Movatterモバイル変換


[0]ホーム

URL:


Skip to content
Main Content

kaiser

Description

w = kaiser(L,beta) returns anL-point Kaiser window with shape factorbeta.

example

Examples

collapse all

Create a 200-point Kaiser window with a beta of 2.5. Display the result usingwvtool.

w = kaiser(200,2.5);wvtool(w)

Figure Window Visualization Tool contains 2 axes objects and other objects of type uimenu, uitoolbar, uipanel. Axes object 1 with title Time domain, xlabel Samples, ylabel Amplitude contains an object of type line. Axes object 2 with title Frequency domain, xlabel Normalized Frequency (\times\pi rad/sample), ylabel Magnitude (dB) contains an object of type line.

Input Arguments

collapse all

Window length, specified as a positive integer.

Note

If you specifyL as noninteger, the function rounds it to the nearest integer value.

Data Types:single |double |int8 |int16 |int32 |int64 |uint8 |uint16 |uint32 |uint64

Shape factor, specified as a positive real scalar. The parameterbeta affects the sidelobe attenuation of the Fourier transform of the window.

Data Types:single |double

Output Arguments

collapse all

Kaiser window, returned as a column vector.

Algorithms

The coefficients of a Kaiser window are computed from the following equation:

w(n)=I0(β1(nN/2N/2)2)I0(β),0nN,

whereI0 is the zeroth-order modified Bessel function of the first kind. The lengthL = N + 1.kaiser(L,beta) is equivalent to

besseli(0,beta*sqrt(1-(((0:L-1)-(L-1)/2)/((L-1)/2)).^2))/besseli(0,beta)

To obtain a Kaiser window that represents an FIR filter with sidelobe attenuation ofα dB, use the followingβ.

β={0.1102(α8.7),α>500.5842(α21)0.4+0.07886(α21),50α210,α<21

Increasingβ widens the mainlobe and decreases the amplitude of the sidelobes (i.e., increases the attenuation).

References

[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing Society, eds.Selected Papers in Digital Signal Processing. Vol. II. New York: IEEE Press, 1976.

[2] Kaiser, James F. "Nonrecursive Digital Filter Design Using theI0-Sinh Window Function."Proceedings of the 1974 IEEE® International Symposium on Circuits and Systems. April, 1974, pp. 20–23.

[3] Oppenheim, Alan V., and Ronald W. Schafer, with John R. Buck.Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities

expand all

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Version History

Introduced before R2006a

expand all

Thekaiser function supports code generation for graphical processing units (GPUs). You must haveMATLAB® Coder™ and GPU Coder™ to generate CUDA® code.

MathWorksMathWorks

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select:.

You can also select a web site from the following list

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

Europe

Asia Pacific

Contact your local office


[8]ページ先頭

©2009-2025 Movatter.jp