- Notifications
You must be signed in to change notification settings - Fork5
tuanio/image2latex
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This respository implement the Seq2Seq Image to Latex architecture from paper “Image to Latex.” of Genthial, Guillaume. (2017).
This structure is based on Seq2Seq architecture, it use one Convolutional Encoder and one RNN Decoder.
- Convolution (only)
- Convolution with Row Encoder (BiLSTM)
- Convolution with Batch Norm
- ResNet 18 with Row Encoder (BiLSTM)
- ResNet 18 (only)
- https://www.kaggle.com/datasets/shahrukhkhan/im2latex100k
- https://www.kaggle.com/datasets/tuannguyenvananh/im2latex-sorted-by-size
- https://www.kaggle.com/datasets/rvente/im2latex170k
- https://www.kaggle.com/datasets/tuannguyenvananh/im2latex-170k-meta-data
wandb login <key>
python main.py --batch-size 2 --data-path C:\Users\nvatu\OneDrive\Desktop\dataset5\dataset5 --img-path C:\Users\nvatu\OneDrive\Desktop\dataset5\dataset5\formula_images --dataset 170k --val --decode-type beamsearch
About
Image to Latex using Encoder-Decoder architecture
Topics
Resources
Stars
Watchers
Forks
Packages0
No packages published