Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Harang Reversal Observed in the Inner Magnetosphere by THEMIS in Events 1–2
3.2. Inner-Magnetosphere SAPS and the Hot Zone Observed by THEMIS in Events 1–2
3.3. The Harang Reversal Observed in the Duskside Topside Ionosphere by DMSP in Event 1
3.4. The Harang Reversal Observed in the Topside Ionosphere by DMSP F18 in Event 2
3.5. The SAR Arc Developed Within the SAPS Channel
4. Discussion
5. Summary of New Results
- (1)
- Aligned in the dusk–dawn direction, the inner-magnetosphere Harang region was characterized:
- (a)
- at its earthward edge: by the outward-directed SAPS E field developed on a short timescale in a fast-time voltage generator (VGFT) system across the plasmapause and by the inward-directed convection E field tailward of the plasmapause
- (b)
- at its tailward edge: by the reversal of the convection E field across the closed–open field-line boundary from outward- to inward-directed.
- (2)
- Large-scale FACs reversed:
- (a)
- from ↓R2 to ↑R2 near the plasmapause,
- (b)
- from ↑R2 to ↓R1 across the trapping boundary, and
- (c)
- from ↓R1 to ↑R1 across the closed-open field-line boundary.
- (3)
- Along the discontinuity:
- (a)
- ↑R2 FACs occupied the regime of trapped electrons located between the plasmapause and the trapping boundary, and
- (b)
- ↓R1 FACs occupied the regime of quasi-trapped electrons located between the trapping boundary and the closed-open field-line boundary.
- (4)
- The hot zone developed within the regime of trapped electrons and peaked within the turbulent plasmaspheric boundary layer.
- (i)
- The duskside discontinuity developed because of the flow of ↑R2 from equatorward and ↑R1 from poleward into the auroral oval.
- (ii)
- Across the discontinuity, the electrojet reversal from lower-latitude EEJ to higher-latitude WEJ occurred because of the reversal of the Hall currents from eastward (or antisunward) to westward (or sunward).
- (iii)
- Within the lower-latitude EEJ: the ↓R2–↑R2 FACs connected via the poleward-directed Pedersen currents.
- (iv)
- Within the higher-latitude WEJ: the ↑R1–↓R1 FACs connected via the equatorward-directed Pedersen currents.
- (v)
- Away from the Harang region, in the regular duskside auroral EEJ: the Hall currents were flowing eastward (or antisunward) and the ↓R2–↑R1 FACs connected via the poleward-directed Pedersen currents.
- (vi)
- Located equatorward of the discontinuity, the newly-formed SAPS flow developed in a fast-time voltage generator (VGFT) system where the subauroral ↓R2 FACs were absent.
6. Conclusions
- (a)
- Both the R1 and the R2 FACs were collocated with the M–I conjugate Harang phenomenon and were essential to its development.
- (b)
- In the duskside ionosphere, the Harang Discontinuity was associated with ↑R2 (at lower altitudes) and with ↑R1 (at higher latitudes) and the ↑R2–↑R1 demarcation corresponded to the Harang Discontinuity.
- (c)
- In the Harang region, the reversing EEJ–WEJ developed differently than their respective regular auroral EEJ and WEJ away from the Harang region.
- (d)
- In the topside ionosphere, the newly-formed SAPS flow became enhanced near the Harang region because of the mapped-down large innermagnetosphereoutward-SAPS E field developed at the Harang Region’s earthward edge in a fast-time voltage generator.
- (e)
- Therefore, the ↓R2 FACs were not essential to the enhancement of the newly-formed SAPS flow developed in a fast-time voltage generator at the Harang region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dungey, J.W. Interplanetary magnetic field and the auroral zones.Phys. Rev. Lett.1961,6, 47–48. [Google Scholar] [CrossRef]
- Cowley, S.W.H. Magnetosphere-ionosphere interactions: A tutorial review. InMagnetospheric Current Systems; Ohtani, S., Fujii, R., Hesse, M., Lysak, R.L., Eds.; American Geophysical Union: Washington, DC, USA, 2000; Volume 118, pp. 91–106. [Google Scholar] [CrossRef]
- Iijima, T.; Potemra, T.A. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad.J. Geophys. Res.1976,81, 2165–2174. [Google Scholar] [CrossRef]
- Potemra, T.A. Large-Scale Characteristics of Field-Aligned Currents Determined from the Triad Magnetometer Experiment. InDynamical and Chemical Coupling Between the Neutral and Ionized Atmosphere; Grandal, B., Holtet, J.A., Eds.; Springer: Dordrecht, The Netherlands, 1977; Volume 35. [Google Scholar] [CrossRef]
- Iijima, T.; Potemra, T.A. Large-scale characteristics of field-aligned currents associated with substorms.J. Geophys. Res.1978,83, 599–615. [Google Scholar] [CrossRef]
- Baumjohann, W. Ionospheric and field-aligned current systems in the auroral zone: A concise review.Adv. Space Res.1982,2, 55–62. [Google Scholar] [CrossRef]
- Iijima, T.; Nagata, T. Signatures for substorm development of the growth phase and expansion phase.Planet. Space Sci.1972,20, 1095–1112. [Google Scholar] [CrossRef]
- Harang, L. The mean field of disturbance of polar geomagnetic storms.Terr. Magn. Atmos. Electr.1946,51, 353–380. [Google Scholar] [CrossRef]
- Heppner, J.P.The Harang Discontinuity in Auroral Belt Ionospheric Currents; Geofysiske Publikasjoner: Oslo, Norway, 1972; Volume 29, pp. 105–120. [Google Scholar]
- Kleimenova, N.G.; Despirak, I.V.; Malysheva, L.M.; Gromova, L.I.; Lubchich, A.A.; Gromov, S.V. Polar substorms and the Harang Discontinuity. In Proceedings of the 46th Annual Seminar Physics of Auroral Phenomena, Apatity, Russia, 13–17 March 2023; pp. 30–33. [Google Scholar] [CrossRef]
- Kleimenova, N.G.; Gromova, L.I.; Gromov, S.V.; Malysheva, L.M.; Despirak, I.V. ‘Polar’ Substorms and the Harang Discontinuity.Geomagn. Aeron.2024,64, 490–499. [Google Scholar] [CrossRef]
- Maynard, N.C. Electric field measurements across the Harang discontinuity.J. Geophys. Res.1974,79, 4620–4631. [Google Scholar] [CrossRef]
- Koskinen, H.E.J.; Pulkkinen, T.I. Midnight velocity shear zone and the concept of Harang discontinuity.J. Geophys. Res.1995,100, 9539–9547. [Google Scholar] [CrossRef]
- Madsen, M.M.; Iversen, I.B.; D′Angelo, N. Measurements of high-latitude ionospheric electric fields by means of balloon-borne sensors.J. Geophys. Res.1976,81, 3821–3824. [Google Scholar] [CrossRef]
- Heppner, J.P. Empirical models of high-latitude electric fields.J. Geophys. Res.1977,82, 1115–1125. [Google Scholar] [CrossRef]
- McPherron, R.L.; Russell, C.T.; Aubry, M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms.J. Geophys. Res.1973,78, 3131–3149. [Google Scholar] [CrossRef]
- Kepko, L.; McPherron, R.; Amm, L.O.; Apatenkov, S.; Baumjohann, W.; Birn, J.; Lester, M.; Nakamura, R.; Pulkkinen, T.I.; Sergeev, V. Substorm Current Wedge Revisited.Space Sci. Rev.2015,190, 1–46. [Google Scholar] [CrossRef]
- Erickson, G.M.; Spiro, R.W.; Wolf, R.A. The physics of the Harang discontinuity.J. Geophys. Res.1991,96, 1633–1645. [Google Scholar] [CrossRef]
- Lezniak, T.; Winckler, J. Experimental study of magnetospheric motions and the acceleration of energetic electrons during substorms.J. Geophys. Res.1970,75, 7075–7098. [Google Scholar] [CrossRef]
- Despirak, I.V.; Kozelova, T.; Kozelov, B.V.; Lubchich, A.A. Observations of substorm activity near the Harang Discontinuity. In Proceedings of the Eighteenth international scientific conference “Space, Ecology, Safety” (SES-2022), Sofia, Bulgaria, 19–21 October 2022; Available online:http://space.bas.bg/SES/archive/SES%202022_DOKLADI/1_Space%20Physics/3_Despirak.pdf (accessed on 3 October 2024).
- Kunkel, T.; Untiedt, J.; Baumjohann, W.; Greenwald, R. Electric fields and currents at the Harang discontinuity: A case study.J. Geophys.1986,59, 73–86. Available online:https://n2t.net/ark:/88439/y096847 (accessed on 4 October 2024).
- Yang, J.; Toffoletto, F.; Lu, G.; Wiltberger, M. RCM-E and AMIE studies of the Harang reversal formation during a steady magnetospheric convection event.J. Geophys. Res. Space Phys.2014,119, 7228–7242. [Google Scholar] [CrossRef]
- Gkioulidou, M.; Wang, C.-P.; Lyons, L.R.; Wolf, R.A. Formation of the Harang reversal and its dependence on plasma sheet conditions: Rice convection model simulations.J. Geophys. Res.2009,114, A07204. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, S.; Shepherd, S.G.; Liang, J.; Gjerloev, J.W.; Ruohoniemi, J.M.; Kunduri, B.; Wygant, J.R. Multi-instrument observations of mesoscale enhancement of subauroral polarization stream associated with an injection.J. Geophys. Res. Space Phys.2019,124, 1770–1784. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Nicolls, M.J.; Heinselman, C.J.; Mende, S.B. Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations.J. Geophys. Res. Space Phys.2009,114, A12301. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Wang, C.-P.; Boudouridis, A.; Ruohoniemi, J.M.; Anderson, P.C.; Dyson, P.L.; Devlin, J.C. On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations.J. Geophys. Res.2009,114, A01205. [Google Scholar] [CrossRef]
- Ohtani, S.; Gkioulidou, M.; Wang, C.-P.; Wolf, R.A. The Harang reversal and the interchange stability of the magnetotail.J. Geophys. Res. Space Phys.2016,121, 3278–3292. [Google Scholar] [CrossRef]
- Foster, J.; Burke, W. A new categorization for sub-auroral electric fields.Eos Trans. Am. Geophys. Union2002,83, 393–394. [Google Scholar] [CrossRef]
- Foster, J.; Buonsanto, M.; Mendillo, M.; Notingham, D.; Rich, F.; Denig, W. Coordinated stable auroral red arc observations: Relationship to plasma convection.J. Geophys.Res.1994,99, 11429–11439. [Google Scholar] [CrossRef]
- Chandra, S.; Maier, E.; Troy, B., Jr.; Narasinga Rao, B. Subauroral red arcs and associated ionospheric phenomena.J. Geophys. Res.1971,76, 920–925. [Google Scholar] [CrossRef]
- Bezrukikh, V.V.; Gringauz, K.I. The hot zone in the outer plasmasphere of the earth.J. Atmos. Terr. Phys.1976,38, 1085–1091. [Google Scholar] [CrossRef]
- Stephens, G.K.; Sitnov, M.I.; Korth, H.; Tsyganenko, N.A.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A.Y. Global empirical picture of magnetospheric substorms inferred from multimission magnetometer data.J. Geophys. Res. Space Phys.2019,124, 1085–1110. [Google Scholar] [CrossRef]
- Connors, M.; Russell, C.T.; Angelopoulos, V. Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: An unprecedented observation.Ann. Geophys.2011,29, 619–622. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Nishimura, Y. Mutual evolution of aurora and ionospheric electrodynamic features near the Harang reversal during substorms.Geophys. Monogr. Ser.2012,197, 159–169. [Google Scholar] [CrossRef]
- Sinevich, A.A.; Chernyshov, A.A.; Chugunin, D.V.; Clausen, L.B.N.; Miloch, W.J.; Mogilevsky, M.M. Stratified subauroral ion drift (SSAID).J. Geophys. Res. Space Phys.2023,128, e2022JA031109. [Google Scholar] [CrossRef]
- Streltsov, A.V.; Mishin, E.V. ULF waves generated near the plasmapause by the magnetosphere-ionosphere interactions.J. Geophys. Res. Space Phys.2020,125, e2019JA027353. [Google Scholar] [CrossRef]
- Pradipta, R.; Mishin, E.; Groves, K.M. Storm-time subauroral ionospheric plasma density irregularities and the substorm current wedge.J. Geophys. Res. Space Phys.2023,128, e2023JA031465. [Google Scholar] [CrossRef]
- Sibeck, D.G.; Angelopoulos, V. THEMIS science objectives and mission phases.Space Sci. Rev.2008,141, 35–59. [Google Scholar] [CrossRef]
- Cosgrove, D.; Frey, S.; Bester, M.; Folta, D.; Woodard, M.; Woodfork, D.; Marchese, J.; Owens, B.; Gandhi, S. Navigating THEMIS to the ARTEMIS Low-Energy Lunar Transfer Trajectory. In Proceedings of the SpaceOps Conferences, Huntsville, AL, USA, 25–30 April 2010; pp. 2010–2352. [Google Scholar] [CrossRef]
- Rich, F.J.; Hairston, M. Large-scale convection patterns observed by DMSP.J. Geophys. Res.1994,99, 3827–3844. [Google Scholar] [CrossRef]
- Paxton, L.J.; Morrison, D.; Zhang, Y.; Kil, H.; Wolven, B.; Ogorzalek, B.S.; Humm, D.C.; Meng, C.-I. Validation of Remote Sensing Products Produced by the Special Sensor Ultraviolet Scanning Imager (SSUSI): A far UV-Imaging Spectrograph on DMSP F-16. InOptical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV; SPIE Press: Bellingham, WA, USA, 2002; p. 4485. [Google Scholar] [CrossRef]
- Gillies, D.M.; Knudsen, D.; Donovan, E.; Jackel, B.; Gillies, R.; Spanswick, E. Identifying the 630 nm auroral arc emission height: A comparison of the triangulation, FAC profile, and electron density methods.J. Geophys. Res. Space Phys.2017,122, 8181–8197. [Google Scholar] [CrossRef]
- Newell, P.T.; Gjerloev, J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power.J. Geophys. Res.2011,116, A12211. [Google Scholar] [CrossRef]
- Frank, L.A. Relationship of the plasma sheet, ring current, trapping boundary, and plasmapause near the magnetic equator and local midnight.J. Geophys. Res.1971,76, 2265–2275. [Google Scholar] [CrossRef]
- Burrows, J.R.; McDiarmid, I.B. Trapped particle boundary regions. InCritical Problems of Magnetospheric Physics; IUCSTP Secretariat, c/o National Academy of Sciences: Washington, DC, USA, 1972; pp. 83–106. [Google Scholar]
- Roederer, J.G. On the adiabatic motion of energetic particles in a model magnetosphere.J. Geophys. Res.1967,72, 981–992. [Google Scholar] [CrossRef]
- Roederer, J.G.Dynamics of Geomagnetically Trapped Radiation; Springer: New York, NY, USA, 1970; pp. 58–68. [Google Scholar]
- Mishin, E.V. Interaction of substorm injections with the subauroral geospace: 1. Multispacecraft observations of SAID.J. Geophys. Res. Space Phys.2013,118, 5782–5796. [Google Scholar] [CrossRef]
- Mishin, E.V. The evolving paradigm of the subauroral geospace.Front. Astron. Space Sci.2023,10, 1118758. [Google Scholar] [CrossRef]
- Mishin, E.V.; Puhl-Quinn, P.A. SAID: Plasmaspheric short circuit of substorm injections.Geophys. Res. Lett.2007,34, L24101. [Google Scholar] [CrossRef]
- Mishin, E.; Sotnikov, V. The turbulent plasmasphere boundary layer and the outer radiation belt boundary.Plasma Phys. Control. Fusion2017,59, 124003. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Kennel, C.F.; Coroniti, F.V.; Pellat, R.; Kivelson, M.G.; Walker, R.J.; Russell, C.T.; Baumjohann, W.; Feldman, W.C.; Gosling, J.T. Statistical characteristics of bursty bulk flow events.J. Geophys. Res.1994,99, 21257–21280. [Google Scholar] [CrossRef]
- Mishin, E.; Streltsov, A. Prebreakup arc intensification due to short circuiting of mesoscale plasma flows over the plasmapause.J. Geophys. Res. Space Phys.2020,125, e2019JA027666. [Google Scholar] [CrossRef]
- Smith, P.H.; Hoffman, R.A. Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms.J. Geophys. Res.1974,79, 966–971. [Google Scholar] [CrossRef]
- Usanova, M.E.; Mann, I.R.; Kale, Z.C.; Rae, I.J.; Sydora, R.D.; Sandanger, M.; Søraas, F.; Glassmeier, K.-H.; Fornacon, K.-H.; Matsui, H.; et al. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation.J. Geophys. Res.2010,115, A07208. [Google Scholar] [CrossRef]
- Mishin, E.; Streltsov, A. Mesoscale and Small-Scale Structure of the Subauroral Geospace. InIonosphere Dynamics and Applications, Space Physics and Aeronomy Collection—Geophysical Monograph Series 260; Huang, C., Lu, G., Eds.; American Geophysical Union: Washington, DC, USA, 2021; Volume 3, pp. 135–154. [Google Scholar] [CrossRef]
- Serbu, G.P.; Maier, E.J.R. Observations from Ogo 5 of the thermal ion density and temperature within the magnetosphere.J. Geophys. Res.1970,75, 6102–6113. [Google Scholar] [CrossRef]
- Nishimura, Y.; Lyons, L.R.; Zou, S.; Angelopoulos, V.; Mende, S.B. Categorization of the time sequence of events leading to substorm onset based on THEMIS all-sky imager observations. InThe Dynamic Magnetosphere; Liu, W., Fujimoto, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 133–142. [Google Scholar] [CrossRef]
- Lyons, L.R.; Nishimura, Y.; Liu, J.; Yadav, S.; Zou, Y.; Bristow, W.A.; Donovan, E.; Nishitani, N. Space weather with an arc’s ∼2 h trip across the nightside polar cap.Front. Astron. Space Sci.2024,10, 1–7. [Google Scholar] [CrossRef]
- Lyons, L.R. General relations for resonant particle diffusion in pitch angle and energy.J. Plasma Phys.1974,12, 45–49. [Google Scholar] [CrossRef]
- Lyons, L.R. Pitch angle and energy diffusion coefficients from resonant interactions with ion cyclotron and whistler waves.J. Plasma Phys.1974,12, 417–432. [Google Scholar] [CrossRef]
- Thorne, R.M.; Ni, B.; Tao, X.; Horne, R.B.; Meredith, N.P. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation.Nature2010,467, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Whiter, D.K.; Partamies, N.; Gustavsson, B.; Kauristie, K. The altitude of green OI 557.7 nm and blue N2+ 427.8 nm aurora.Ann. Geophys.2023,41, 1–12. [Google Scholar] [CrossRef]
- Mendillo, M.; Baumgardner, J.; Wroten, J.; Martinis, C.; Smith, S.; Merenda, K.D.; Fritz, T.; Hairston, M.; Heelis, R.; Barbieri, C. Imaging magnetospheric boundaries at ionospheric heights.J. Geophys. Res. Space Phys.2013,118, 7294–7305. [Google Scholar] [CrossRef]
- Shiokawa, K.; Hosokawa, K.; Sakaguchi, K.; Leda, A.; Otsuka, Y.; Ogawa, T.; Connors, M. The optical mesosphere thermosphere imagers (OMTIs) for network measurements of aurora and airglow, future perspectives of space plasma and particle instrumentation and international collaborations.AIP Conf. Proc.2009,1144, 212–215. [Google Scholar] [CrossRef]
- Galperin, Y.I.; Feldstein, Y.I. Mapping of the precipitation region to the plasma sheet.J. Geomagn. Geoelectr.1996,48, 857–875. [Google Scholar] [CrossRef]
- Mishin, E.V.; Streltsov, A.V. Toward the unified theory of SAID-linked subauroral arcs.J. Geophys.Res. Space Phys.2024,129, e2023JA032196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, I.; Lovell, B.C. Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites.Atmosphere2024,15, 1462. https://doi.org/10.3390/atmos15121462
Horvath I, Lovell BC. Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites.Atmosphere. 2024; 15(12):1462. https://doi.org/10.3390/atmos15121462
Chicago/Turabian StyleHorvath, Ildiko, and Brian C. Lovell. 2024. "Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites"Atmosphere 15, no. 12: 1462. https://doi.org/10.3390/atmos15121462
APA StyleHorvath, I., & Lovell, B. C. (2024). Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites.Atmosphere,15(12), 1462. https://doi.org/10.3390/atmos15121462