We hope that this free tool has been helpful for you and your research program. It is part of TMIC’s mission to provide enabling technologies to the Canadian and international metabolomics communities, and we’d really appreciate it if you could fill out the survey link below - it should take less than a minute of your time, and will help us continue to provide this service to the community.
Valproic acid (VPA) is considered to be a drug of first choice and one of the most frequently-prescribed antiepileptic drugs worldwide for the therapy of generalized and focal epilepsies, including special epileptic. It is a broad-spectrum antiepileptic drug and is usually well tolerated. Rarely, serious complications may occur in some patients, including hemorrhagic pancreatitis, coagulopathies, bone marrow suppression, VPA-induced hepatotoxicity and encephalopathy, but there is still a lack of knowledge about the incidence and occurrence of these special side effects. VPA has been approved for stabilization of manic episodes in patients with bipolar disorder. It is also used to treat migraine headaches and schizophrenia. As the use of VPA increases, the number of both accidental and intentional exposures increases. This is paralleled by more reports of VPA-induced toxicity. VPA is relatively contraindicated in pregnancy due to its teratogenicity. It is a known folate antagonist, which can cause neural tube defects. Thus, folic acid supplements may alleviate teratogenic problems. Women who become pregnant whilst taking valproate should be counselled as to its risks. VPA is an inhibitor of the enzyme histone deacetylase 1 (HDAC1). HDAC1 is needed for HIV to remain in infected cells. Patients treated with valproic acid in addition to highly active antiretroviral therapy (HAART) showed a median 75% reduction in latent HIV infection. VPA is believed to affect the function of the neurotransmitter GABA (as a GABA transaminase inhibitor) in the human brain. Valproic Acid dissociates to the valproate ion in the gastrointestinal tract. (PMID:18201150,17496767).
Belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present.
Nemeroff CB: The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull. 2003;37(4):133-46. [PubMed:15131523]
Bell EC, Willson MC, Wilman AH, Dave S, Silverstone PH: Differential effects of chronic lithium and valproate on brain activation in healthy volunteers. Hum Psychopharmacol. 2005 Aug;20(6):415-24. [PubMed:16106488]
Seyfert S, Bernarding J, Braun J: Volume-selective 1H MR spectroscopy for in vivo detection of valproate in patients with epilepsy. Neuroradiology. 2003 May;45(5):295-9. Epub 2003 Mar 27. [PubMed:12669157]
Eyal S, Lamb JG, Smith-Yockman M, Yagen B, Fibach E, Altschuler Y, White HS, Bialer M: The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br J Pharmacol. 2006 Oct;149(3):250-60. Epub 2006 Aug 7. [PubMed:16894351]
Loscher W: Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs. 2002;16(10):669-94. [PubMed:12269861]
Huang YL, Hong HS, Wang ZW, Kuo TT: Fatal sodium valproate-induced hypersensitivity syndrome with lichenoid dermatitis and fulminant hepatitis. J Am Acad Dermatol. 2003 Aug;49(2):316-9. [PubMed:12894087]
Anderson GD, Temkin NR, Chandler WL, Winn HR: Effect of valproate on hemostatic function in patients with traumatic brain injury. Epilepsy Res. 2003 Dec;57(2-3):111-9. [PubMed:15013052]
Ho PC, Abbott FS, Zanger UM, Chang TK: Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J. 2003;3(6):335-42. [PubMed:14597963]
Gerstner T, Bell N, Konig S: Oral valproic acid for epilepsy--long-term experience in therapy and side effects. Expert Opin Pharmacother. 2008 Feb;9(2):285-92. doi: 10.1517/14656566.9.2.285 . [PubMed:18201150]
Russell S: Carnitine as an antidote for acute valproate toxicity in children. Curr Opin Pediatr. 2007 Apr;19(2):206-10. [PubMed:17496767]
Only showing the first 10 proteins. There are25 proteins in total.
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.Participates in the metabolism of an as-yet-unknown biologically active molecule that is a participant in eye development.
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
May be involved in the metabolism of various pneumotoxicants including naphthalene. Is able to dealkylate ethoxycoumarin, propoxycoumarin, and pentoxyresorufin but possesses no activity toward ethoxyresorufin and only trace dearylation activity toward benzyloxyresorufin. Bioactivates 3-methylindole (3MI) by dehydrogenation to the putative electrophile 3-methylene-indolenine.
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.