium
KK Feldspar var.AdulariaKAlSi3O8
KMicrocline var.AmazoniteK(AlSi3O8)
KAnniteKFe32+(AlSi3O10)(OH)2
KArrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
KBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
KCarnotiteK2(UO2)2(VO4)2 · 3H2O
KCeladoniteK(MgFe3+◻)(Si4O10)(OH)2
KCryptomelaneK(Mn74+Mn3+)O16
KDickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
KFluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
KMuscovite var.FuchsiteK(Al,Cr)3Si3O10(OH)2
KHeulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
KMicrocline var.Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
KMuscovite var.IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
KJarositeKFe33+(SO4)2(OH)6
KMasutomiliteK(LiAlMn2+)[AlSi3O10]F2
KMicroclineK(AlSi3O8)
KMilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
KMordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
KMuscoviteKAl2(AlSi3O10)(OH)2
KNephelineNa3K(Al4Si4O16)
KOrthoclaseK(AlSi3O8)
KPhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
KPharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
KPhillipsite Subgroup(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
KPhlogopiteKMg3(AlSi3O10)(OH)2
KMuscovite var.SchernikiteKAl2(AlSi3O10)(OH)2
KStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
KTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
KZinnwaldite
KChabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
KMuscovite var.DamouriteKAl2(AlSi3O10)(OH)2
KMuscovite var.SericiteKAl2(AlSi3O10)(OH)2
KChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
KBonaccorsiiteKK2Na3(Al6Si36)O84
CaCalcium
CaActinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
CaAegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
CaAllanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
CaAlluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
CaAlbite var.Andesine(Na,Ca)[Al(Si,Al)Si2O8]
CaAndraditeCa3Fe23+(SiO4)3
CaAnhydriteCaSO4
CaAnkeriteCa(Fe2+,Mg)(CO3)2
CaAnorthiteCa(Al2Si2O8)
CaAragoniteCaCO3
CaArrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
CaAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
CaAutuniteCa(UO2)2(PO4)2 · 10-12H2O
CaBabingtoniteCa2Fe2+Fe3+Si5O14(OH)
CaBaveniteCa4Be2Al2Si9O26(OH)2
CaBecquereliteCa(UO2)6O4(OH)6 · 8H2O
CaBeyeriteCa(BiO)2(CO3)2
CaBirnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
CaBityiteCaLiAl2(AlBeSi2O10)(OH)2
CaBustamiteCaMn2+(Si2O6)
CaAnorthite var.Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
CaThorite var.Calciothorite(Th,Ca2)SiO4 · 3.5H2O
CaCalciteCaCO3
CaCerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
CaFluorite var.ChlorophaneCaF2
CaClinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
CaCrandalliteCaAl3(PO4)(PO3OH)(OH)6
CaDanburiteCaB2Si2O8
CaDevillineCaCu4(SO4)2(OH)6 · 3H2O
CaDickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
CaDiopsideCaMgSi2O6
CaDolomiteCaMg(CO3)2
CaDatoliteCaB(SiO4)(OH)
CaEpidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
CaEpistilbiteCaAl2Si6O16 · 5H2O
CaEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
CaFairfielditeCa2Mn2+(PO4)2 · 2H2O
CaAxinite-(Fe)Ca2Fe2+Al2BSi4O15OH
CaFerro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
CaFerro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
CaFillowiteNa3CaMn112+(PO4)9
CaFluorapatiteCa5(PO4)3F
CaFluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
CaFluoriteCaF2
CaGehleniteCa2Al[AlSiO7]
CaGonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
CaGrayite(Th,Pb,Ca)(PO4) · H2O
CaGrossularCa3Al2(SiO4)3
CaGypsumCaSO4 · 2H2O
CaHastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
CaHedenbergiteCaFe2+Si2O6
CaHerderiteCaBe(PO4)F
CaGrossular var.HessoniteCa3Al2(SiO4)3
CaHeulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
CaCalcium Amphibole Subgroup var.HornblendeAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
CaHydroxylherderiteCaBe(PO4)(OH)
CaHydroxylapatiteCa5(PO4)3(OH)
CaJohannseniteCaMn2+Si2O6
CaJulgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
CaKaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
CaKutnohoriteCaMn2+(CO3)2
CaAnorthite var.Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
CaLarniteCa2SiO4
CaLaumontiteCaAl2Si4O12 · 4H2O
CaLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
CaMagnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
CaFluorapatite var.Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
CaMargariteCaAl2(Al2Si2O10)(OH)2
CaMeioniteCa4Al6Si6O24CO3
CaMesoliteNa2Ca2Si9Al6O30 · 8H2O
CaMesseliteCa2Fe2+(PO4)2 · 2H2O
CaMeta-autuniteCa(UO2)2(PO4)2 · 6H2O
CaMilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
CaMitridatiteCa2Fe33+(PO4)3O2 · 3H2O
CaMordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
CaMoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
CaMontmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
CaAlbite var.Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
CaPargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
CaPectoliteNaCa2Si3O8(OH)
CaPhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
CaPhillipsite Subgroup(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
CaPiemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
CaPigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
CaPowelliteCa(MoO4)
CaPrehniteCa2Al2Si3O10(OH)2
CaPumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
CaPumpellyite-(Mg)Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)
CaRhodoniteCaMn3Mn[Si5O15]
CaRoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
CaSaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
CaSarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
CaScheeliteCa(WO4)
CaScoleciteCaAl2Si3O10 · 3H2O
CaSpurriteCa5(SiO4)2(CO3)
CaStelleriteCa4(Si28Al8)O72 · 28H2O
CaStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
CaSynchysite-(Y)CaY(CO3)2F
CaThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
CaZoisite var.Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
CaTitaniteCaTi(SiO4)O
CaTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
CaTremolite◻Ca2Mg5(Si8O22)(OH)2
CaTyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
CaUranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
CaUranophaneCa(UO2)2(SiO3OH)2 · 5H2O
CaPyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
CaFluor-uvite-Uvite Series
CaVesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
CaWollastoniteCa3(Si3O9)
CaXanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
CaZoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
CaGypsum var.SeleniteCaSO4 · 2H2O
CaChabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
CaHeulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
CaStilbite-CaNaCa4(Si27Al9)O72 · 28H2O
CaAndradite var.MelaniteCa3Fe23+(SiO4)3
CaSynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
CaAndradite var.TopazoliteCa3Fe23+(SiO4)3
CaGypsum var.Satin Spar GypsumCaSO4 · 2H2O
CaFerro-actinolite-Tremolite Series
CaHornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
CaPlagioclase(Na,Ca)[(Si,Al)AlSi2]O8
CaTitanite var.Lederite (of Shepard)CaTi(SiO4)O
CaEpidote var.Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
CaCalcite var.Iron-bearing Calcite(Ca,Fe)CO3
CaAugite var.Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
CaAugite var.Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
CaDolomite var.Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
CaClinozoisite var.Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
CaFerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
CaApatiteCa5(PO4)3(Cl/F/OH)
CaPumpellyite GroupCa2XZ2[Si2O6(OH)][SiO4](OH)2A
CaCalcium Amphibole SubgroupAnCa2(Z2+5-mZm3+)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
CaJulgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
CaDiopside var.CanaaniteCaMgSi2O6
ScScandium
ScBazziteBe3Sc2(Si6O18)
TiTitanium
TiAmphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
TiAnataseTiO2
TiBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
TiBrookiteTiO2
TiDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
TiDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
TiEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
TiIlmeniteFe2+TiO3
TiKaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
TiLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
TiIlmenite var.Iron(III)-bearing Ilmenite(Fe2+,Fe3+)TiO3
TiPyrophaniteMn2+TiO3
TiRutileTiO2
TiSrilankiteZrTi2O6
TiRutile var.Strüverite(Ti,Ta,Fe)O2
TiTanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
TiTitaniteCaTi(SiO4)O
TiAmphibole Supergroup var.UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
TiPyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
TiTitanite var.Lederite (of Shepard)CaTi(SiO4)O
TiAmphibole Supergroup var.ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
TiAugite var.Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
TiAugite var.Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
TiCrichtonite GroupAD21O38 or A{DE2G6 Ti12}O38
VVanadium
VCarnotiteK2(UO2)2(VO4)2 · 3H2O
VDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
VDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
VTyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
VVanadinitePb5(VO4)3Cl
CrChromium
CrChromiteFe2+Cr23+O4
CrDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
CrDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
CrMuscovite var.FuchsiteK(Al,Cr)3Si3O10(OH)2
CrLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
CrEpidote var.Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
MnManganese
MnAlleghanyiteMn52+(SiO4)2(OH)2
MnAlluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
MnBementiteMn7Si6O15(OH)8
MnBirnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
MnBustamiteCaMn2+(Si2O6)
MnCaryopiliteMn32+Si2O5(OH)4
MnCryptomelaneK(Mn74+Mn3+)O16
MnDickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
MnEosphoriteMn2+Al(PO4)(OH)2 · H2O
MnFairfielditeCa2Mn2+(PO4)2 · 2H2O
MnFillowiteNa3CaMn112+(PO4)9
MnGalaxiteMn2+Al2O4
MnGroutiteMn3+O(OH)
MnHelvineBe3Mn42+(SiO4)3S
MnHübneriteMnWO4
MnHureauliteMn52+(PO3OH)2(PO4)2 · 4H2O
MnIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series
MnJacobsiteMn2+Fe23+O4
MnJohannseniteCaMn2+Si2O6
MnKutnohoriteCaMn2+(CO3)2
MnLandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
MnLaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
MnLithiophiliteLiMn2+PO4
MnLithiophorite(Al,Li)MnO2(OH)2
MnManganiteMn3+O(OH)
MnColumbite-(Mn)Mn2+Nb2O6
MnTantalite-(Mn)Mn2+Ta2O6
MnFluorapatite var.Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
MnMasutomiliteK(LiAlMn2+)[AlSi3O10]F2
MnMetaswitzeriteMn32+(PO4)2 · 4H2O
MnNatrophiliteNaMn2+PO4
MnPiemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
MnPurpuriteMn3+(PO4)
MnPyrolusiteMn4+O2
MnPyrophaniteMn2+TiO3
MnPyroxmangiteMn2+SiO3
MnReddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
MnRhodochrositeMnCO3
MnRhodoniteCaMn3Mn[Si5O15]
MnRomanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
MnRoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
MnLithiophilite var.SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
MnSpessartineMn32+Al2(SiO4)3
MnStewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
MnStrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
MnSwitzeriteMn32+(PO4)2 · 7H2O
MnTantalite(Mn,Fe)(Ta,Nb)2O6
MnTapiolite(Fe,Mn)(Ta,Nb)2O6
MnTephroiteMn22+SiO4
MnZoisite var.Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
MnTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
MnTripliteMn22+(PO4)F
MnTriploiditeMn22+(PO4)(OH)
MnWurtzite var.Voltzite(Zn,Fe,Mn) S [with O C H ]
MnWodginiteMn2+Sn4+Ta2O8
MnIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series var.Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
MnAlmandine-Spessartine Series
MnColumbite-(Fe)-Columbite-(Mn) Series
MnFerri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
MnSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
MnLithiophilite-Triphylite Series
FeIron
FeActinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
FeAegirineNaFe3+Si2O6
FeAegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
FeAllanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
FeAlluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
FeAndraditeCa3Fe23+(SiO4)3
FeAnkeriteCa(Fe2+,Mg)(CO3)2
FeAnniteKFe32+(AlSi3O10)(OH)2
FeArsenopyriteFeAsS
FeArrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
FeAugite(CaxMgyFez)(Mgy1Fez1)Si2O6
FeAlmandineFe32+Al2(SiO4)3
FeBabingtoniteCa2Fe2+Fe3+Si5O14(OH)
FeBerauniteFe63+(PO4)4O(OH)4 · 6H2O
FeBismutoferriteFe23+Bi(SiO4)2(OH)
FeBiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
FeBorniteCu5FeS4
FeMagnesite var.Iron-bearing Magnesite(Mg,Fe)CO3
FeCeladoniteK(MgFe3+◻)(Si4O10)(OH)2
FeChalcopyriteCuFeS2
FeChromiteFe2+Cr23+O4
FeCopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
FeCronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
FeDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
FeDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
FeClinochlore var.Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
FeDiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
FeEpidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
FeFahlunite(Mg,Fe)Al2Si3O10 · 2H2O
FeAxinite-(Fe)Ca2Fe2+Al2BSi4O15OH
FeFerberiteFeWO4
FeFerricopiapiteFe3+0.67Fe43+(SO4)6(OH)2 · 20H2O
FeFerrimolybditeFe2(MoO4)3 · nH2O
FeTriphylite var.FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
FeHydrokenoelsmoreite var.Ferritungstite2(W,Fe3+)2(O,OH)6(H2O)
FeFerro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
FeColumbite-(Fe)Fe2+Nb2O6
FeFerro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
FeTantalite-(Fe)Fe2+Ta2O6
FeTapiolite-(Fe)Fe2+Ta2O6
FeFoitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
FeGoethiteFe3+O(OH)
FeGraftoniteFe2+Fe22+(PO4)2
FeGrunerite◻{Fe22+}{Fe52+}(Si8O22)(OH)2
FeHalotrichiteFeAl2(SO4)4 · 22H2O
FeHastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
FeHedenbergiteCaFe2+Si2O6
FeHematiteFe2O3
FeHeterositeFe3+(PO4)
FeHypersthene(Mg,Fe)SiO3
FeIlmeniteFe2+TiO3
FeNative IronFe
FeIshikawaiteU4+Fe2+Nb2O8
FeIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series
FeJacobsiteMn2+Fe23+O4
FeJarositeKFe33+(SO4)2(OH)6
FeJulgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
FeNative Iron var.Kamacite(Fe,Ni)
FeLandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
FeLaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
FeLepidocrociteFe3+O(OH)
FeLöllingiteFeAs2
FeLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
FeLudlamiteFe32+(PO4)2 · 4H2O
FeMaghemite(Fe3+0.670.33)Fe23+O4
FeMagnetiteFe2+Fe23+O4
FeIlmenite var.Iron(III)-bearing Ilmenite(Fe2+,Fe3+)TiO3
FeMarcasiteFeS2
FeMelanteriteFe2+(H2O)6SO4 · H2O
FeMesseliteCa2Fe2+(PO4)2 · 2H2O
FeMitridatiteCa2Fe33+(PO4)3O2 · 3H2O
FeNontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
FePentlandite(NixFey)Σ9S8
FePetscheckiteUFe(Nb,Ta)2O8
FePhosphophylliteZn2Fe2+(PO4)2 · 4H2O
FePharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
FePigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
FePitticite(Fe, AsO4, H2O) (?)
FePyriteFeS2
FePyrrhotiteFe1-xS
FeReddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
FeClinochlore var.Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
FeRockbridgeite(Fe2+0.5Fe3+0.5)2Fe33+(PO4)3(OH)5
FeRozeniteFeSO4 · 4H2O
FeSafflorite(Co,Ni,Fe)As2
FeSamarskite-(Y)YFe3+Nb2O8
FeSaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
FeSchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
FeScoroditeFe3+AsO4 · 2H2O
FeScorzaliteFe2+Al2(PO4)2(OH)2
FeSideriteFeCO3
FeStauroliteFe22+Al9Si4O23(OH)
FeStewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
FeStilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
FeStrengiteFePO4 · 2H2O
FeStrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
FeRutile var.Strüverite(Ti,Ta,Fe)O2
FeSzomolnokiteFeSO4 · H2O
FeTaenite(Ni,Fe)
FeTantalite(Mn,Fe)(Ta,Nb)2O6
FeTapiolite(Fe,Mn)(Ta,Nb)2O6
FeTetrataeniteFeNi
FeTriphyliteLiFe2+PO4
FeTroiliteFeS
FeViolariteFe2+Ni23+S4
FeVivianiteFe2+Fe22+(PO4)2 · 8H2O
FeWurtzite var.Voltzite(Zn,Fe,Mn) S [with O C H ]
FeVesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
FeWhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
FeWurtzite(Zn,Fe)S
FeXanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
FeYttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
FeZinnwaldite
FeEnstatite var.Bronzite(Mg,Fe2+)2[SiO3]2
FeHematite var.SpeculariteFe2O3
FeIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series var.Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
FeAndradite var.MelaniteCa3Fe23+(SiO4)3
FeAndradite var.TopazoliteCa3Fe23+(SiO4)3
FeChalcopyrite var.Blistered CopperCuFeS2
FeAlmandine-Spessartine Series
FeFerro-actinolite-Tremolite Series
FeFayalite-Forsterite Series
FeColumbite-(Fe)-Columbite-(Mn) Series
FeDravite-Schorl Series
FeEpidote var.Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
FeCalcite var.Iron-bearing Calcite(Ca,Fe)CO3
FeAugite var.Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
FeAugite var.Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
FeDolomite var.Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
FeArsenopyrite var.Danaite(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
FeFerri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
FeHematite var.Iron RoseFe2O3
FeSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
FeFerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
FeLithiophilite-Triphylite Series
FeChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
FeJulgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
FeFerroberauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
CoCobalt
CoCobaltiteCoAsS
CoErythriteCo3(AsO4)2 · 8H2O
CoLinnaeiteCo2+Co23+S4
CoSafflorite(Co,Ni,Fe)As2
CoSkutteruditeCoAs3
CoArsenopyrite var.Danaite(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
NiNickel
NiAnnabergiteNi3(AsO4)2 · 8H2O
NiBreithauptiteNiSb
NiGersdorffiteNiAsS
NiNative Iron var.Kamacite(Fe,Ni)
NiNickelskutteruditeNiAs3
NiNickelineNiAs
NiPentlandite(NixFey)Σ9S8
NiRammelsbergiteNiAs2
NiSafflorite(Co,Ni,Fe)As2
NiTaenite(Ni,Fe)
NiTetrataeniteFeNi
NiViolariteFe2+Ni23+S4
NiSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
CuCopper
CuAtacamiteCu2(OH)3Cl
CuAurichalcite(Zn,Cu)5(CO3)2(OH)6
CuAzuriteCu3(CO3)2(OH)2
CuBorniteCu5FeS4
CuBrochantiteCu4(SO4)(OH)6
CuChalcopyriteCuFeS2
CuChalcanthiteCuSO4 · 5H2O
CuChalcociteCu2S
CuCuprite var.ChalcotrichiteCu2O
CuChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x< 1
CuCovelliteCuS
CuCupriteCu2O
CuCuprobismutiteCu8AgBi13S24
CuNative CopperCu
CuDevillineCaCu4(SO4)2(OH)6 · 3H2O
CuDigeniteCu9S5
CuDjurleiteCu31S16
CuJohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
CuLangiteCu4(SO4)(OH)6 · 2H2O
CuLinaritePbCu(SO4)(OH)2
CuMalachiteCu2(CO3)(OH)2
CuMetatorberniteCu(UO2)2(PO4)2 · 8H2O
CuNantokiteCuCl
CuParatacamiteCu3(Cu,Zn)(OH)6Cl2
CuPseudomalachiteCu5(PO4)2(OH)4
CuRosasite(Cu,Zn)2(CO3)(OH)2
CuTorberniteCu(UO2)2(PO4)2 · 12H2O
CuChalcopyrite var.Blistered CopperCuFeS2
ZnZinc
ZnAurichalcite(Zn,Cu)5(CO3)2(OH)6
ZnGahniteZnAl2O4
ZnGoslariteZnSO4 · 7H2O
ZnHemimorphiteZn4Si2O7(OH)2 · H2O
ZnHydrozinciteZn5(CO3)2(OH)6
ZnParatacamiteCu3(Cu,Zn)(OH)6Cl2
ZnPhosphophylliteZn2Fe2+(PO4)2 · 4H2O
ZnRosasite(Cu,Zn)2(CO3)(OH)2
ZnSmithsoniteZnCO3
ZnSphaleriteZnS
ZnWurtzite var.Voltzite(Zn,Fe,Mn) S [with O C H ]
ZnWillemiteZn2SiO4
ZnWurtzite(Zn,Fe)S
ZnSerpentine Subgroup var.PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
AsArsenic
AsAnnabergiteNi3(AsO4)2 · 8H2O
AsArsenoliteAs2O3
AsArsenopyriteFeAsS
AsNative ArsenicAs
AsClaudetiteAs2O3
AsCobaltiteCoAsS
AsErythriteCo3(AsO4)2 · 8H2O
AsGersdorffiteNiAsS
AsLöllingiteFeAs2
AsMimetitePb5(AsO4)3Cl
AsNickelskutteruditeNiAs3
AsNickelineNiAs
AsPharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
AsPitticite(Fe, AsO4, H2O) (?)
AsRammelsbergiteNiAs2
AsRealgarAs4S4
AsSafflorite(Co,Ni,Fe)As2
AsScoroditeFe3+AsO4 · 2H2O
AsSkutteruditeCoAs3
AsArsenopyrite var.Danaite(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
SrStrontium
SrCelestineSrSO4
SrPalermoiteLi2SrAl4(PO4)4(OH)4
SrTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
YYttrium
YChurchite-(Y)Y(PO4) · 2H2O
YDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
YDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
YEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
YSamarskite-(Y)YFe3+Nb2O8
YSynchysite-(Y)CaY(CO3)2F
YTanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
YXenotime-(Y)Y(PO4)
YYttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
YSynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
ZrZirconium
ZrBaddeleyiteZrO2
ZrLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
ZrSrilankiteZrTi2O6
ZrZirconZr(SiO4)
ZrZircon var.CalyptoliteZr(SiO4)
ZrZircon var.CyrtoliteZr[(SiO4),(OH)4]
NbNiobium
NbEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
NbColumbite-(Fe)Fe2+Nb2O6
NbIshikawaiteU4+Fe2+Nb2O8
NbLiandratiteU(Nb,Ta)2O8
NbColumbite-(Mn)Mn2+Nb2O6
NbPetscheckiteUFe(Nb,Ta)2O8
NbPyrochlore GroupA2Nb2(O,OH)6Z
NbSamarskite-(Y)YFe3+Nb2O8
NbTantalite(Mn,Fe)(Ta,Nb)2O6
NbTanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
NbTapiolite(Fe,Mn)(Ta,Nb)2O6
NbUranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
NbPyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
NbYttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
NbIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series var.Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
NbColumbite-(Fe)-Columbite-(Mn) Series
MoMolybdenum
MoFerrimolybditeFe2(MoO4)3 · nH2O
MoMolybdeniteMoS2
MoPowelliteCa(MoO4)
MoWulfenitePb(MoO4)
AgSilver
AgAcanthiteAg2S
AgCuprobismutiteCu8AgBi13S24
AgNative SilverAg
AgSylvaniteAgAuTe4
AgGalena var.Silver-bearing GalenaPbS with Ag
CdCadmium
CdGreenockiteCdS
SnTin
SnCassiteriteSnO2
SnWodginiteMn2+Sn4+Ta2O8
SbAntimony
SbNative AntimonySb
SbBreithauptiteNiSb
SbStibniteSb2S3
TeTellurium
TeSylvaniteAgAuTe4
TeNative TelluriumTe
CsCaesium
CsPollucite(Cs,Na)2(Al2Si4O12) · 2H2O
BaBarium
BaBaryteBaSO4
BaHarmotomeBa2(Si12Al4)O32 · 12H2O
BaMicrocline var.Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
BaPhillipsite Subgroup(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32]. 12H2O
BaRomanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
BaTodorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
LaLanthanum
LaDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
LaLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
LaRhabdophane-(La)La(PO4) · H2O
CeCerium
CeAllanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
CeBastnäsite-(Ce)Ce(CO3)F
CeCerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
CeDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
CeEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
CeLoveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
CeMonazite-(Ce)Ce(PO4)
CePyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
CeSynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
NdNeodymium
NdRhabdophane-(Nd)Nd(PO4) · H2O
NdSynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
TaTantalum
TaBismutotantaliteBiTaO4
TaEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
TaTantalite-(Fe)Fe2+Ta2O6
TaTapiolite-(Fe)Fe2+Ta2O6
TaIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series
TaLiandratiteU(Nb,Ta)2O8
TaTantalite-(Mn)Mn2+Ta2O6
TaMicrolite GroupA2-mTa2X6-wZ-n
TaPetscheckiteUFe(Nb,Ta)2O8
TaRutile var.Strüverite(Ti,Ta,Fe)O2
TaTantalite(Mn,Fe)(Ta,Nb)2O6
TaTanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
TaTapiolite(Fe,Mn)(Ta,Nb)2O6
TaUranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
TaPyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
TaWodginiteMn2+Sn4+Ta2O8
TaIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series var.Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
WTungsten
WFerberiteFeWO4
WHydrokenoelsmoreite var.Ferritungstite2(W,Fe3+)2(O,OH)6(H2O)
WHübneriteMnWO4
WHydrotungstiteWO3 · 2H2O
WScheeliteCa(WO4)
WTungsteniteWS2
WTungstiteWO3 · H2O
WIxiolite-(Mn2+)-Ixiolite-(Fe2+) Series var.Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
WHydrokenoelsmoreite2W2O6(H2O)
AuGold
AuNative GoldAu
AuSylvaniteAgAuTe4
PbLead
PbAnglesitePbSO4
PbCerussitePbCO3
PbFourmarieritePb(UO2)4O3(OH)4 · 4H2O
PbGalenaPbS
PbGalenobismutitePbBi2S4
PbGrayite(Th,Pb,Ca)(PO4) · H2O
PbLinaritePbCu(SO4)(OH)2
PbLithargePbO
PbMassicotPbO
PbMimetitePb5(AsO4)3Cl
PbMiniumPb3O4
PbParsonsitePb2(UO2)(PO4)2
PbPlattneritePbO2
PbPlumbogummitePbAl3(PO4)(PO3OH)(OH)6
PbPyromorphitePb5(PO4)3Cl
PbVanadinitePb5(VO4)3Cl
PbVandendriesscheitePbU7O22 · 12H2O
PbWulfenitePb(MoO4)
PbGalena var.Silver-bearing GalenaPbS with Ag
BiBismuth
BiBeyeriteCa(BiO)2(CO3)2
BiBismutotantaliteBiTaO4
BiBismutoferriteFe23+Bi(SiO4)2(OH)
BiBismiteBi2O3
BiNative BismuthBi
BiBismuthiniteBi2S3
BiBismutite(BiO)2CO3
BiCuprobismutiteCu8AgBi13S24
BiGalenobismutitePbBi2S4
BiSilléniteBi12SiO20
ThThorium
ThThorite var.Calciothorite(Th,Ca2)SiO4 · 3.5H2O
ThEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
ThGrayite(Th,Pb,Ca)(PO4) · H2O
ThThoriteTh(SiO4)
ThThorite var.Thorogummite(Th,U)(SiO4)1-x(OH)4x
UUranium
UAutuniteCa(UO2)2(PO4)2 · 10-12H2O
UBecquereliteCa(UO2)6O4(OH)6 · 8H2O
UCarnotiteK2(UO2)2(VO4)2 · 3H2O
UCoffiniteU(SiO4) · nH2O
UDavidite-(Ce)Ce(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
UDavidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
UEuxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
UFourmarieritePb(UO2)4O3(OH)4 · 4H2O
UIshikawaiteU4+Fe2+Nb2O8
UJohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
ULiandratiteU(Nb,Ta)2O8
UMeta-autuniteCa(UO2)2(PO4)2 · 6H2O
UMetatorberniteCu(UO2)2(PO4)2 · 8H2O
UParsonsitePb2(UO2)(PO4)2
UPetscheckiteUFe(Nb,Ta)2O8
UPhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
URutherfordine(UO2)CO3
UThorite var.Thorogummite(Th,U)(SiO4)1-x(OH)4x
UTorberniteCu(UO2)2(PO4)2 · 12H2O
UTyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
UUraniniteUO2
UUranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
UUranophaneCa(UO2)2(SiO3OH)2 · 5H2O
UPyrochlore Group var.Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
UVandendriesscheitePbU7O22 · 12H2O
UYttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8

Fossils

There are 26 fossil localities from the PaleoBioDB database within this region.

These data are provided on an experimental basis and are taken from external databases. Mindat.org has no control currently over the accuracy of these data.

Occurrences180
Youngest Fossil Listed0.01 Ma (Pleistocene)
Oldest Fossil Listed228 Ma (Late/Upper Triassic)
Stratigraphic UnitsClick here to view 7 stratigraphic units.
Fossils from RegionClick here to show the list.
Accepted NameHierarchyAge
Reptilia
class
Animalia :Chordata :Reptilia201.3 - 190.8 Ma
Early Jurassic
Erpetosuchus
genus
Animalia :Chordata :Reptilia :Eosuchia :Erpetosuchidae :Erpetosuchus228 - 208.5 Ma
Late/Upper Triassic
Phytosauria
unranked clade
Animalia :Chordata :Reptilia :Eosuchia :Phytosauria228 - 208.5 Ma
Late/Upper Triassic
Theropoda
unranked clade
Animalia :Chordata :Saurischia :Theropoda201.3 - 190.8 Ma
Early Jurassic
Coelophysis
genus
Animalia :Chordata :Saurischia :Coelophysidae :Coelophysis201.3 - 199.3 Ma
Early Jurassic
Prosauropoda
unranked clade
Animalia :Chordata :Saurischia :Prosauropoda201.3 - 190.8 Ma
Early Jurassic
Dinosauria
order
Animalia :Chordata :Reptilia :Dinosauria228 - 190.8 Ma
Mesozoic
Anchisaurus polyzelus
species
Animalia :Chordata :Saurischia :Anchisaurus :Anchisaurus polyzelus201.3 - 190.8 Ma
Early Jurassic
Plantae
kingdom
Plantae201.3 - 174.1 Ma
Jurassic
Brachyphyllum
genus
Plantae :Tracheophyta :Pinopsida :Pinales :Araucariaceae :Brachyphyllum201.3 - 196.5 Ma
Early Jurassic
Orthoptera
order
Animalia :Arthropoda :Insecta :Orthoptera201.3 - 190.8 Ma
Early Jurassic
Eubrontes cursorius
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Eubrontes cursorius201.3 - 174.1 Ma
Jurassic
Grallator (Anchisauripus) hitchcocki
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Grallator (Anchisauripus) hitchcocki201.3 - 174.1 Ma
Jurassic
Gigandipus caudatus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Gigandipus caudatus201.3 - 174.1 Ma
Jurassic
Grallator (Eubrontes)
subgenus
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes)201.3 - 190.8 Ma
Early Jurassic
Grallator formosus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Grallator formosus201.3 - 174.1 Ma
Jurassic
Triaenopus lulli
species
Animalia :Chordata :Reptilia :Triaenopus :Triaenopus lulli201.3 - 174.1 Ma
Jurassic
Grallator tenuis
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Grallator tenuis201.3 - 190.8 Ma
Early Jurassic
Grallator cuneatus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Grallator cuneatus201.3 - 190.8 Ma
Early Jurassic
Plesiornis
genus
Animalia :Chordata :Saurischia :Plesiornis201.3 - 190.8 Ma
Early Jurassic
Argoides minimus
species
Animalia :Chordata :Saurischia :Argoides :Argoides minimus201.3 - 190.8 Ma
Early Jurassic
Grallator (Anchisauripus) minusculus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Grallator (Anchisauripus) minusculus201.3 - 190.8 Ma
Early Jurassic
Ornithoidichnites
genus
Ichnolites :Dipodichnites :Ornithoidichnites201.3 - 190.8 Ma
Early Jurassic
Eubrontes sillimani
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Eubrontes sillimani201.3 - 174.1 Ma
Jurassic
Anchisauripus tuberosus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Anchisauripus tuberosus201.3 - 174.1 Ma
Jurassic
Anchisauripus exsertus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Anchisauripus exsertus201.3 - 174.1 Ma
Jurassic
Grallator magnificus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Grallator magnificus201.3 - 199.3 Ma
Early Jurassic
Eubrontes giganteus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Eubrontes giganteus201.3 - 174.1 Ma
Jurassic
Eubrontes (Brontozoum) approximatus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Eubrontes (Brontozoum) approximatus201.3 - 174.1 Ma
Jurassic
Grallator (Eubrontes) divaricatus
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Grallator (Eubrontes) divaricatus201.3 - 190.8 Ma
Early Jurassic
Otozoum moodii
species
Animalia :Chordata :Saurischia :Otozoidae :Otozoum :Otozoum moodii201.3 - 190.8 Ma
Early Jurassic
Anomoepus scambus
species
Animalia :Chordata :Ornithischia :Moyenisauropodidae :Anomoepus :Anomoepus scambus201.3 - 190.8 Ma
Early Jurassic
Batrachopus
genus
Animalia :Chordata :Reptilia :Crocodylia :Batrachopodidae :Batrachopus201.3 - 190.8 Ma
Early Jurassic
Batrachopus deweyi
species
Animalia :Chordata :Reptilia :Eosuchia :Batrachopodidae :Batrachopus :Batrachopus deweyi201.3 - 174.1 Ma
Jurassic
Batrachopus gracilis
species
Animalia :Chordata :Reptilia :Crocodylia :Batrachopodidae :Batrachopus :Batrachopus gracilis201.3 - 174.1 Ma
Jurassic
Corvipes lacertoideus
species
Animalia :Chordata :Reptilia :Dinosauria :Anomoepodidae :Corvipes :Corvipes lacertoideus201.3 - 190.8 Ma
Early Jurassic
Blattaria
order
Animalia :Arthropoda :Insecta :Blattaria201.3 - 190.8 Ma
Early Jurassic
Sillimanius tetradactylus
species
Animalia :Chordata :Reptilia :Eosuchia :Sillimanius :Sillimanius tetradactylus201.3 - 190.8 Ma
Early Jurassic
Steropoides diversus
species
Animalia :Chordata :Reptilia :Eosuchia :Steropoides :Steropoides diversus201.3 - 190.8 Ma
Early Jurassic
Cochlichnus
genus
Cochlichnus201.3 - 190.8 Ma
Early Jurassic
Botryopera
genus
Chromista :Radiozoa :Polycystina :Nassellaria :Lophophaenidae :Botryopera201.3 - 190.8 Ma
Early Jurassic
Steropoides elegans
species
Animalia :Chordata :Reptilia :Eosuchia :Steropoides :Steropoides elegans201.3 - 190.8 Ma
Early Jurassic
Harpedactylus tenuissimus
species
Animalia :Chordata :Reptilia :Eosuchia :Harpedactylus :Harpedactylus tenuissimus201.3 - 190.8 Ma
Early Jurassic
Plectropterna minitans
species
Animalia :Chordata :Osteichthyes :Plectropterna :Plectropterna minitans201.3 - 190.8 Ma
Early Jurassic
Littoraria irrorata
species
Animalia :Mollusca :Gastropoda :Littorinidae :Littoraria :Littoraria irrorata0.0117 - 0 Ma
Quaternary
Hypsognathus fenneri
species
Animalia :Chordata :Reptilia :Procolophonidae :Hypsognathus :Hypsognathus fenneri208.5 - 201.3 Ma
Mesozoic
Argoides macrodactylus
species
Animalia :Chordata :Saurischia :Argoides :Argoides macrodactylus201.3 - 190.8 Ma
Early Jurassic
Harpedactylus
genus
Animalia :Chordata :Reptilia :Dinosauria :Harpedactylus201.3 - 190.8 Ma
Early Jurassic
Platypterna deanii
species
Animalia :Chordata :Saurischia :Platypterna :Platypterna deanii201.3 - 190.8 Ma
Early Jurassic
Platypterna delicatula
species
Animalia :Chordata :Saurischia :Platypterna :Platypterna delicatula201.3 - 190.8 Ma
Early Jurassic
Platypterna tenuis
species
Animalia :Chordata :Saurischia :Platypterna :Platypterna tenuis201.3 - 190.8 Ma
Early Jurassic
Trihamus elegans
species
Animalia :Chordata :Trihamus :Trihamus elegans201.3 - 190.8 Ma
Early Jurassic
Plectropterna
genus
Animalia :Chordata :Osteichthyes :Plectropterna201.3 - 190.8 Ma
Early Jurassic
Tarsoplectrus elegans
species
Animalia :Chordata :Reptilia :Eosuchia :Tarsoplectrus :Tarsoplectrus elegans201.3 - 190.8 Ma
Early Jurassic
Steropoides infelix
species
Animalia :Chordata :Reptilia :Dinosauria :Steropoides :Steropoides infelix201.3 - 190.8 Ma
Early Jurassic
Steropoides loripes
species
Animalia :Chordata :Reptilia :Eosuchia :Steropoides :Steropoides loripes201.3 - 190.8 Ma
Early Jurassic
Ancyropus heteroclitus
species
Animalia :Chordata :Reptilia :Testudinata :Ancyropus :Ancyropus heteroclitus201.3 - 190.8 Ma
Early Jurassic
Palamopus divaricans
species
Animalia :Chordata :Reptilia :Eosuchia :Batrachopodidae :Batrachopus :Palamopus divaricans201.3 - 190.8 Ma
Early Jurassic
Isocampe strata
species
Animalia :Chordata :Reptilia :Isocampe :Isocampe strata201.3 - 190.8 Ma
Early Jurassic
Triaenopus baileyanus
species
Animalia :Chordata :Reptilia :Triaenopus :Triaenopus baileyanus201.3 - 190.8 Ma
Early Jurassic
Hoplichnus equus
species
Animalia :Chordata :Hoplichnus :Hoplichnus equus201.3 - 190.8 Ma
Early Jurassic
Trihamus magnus
species
Animalia :Chordata :Trihamus :Trihamus magnus201.3 - 190.8 Ma
Early Jurassic
Typopus gracilis
species
Animalia :Chordata :Osteichthyes :Typopus :Typopus gracilis201.3 - 190.8 Ma
Early Jurassic
Brontozoum expansum
species
Animalia :Chordata :Saurischia :Eubrontidae :Grallator (Eubrontes) :Brontozoum expansum201.3 - 190.8 Ma
Early Jurassic
Sillimanius gracilior
species
Animalia :Chordata :Reptilia :Eosuchia :Sillimanius :Sillimanius gracilior201.3 - 190.8 Ma
Early Jurassic
Ornithoidichnites divaricatus
species
Ichnolites :Dipodichnites :Ornithoidichnites :Ornithoidichnites divaricatus201.3 - 190.8 Ma
Early Jurassic
Plectropterna gracilis
species
Animalia :Chordata :Osteichthyes :Plectropterna :Plectropterna gracilis201.3 - 190.8 Ma
Early Jurassic
Plectropterna lineans
species
Animalia :Chordata :Osteichthyes :Plectropterna :Plectropterna lineans201.3 - 190.8 Ma
Early Jurassic
Stegomus arcuatus
species
Animalia :Chordata :Reptilia :Aetosaurus :Stegomus arcuatus215.56 - 212 Ma
Late/Upper Triassic
Batrachopus dispar
species
Animalia :Chordata :Reptilia :Crocodylia :Batrachopodidae :Batrachopus :Batrachopus dispar201.3 - 199.3 Ma
Early Jurassic
Acanthichnus
genus
Acanthichnus201.3 - 190.8 Ma
Early Jurassic
Herpystezoum
genus
Herpystezoum201.3 - 190.8 Ma
Early Jurassic
Cunicularius
genus
Cunicularius201.3 - 190.8 Ma
Early Jurassic
Bisulcus
genus
Animalia :Mollusca :Bisulcus201.3 - 190.8 Ma
Early Jurassic
Holcoptera schlotheimi
species
Animalia :Arthropoda :Insecta :Coleoptera :Coptoclavidae :Holcoptera :Holcoptera schlotheimi201.3 - 190.8 Ma
Early Jurassic
Holcoptera giebeli
species
Animalia :Arthropoda :Insecta :Coleoptera :Coptoclavidae :Holcoptera :Holcoptera giebeli201.3 - 190.8 Ma
Early Jurassic
Conopsoides
genus
Conopsoides201.3 - 190.8 Ma
Early Jurassic
Mormolucoides articulatus
species
Animalia :Arthropoda :Insecta :Coleoptera :Mormolucoides :Mormolucoides articulatus201.3 - 199.3 Ma
Early Jurassic
Plectropus longipes
species
Animalia :Chordata :Saurischia :Plectropus :Plectropus longipes201.3 - 190.8 Ma
Early Jurassic
Loperia
genus
Plantae :Loperia201.3 - 174.1 Ma
Jurassic
Redfieldius gracilis
species
Animalia :Chordata :Actinopteri :Palaeonisciformes :Redfieldiidae :Redfieldius :Redfieldius gracilis201.3 - 174.1 Ma
Jurassic
Baiera
genus
Plantae :Tracheophyta :Ginkgoopsida :Ginkgoales :Karkeniaceae :Baiera201.3 - 174.1 Ma
Jurassic
Colobops noviportensis
species
Animalia :Chordata :Reptilia :Eosuchia :Colobops :Colobops noviportensis228 - 208.5 Ma
Late/Upper Triassic
Ornithoidichnites parvulus
species
Ichnolites :Dipodichnites :Ornithoidichnites :Ornithoidichnites parvulus201.3 - 190.8 Ma
Early Jurassic
Palaeoniscus agassizii
species
Animalia :Chordata :Actinopteri :Semionotiformes :Semionotidae :Semionotus :Palaeoniscus agassizii201.3 - 174.1 Ma
Jurassic
Semionotus tenuiceps
species
Animalia :Chordata :Actinopteri :Semionotiformes :Semionotidae :Semionotus :Semionotus tenuiceps201.3 - 174.1 Ma
Jurassic
Fossil LocalitiesClick to show 26 fossil localities

Localities in this Region

Other Regions, Features and Areas that Intersect

North America Plate
USA

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, pleaseregister so you can add to our database. This locality information is for reference purposes only. You should never attempt tovisit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holdersfor access and that you are aware of all safety precautions necessary.

References

 
and/or 
Mindat.org is an outreach project of theHudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 byJolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844.doi:10.2138/am-2024-9486.
Privacy Policy -Terms & Conditions -Contact Us / DMCA issues -Report a bug/vulnerabilityCurrent server date and time: November 28, 2025 22:09:40 Page updated: November 27, 2025 16:35:10