Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

A drop-in replacement for dplyr, powered by DuckDB for speed.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

tidyverse/duckplyr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lifecycle: stableR-CMD-checkCodecov test coverage

Adrop-in replacement for dplyr, powered by DuckDB forspeed.

dplyr is the grammar of datamanipulation in the tidyverse. The duckplyr package will run all of yourexisting dplyr code with identical results, usingDuckDB where possible to compute the resultsfaster. In addition, you can analyze larger-than-memory datasetsstraight from files on your disk or from the web.

If you are new to dplyr, the best place to start is thedatatransformation chapter inR forData Science.

Installation

Install duckplyr from CRAN with:

install.packages("duckplyr")

You can also install the development version of duckplyr fromR-universe:

install.packages("duckplyr",repos= c("https://tidyverse.r-universe.dev","https://cloud.r-project.org"))

Or fromGitHub with:

# install.packages("pak")pak::pak("tidyverse/duckplyr")

Drop-in replacement for dplyr

Callinglibrary(duckplyr) overwrites dplyr methods, enabling duckplyrfor the entire session.

library(conflicted)library(duckplyr)#> Loading required package: dplyr#> ✔ Overwriting dplyr methods with duckplyr methods.#> ℹ Turn off with `duckplyr::methods_restore()`.
conflict_prefer("filter","dplyr",quiet=TRUE)

The following code aggregates the inflight delay by year and month forthe first half of the year. We use a variant of thenycflights13::flights dataset, where the timezone has been set to UTCto work around a current limitation of duckplyr, seevignette("limits").

flights_df()#> # A tibble: 336,776 × 19#>     year month   day dep_time sched_d…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵#>    <int> <int> <int>    <int>     <int>   <dbl>   <int>   <int>   <dbl>#>  1  2013     1     1      517       515       2     830     819      11#>  2  2013     1     1      533       529       4     850     830      20#>  3  2013     1     1      542       540       2     923     850      33#>  4  2013     1     1      544       545      -1    1004    1022     -18#>  5  2013     1     1      554       600      -6     812     837     -25#>  6  2013     1     1      554       558      -4     740     728      12#>  7  2013     1     1      555       600      -5     913     854      19#>  8  2013     1     1      557       600      -3     709     723     -14#>  9  2013     1     1      557       600      -3     838     846      -8#> 10  2013     1     1      558       600      -2     753     745       8#> # ℹ 336,766 more rows#> # ℹ abbreviated names: ¹​sched_dep_time, ²​dep_delay, ³​arr_time,#> #   ⁴​sched_arr_time, ⁵​arr_delay#> # ℹ 10 more variables: carrier <chr>, flight <int>, tailnum <chr>,#> #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,#> #   hour <dbl>, minute <dbl>, time_hour <dttm>out<-  flights_df()|>  filter(!is.na(arr_delay),!is.na(dep_delay))|>  mutate(inflight_delay=arr_delay-dep_delay)|>  summarize(.by= c(year,month),mean_inflight_delay= mean(inflight_delay),median_inflight_delay= median(inflight_delay),  )|>  filter(month<=6)

The result is a plain tibble:

class(out)#> [1] "tbl_df"     "tbl"        "data.frame"

Nothing has been computed yet. Querying the number of rows, or a column,starts the computation:

out$month#> [1] 1 2 3 4 5 6

Note that, unlike dplyr, the results are not ordered, see?config fordetails. However, once materialized, the results are stable:

out#> # A tibble: 6 × 4#>    year month mean_inflight_delay median_inflight_delay#>   <int> <int>               <dbl>                 <dbl>#> 1  2013     1               -3.86                    -5#> 2  2013     2               -5.15                    -6#> 3  2013     3               -7.36                    -9#> 4  2013     4               -2.67                    -5#> 5  2013     5               -9.37                   -10#> 6  2013     6               -4.24                    -7

If a computation is not supported by DuckDB, duckplyr will automaticallyfall back to dplyr.

flights_df()|>  summarize(.by=origin,dest= paste(sort(unique(dest)),collapse="")  )#> # A tibble: 3 × 2#>   origin dest#>   <chr>  <chr>#> 1 EWR    ALB ANC ATL AUS AVL BDL BNA BOS BQN BTV BUF BWI BZN CAE CHS C…#> 2 LGA    ATL AVL BGR BHM BNA BOS BTV BUF BWI CAE CAK CHO CHS CLE CLT C…#> 3 JFK    ABQ ACK ATL AUS BHM BNA BOS BQN BTV BUF BUR BWI CHS CLE CLT C…

Restart R, or callduckplyr::methods_restore() to revert to thedefault dplyr implementation.

duckplyr::methods_restore()#> ℹ Restoring dplyr methods.

Analyzing larger-than-memory data

An extended variant of thenycflights13::flights dataset is alsoavailable for download as Parquet files.

year<-2022:2024base_url<-"https://blobs.duckdb.org/flight-data-partitioned/"files<- paste0("Year=",year,"/data_0.parquet")urls<- paste0(base_url,files)tibble(urls)#> # A tibble: 3 × 1#>   urls#>   <chr>#> 1 https://blobs.duckdb.org/flight-data-partitioned/Year=2022/data_0.pa…#> 2 https://blobs.duckdb.org/flight-data-partitioned/Year=2023/data_0.pa…#> 3 https://blobs.duckdb.org/flight-data-partitioned/Year=2024/data_0.pa…

Using thehttpfs DuckDBextension, wecan query these files directly from R, without even downloading themfirst.

db_exec("INSTALL httpfs")db_exec("LOAD httpfs")flights<- read_parquet_duckdb(urls)

Like with local data frames, queries on the remote data are executedlazily. Unlike with local data frames, the default is to disallowautomatic materialization if the result is too large in order to protectmemory: the results are not materialized until explicitly requested,with acollect() call for instance.

nrow(flights)#> Error: Materialization would result in more than 9090 rows. Use collect() or as_tibble() to materialize.

For printing, only the first few rows of the result are fetched.

flights#> # A duckplyr data frame: 110 variables#>     Year Quarter Month DayofMonth DayOfWeek FlightDate Report…¹ DOT_I…²#>    <dbl>   <dbl> <dbl>      <dbl>     <dbl> <date>     <chr>      <dbl>#>  1  2022       1     1         14         5 2022-01-14 YX         20452#>  2  2022       1     1         15         6 2022-01-15 YX         20452#>  3  2022       1     1         16         7 2022-01-16 YX         20452#>  4  2022       1     1         17         1 2022-01-17 YX         20452#>  5  2022       1     1         18         2 2022-01-18 YX         20452#>  6  2022       1     1         19         3 2022-01-19 YX         20452#>  7  2022       1     1         20         4 2022-01-20 YX         20452#>  8  2022       1     1         21         5 2022-01-21 YX         20452#>  9  2022       1     1         22         6 2022-01-22 YX         20452#> 10  2022       1     1         23         7 2022-01-23 YX         20452#> # ℹ more rows#> # ℹ abbreviated names: ¹​Reporting_Airline, ²​DOT_ID_Reporting_Airline#> # ℹ 102 more variables: IATA_CODE_Reporting_Airline <chr>,#> #   Tail_Number <chr>, Flight_Number_Reporting_Airline <dbl>,#> #   OriginAirportID <dbl>, OriginAirportSeqID <dbl>,#> #   OriginCityMarketID <dbl>, Origin <chr>, OriginCityName <chr>,#> #   OriginState <chr>, OriginStateFips <chr>, OriginStateName <chr>,#> #   OriginWac <dbl>, DestAirportID <dbl>, DestAirportSeqID <dbl>,#> #   DestCityMarketID <dbl>, Dest <chr>, DestCityName <chr>,#> #   DestState <chr>, DestStateFips <chr>, DestStateName <chr>,#> #   DestWac <dbl>, CRSDepTime <chr>, DepTime <chr>, DepDelay <dbl>,#> #   DepDelayMinutes <dbl>, DepDel15 <dbl>, …
flights|>  count(Year)#> # A duckplyr data frame: 2 variables#>    Year       n#>   <dbl>   <int>#> 1  2022 6729125#> 2  2023 6847899#> 3  2024 3461319

Complex queries can be executed on the remote data. Note how only therelevant columns are fetched and the 2024 data isn’t even touched, asit’s not needed for the result.

out<-flights|>  mutate(InFlightDelay=ArrDelay-DepDelay)|>  summarize(.by= c(Year,Month),MeanInFlightDelay= mean(InFlightDelay,na.rm=TRUE),MedianInFlightDelay= median(InFlightDelay,na.rm=TRUE),  )|>  filter(Year<2024)out|>  explain()#> ┌───────────────────────────┐#> │       HASH_GROUP_BY       │#> │    ────────────────────   │#> │          Groups:          │#> │             #0            │#> │             #1            │#> │                           │#> │        Aggregates:        │#> │          mean(#2)         │#> │         median(#3)        │#> │                           │#> │       ~6729125 Rows       │#> └─────────────┬─────────────┘#> ┌─────────────┴─────────────┐#> │         PROJECTION        │#> │    ────────────────────   │#> │            Year           │#> │           Month           │#> │       InFlightDelay       │#> │       InFlightDelay       │#> │                           │#> │       ~13458250 Rows      │#> └─────────────┬─────────────┘#> ┌─────────────┴─────────────┐#> │         PROJECTION        │#> │    ────────────────────   │#> │            Year           │#> │           Month           │#> │       InFlightDelay       │#> │                           │#> │       ~13458250 Rows      │#> └─────────────┬─────────────┘#> ┌─────────────┴─────────────┐#> │       READ_PARQUET        │#> │    ────────────────────   │#> │         Function:         │#> │        READ_PARQUET       │#> │                           │#> │        Projections:       │#> │            Year           │#> │           Month           │#> │          DepDelay         │#> │          ArrDelay         │#> │                           │#> │       File Filters:       │#> │  (CAST(Year AS DOUBLE) <  │#> │           2024.0)         │#> │                           │#> │    Scanning Files: 2/3    │#> │                           │#> │       ~13458250 Rows      │#> └───────────────────────────┘out|>  print()|>  system.time()#> # A duckplyr data frame: 4 variables#>     Year Month MeanInFlightDelay MedianInFlightDelay#>    <dbl> <dbl>             <dbl>               <dbl>#>  1  2022    11             -5.21                  -7#>  2  2023    11             -7.10                  -8#>  3  2022     8             -5.27                  -7#>  4  2023     4             -4.54                  -6#>  5  2022     7             -5.13                  -7#>  6  2022     4             -4.88                  -6#>  7  2023     8             -5.73                  -7#>  8  2023     7             -4.47                  -7#>  9  2022     2             -6.52                  -8#> 10  2023     5             -6.17                  -7#> # ℹ more rows#>    user  system elapsed#>   1.145   0.455   9.402

Over 10M rows analyzed in about 10 seconds over the internet, that’s notbad. Of course, working with Parquet, CSV, or JSON files downloadedlocally is possible as well.

For full compatibility,na.rm = FALSE by default in the aggregationfunctions:

flights|>  summarize(mean(ArrDelay-DepDelay))#> # A duckplyr data frame: 1 variable#>   `mean(ArrDelay - DepDelay)`#>                         <dbl>#> 1                          NA

Further reading

Getting help

If you encounter a clear bug, please file an issue with a minimalreproducible example onGitHub. For questionsand other discussion, please useforum.posit.co.

Code of conduct

Please note that this project is released with aContributor Code ofConduct. Byparticipating in this project you agree to abide by its terms.


[8]ページ先頭

©2009-2025 Movatter.jp