Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Image to Latex using Encoder-Decoder architecture

NotificationsYou must be signed in to change notification settings

tuanio/image2latex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

This respository implement the Seq2Seq Image to Latex architecture from paper “Image to Latex.” of Genthial, Guillaume. (2017).

Architecture

This structure is based on Seq2Seq architecture, it use one Convolutional Encoder and one RNN Decoder.

  • Convolution (only)
  • Convolution with Row Encoder (BiLSTM)
  • Convolution with Batch Norm
  • ResNet 18 with Row Encoder (BiLSTM)
  • ResNet 18 (only)

Dataset

im2latex100k

im2latex170k

How to use?

Login wandb

  • wandb login <key>

python main.py --batch-size 2 --data-path C:\Users\nvatu\OneDrive\Desktop\dataset5\dataset5 --img-path C:\Users\nvatu\OneDrive\Desktop\dataset5\dataset5\formula_images --dataset 170k --val --decode-type beamsearch

Example


[8]ページ先頭

©2009-2025 Movatter.jp