- Notifications
You must be signed in to change notification settings - Fork0
MSVC's implementation of the C++ Standard Library.
License
peterwald/STL
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This is the official repository for Microsoft's implementation of the C++ Standard Library (also known as the STL),which ships as part of the MSVC toolset and the Visual Studio IDE.
- OurChangelog tracks which updates to this repository appear in each VS release.
- OurStatus Chart displays our overall progress over time.
- Join ourDiscord server.
If you're a programmer who just wants to use the STL, youdon't need this repo. Simply install the Visual Studio IDEand select the "Desktop development with C++" workload.
If you want to participate in the STL's development, welcome! You can report issues, comment on pull requests, and learnabout what we're working on. You can also submit pull requests to fix bugs or add features (see below).
Finally, you can take our code and use it in other apps and libraries (according to the terms of our license, likeeverything else).
We're in the process of moving all of our work on the STL to GitHub. Current status:
Code:Done. Our source code is available under the Apache License v2.0 with LLVM Exception. (SeeLICENSE.txt andNOTICE.txt for more information.)
Build System:In progress. We're working on a CMake build system, which is currently capable of building oneflavor of the STL (native desktop). We need to extend this to build all of the flavors required for the MSVC toolset(e.g.
/clr
,/clr:pure
, OneCore, Spectre). Until that's done, we're keeping our legacy build system around in thestl/msbuild
subdirectory. (We're keeping those files in this repo, even though they're unusable outside of Microsoft,because they need to be updated whenever source files are added/renamed/deleted. We'll delete the legacy machinery assoon as possible.)Tests:In progress. We rely on three test suites: std, tr1, andlibcxx. We've partially ported std and tr1,and fully ported libcxx to run underlit using the various configurations/compilers we test internally.
Continuous Integration:In progress. We've set up Azure Pipelines to validate changes to the repository.Currently, it builds the STL (native desktop for x86, x64, ARM, and ARM64). Also, it strictly verifies that all of ourfiles have been formatted withclang-format and follow our other whitespace conventions.
Contribution Guidelines:Coming soon. Working on the STL's code involves following many rules. We have codebaseconventions, Standard requirements, Microsoft-specific requirements, binary compatibility (ABI) requirements, and more.We're eager to begin accepting features and fixes from the community, but in addition to setting up a CI system, we needto write down all of the rules that are currently stored in our brains. (The ABI rules may be useful to other C++libraries.)
Issues:In progress. We're going to use GitHub issues to track all of the things that we need to work on. Thisincludes C++20 features,LWG issues, conformance bugs, performance improvements, and other todos. There areapproximately 200 active bugs in the STL's Microsoft-internal database; we need to manually replicate all of them toGitHub issues. Currently, thecxx20 tag andLWG tag are done; every remaining work item is tracked by a GitHubissue. Thebug tag andenhancement tag are being populated.
Plans:In progress. We're writing up ourRoadmap.
We're implementing the latest C++ Working Draft, currentlyN4868, which will eventually become the next C++International Standard, C++20. The terms Working Draft (WD) and Working Paper (WP) are interchangeable; we ofteninformally refer to these drafts as "the Standard" while being aware of the difference. (There are other relevantStandards; for example, supporting/std:c++14
and/std:c++17
involves understanding how the C++14 and C++17Standards differ from the Working Paper, and we often need to refer to the C Standard Library and ECMAScript regularexpression specifications.)
Our primary goals are conformance, performance, usability, and compatibility.
Conformance: The Working Paper is a moving target; as features and LWG issue resolutions are added, we need toimplement them. That can involve a lot of work, because the STL is required to behave in very specific ways and tohandle users doing very unusual things.
Performance: The STL needs to be extremely fast at runtime; speed is one of C++'s core strengths, and most C++programs use the STL extensively. As a result, we spend more time on optimization than most general-purpose libraries.(However, we're wary of changes that improve some scenarios at the expense of others, or changes that make codesignificantly more complicated and fragile. That is, there's a "complexity budget" that must be spent carefully.)
Usability: This includes parts of the programming experience like compiler throughput, diagnostic messages, anddebugging checks. For example, we've extensively marked the STL with
[[nodiscard]]
attributes because this helpsprogrammers avoid bugs.Compatibility: This includes binary compatibility and source compatibility. We're keeping VS 2019 binary-compatiblewith VS 2017 and VS 2015, which restricts what we can change in VS 2019 updates. (We've found that significant changesare possible even though other changes are impossible, which we'll be documenting in our Contribution Guidelines soon.)While there are a few exceptions to this rule (e.g. if a feature is added to the Working Paper, we implement it, andthen the feature is significantly changed before the International Standard is finalized, we reserve the right to breakbinary compatibility because
/std:c++latest
offers an experimental preview of such features), binary compatibilitygenerally overrides all other considerations, even conformance. Source compatibility refers to being able tosuccessfully recompile user code without changes. We consider source compatibility to be important, but notall-important; breaking source compatibility can be an acceptable cost, if done for the right reasons in the right way(e.g. in a controlled manner with escape hatches).
There are things that we aren't interested in doing with this project, for various reasons (most importantly, we need tofocus development effort on our goals). Some examples:
Non-goal: Porting to other platforms.
Non-goal: Adding non-Standard extensions.
Non-goal: Implementing Technical Specifications. (We're prioritizing features in the Working Paper. Occasionally, wemight implement some or all of a TS, often when we're working on the specification itself.)
If you're proposing a feature to WG21 (the C++ Standardization Committee), you're welcome (and encouraged!) to use ourcode as a base for a proof-of-concept implementation. These non-goals simply mean that we're unable to consider pullrequests for a proposed feature until it has been voted into a Working Paper. After that happens, we'll be delighted toreview a production-ready pull request.
You can report STL bugs here, where they'll be directly reviewed by maintainers. You can also report STL bugs throughDeveloper Community, or the VS IDE (Help > Send Feedback > Report a Problem...).
Please help us efficiently process bug reports by following these rules:
Only STL bugs should be reported here. If it's a bug in the compiler, CRT, or IDE, please report it through DeveloperCommunity or Report A Problem. If it's a bug in the Windows SDK, please report it through theFeedback Hub app.If you aren't sure, try to reduce your test case and see if you can eliminate the STL's involvement while stillreproducing the bug.
You should be reasonably confident that you're looking at an actual implementation bug, instead of undefined behavioror surprising-yet-Standard behavior. Comparing against other implementations can help (but remember that implementationscan differ while conforming to the Standard); try Godbolt'sCompiler Explorer andWandbox. If you still aren'tsure, ask the nearest C++ expert.
You should prepare a self-contained command-line test case, ideally as small as possible. We need a source file, acommand line, what happened (e.g. a compiler error, runtime misbehavior), and what you expected to happen. By"self-contained", we mean that your source file has to avoid including code that we don't have. Ideally, only CRT andSTL headers should be included. If you have to include other MSVC libraries, or the Windows SDK, to trigger an STL bug,that's okay. But if you need parts of your own source code to trigger the STL bug, you need to extract that for us. (OnDeveloper Community, we'll accept zipped IDE projects if you have no other way to reproduce a bug, but this is verytime-consuming for us to reduce.)
A good title is helpful. We prefer "
<header_name>
: Short description of your issue". You don't usually need tomentionstd::
or C++. For example, "<type_traits>
:is_cute
should be true forenum class FluffyKittens
".
It's okay if you report an apparent STL bug that turns out to be a compiler bug, or surprising-yet-Standard behavior.Just try to follow these rules, so we can spend more time fixing bugs and implementing features.
The STL uses boost-math headers to provide P0226R1 Mathematical Special Functions. We recommend usingvcpkg toacquire this dependency.
- Install Visual Studio 2019 16.8 Preview 5 or later.
- Open Visual Studio, and choose the "Clone or check out code" option. Enter the URL of this repository,
https://github.com/microsoft/STL
. - Open a terminal in the IDE with
Ctrl + `
(by default) or press on "View" in the top bar, and then "Terminal". - In the terminal, invoke
git submodule update --init vcpkg
- In the terminal, invoke
.\vcpkg\bootstrap-vcpkg.bat
- In the terminal, invoke
.\vcpkg\vcpkg.exe install boost-math:x86-windows boost-math:x64-windows
- Choose the architecture you wish to build in the IDE, and build as you would any other project. All necessary CMakesettings are set by
CMakeSettings.json
.
- Install Visual Studio 2019 16.8 Preview 5 or later.
- Open a command prompt.
- Change directories to a location where you'd like a clone of this STL repository.
git clone https://github.com/microsoft/STL
cd STL
git submodule update --init vcpkg
.\vcpkg\bootstrap-vcpkg.bat
.\vcpkg\vcpkg.exe install boost-math:x86-windows boost-math:x64-windows
To build the x86 target:
- Open an "x86 Native Tools Command Prompt for VS 2019".
- Change directories to the previously cloned
STL
directory. cmake -G Ninja -S . -B out\build\x86
ninja -C out\build\x86
To build the x64 target:
- Open an "x64 Native Tools Command Prompt for VS 2019".
- Change directories to the previously cloned
STL
directory. cmake -G Ninja -S . -B out\build\x64
ninja -C out\build\x64
Consumption of the built library is largely based on the build system you're using. There are at least 2 directoriesyou need to hook up. Assuming you built the x64 target with the Visual Studio IDE, with the STL repository cloned toC:\Dev\STL
, build outputs will end up atC:\Dev\STL\out\build\x64\out
. Ensure that theinc
directory is searchedfor headers, and thatlib\{architecture}
is searched for link libraries, before any defaults supplied by MSVC. Thenames of the import and static libraries are the same as those that ship with MSVC. As a result, the compiler/MD
,/MDd
,/MT
, or/MTd
switches will work without modification of your build scripts or command-line muscle memory.
Should you choose to use the DLL flavors, the DLLs to deploy are built tobin\{architecture}
. Note that the DLLsgenerated by the CMake build system here have a suffix, defaulting to_oss
, which distinguishes them from the binariesthat ship with MSVC. That avoids any conflict with the DLLs installed by theredistributables into System32, andensures that other components wanting to be a "guest in your process", like print drivers and shell extensions, see theexport surface of the STL they were built with. Otherwise, the "msvcp140.dll
" you deployed in the same directory asyour .exe would "win" over the versions in System32.
The compiler looks for include directories according to theINCLUDE
environment variable, and the linker looks forimport library directories according to theLIB
environment variable, and the Windows loader will (eventually) lookfor DLL dependencies according to directories in thePATH
environment variable. From an"x64 Native Tools Command Prompt for VS 2019":
C:\Users\username\Desktop>set INCLUDE=C:\Dev\STL\out\build\x64\out\inc;%INCLUDE%C:\Users\username\Desktop>set LIB=C:\Dev\STL\out\build\x64\out\lib\amd64;%LIB%C:\Users\username\Desktop>set PATH=C:\Dev\STL\out\build\x64\out\bin\amd64;%PATH%C:\Users\username\Desktop>type example.cpp#include <iostream>int main() { std::cout << "Hello STL OSS world!\n";}C:\Users\username\Desktop>cl /nologo /EHsc /W4 /WX /MDd /std:c++latest .\example.cppexample.cppC:\Users\username\Desktop>.\example.exeHello STL OSS world!C:\Users\username\Desktop>dumpbin /IMPORTS .\example.exe | findstr msvcp msvcp140d_oss.dll
- Follow eitherHow To Build With A Native Tools Command Prompt orHow To Build With The Visual Studio IDE.
- Invoke
git submodule update --init llvm-project
at the root of the STL source tree. - AcquirePython 3.9 or newer and have it on the
PATH
(or run it directly using its absolute or relative path). - Have LLVM's
bin
directory on thePATH
(soclang-cl.exe
is available).- We recommend selecting "C++ Clang tools for Windows" in the VS Installer. This will automatically add LLVM to the
PATH
of the x86 and x64 Native Tools Command Prompts, and will ensure that you're using a supported version. - Otherwise, useLLVM's installer and choose to add LLVM to your
PATH
during installation.
- We recommend selecting "C++ Clang tools for Windows" in the VS Installer. This will automatically add LLVM to the
- Follow the instructions below.
After configuring and building the project, runningctest
from the build output directory will run all the tests.CTest will only display the standard error output of tests that failed. In order to get more details from CTest'slit
invocations, run the tests withctest -V
.
${PROJECT_BINARY_DIR}\tests\utils\stl-lit\stl-lit.py
can be invoked on a subdirectory of a testsuite and will executeall the tests under that subdirectory. This can mean executing the entirety of a single testsuite, running all testsunder a category in libcxx, or running a single test instd
andtr1
.
These examples assume that your current directory isC:\Dev\STL\out\build\x64
.
- This command will run all of the testsuites with verbose output.
ctest -V
- This command will also run all of the testsuites.
python tests\utils\stl-lit\stl-lit.py ..\..\..\llvm-project\libcxx\test ..\..\..\tests\std ..\..\..\tests\tr1
- This command will run all of the std testsuite.
python tests\utils\stl-lit\stl-lit.py ..\..\..\tests\std
- If you want to run a subset of a testsuite, you need to point it to the right place in the sources. The followingwill run the single test found under VSO_0000000_any_calling_conventions.
python tests\utils\stl-lit\stl-lit.py ..\..\..\tests\std\tests\VSO_0000000_any_calling_conventions
- You can invoke
stl-lit
with any arbitrary subdirectory of a testsuite. In libcxx this allows you to have finercontrol over what category of tests you would like to run. The following will run all the libcxx map tests.python tests\utils\stl-lit\stl-lit.py ..\..\..\llvm-project\libcxx\test\std\containers\associative\map
When running the tests via CTest, all of the testsuites are considered to be a single test. If any single test in atestsuite fails, CTest will simply report that thestl
test failed.
Example:
0% tests passed, 1 tests failed out of 1Total Test time (real) = 2441.55 secThe following tests FAILED: 1 - stl (Failed)
The primary utility of CTest in this case is to conveniently invokestl-lit.py
with the correct set of arguments.
CTest will output everything that was sent to stderr for each of the failed testsuites, which can be used to identifywhich individual test within the testsuite failed. It can sometimes be helpful to run CTest with the-V
option inorder to see the stdout of the tests.
When running the tests directly via the generatedstl-lit.py
script the result of each test will be printed. Theformat of each result is{Result Code}: {Testsuite Name} :: {Test Name}:{Configuration Number}
.
Example:
-- Testing: 28 tests, 12 workers --PASS: tr1 :: tests/cwchar1:01 (1 of 28)PASS: tr1 :: tests/cwchar1:11 (2 of 28)PASS: tr1 :: tests/cwchar1:02 (3 of 28)PASS: tr1 :: tests/cwchar1:03 (4 of 28)PASS: tr1 :: tests/cwchar1:00 (5 of 28)PASS: tr1 :: tests/cwchar1:04 (6 of 28)PASS: tr1 :: tests/cwchar1:05 (7 of 28)PASS: tr1 :: tests/cwchar1:09 (8 of 28)PASS: tr1 :: tests/cwchar1:06 (9 of 28)UNSUPPORTED: tr1 :: tests/cwchar1:20 (10 of 28)UNSUPPORTED: tr1 :: tests/cwchar1:21 (11 of 28)UNSUPPORTED: tr1 :: tests/cwchar1:22 (12 of 28)UNSUPPORTED: tr1 :: tests/cwchar1:23 (13 of 28)UNSUPPORTED: tr1 :: tests/cwchar1:24 (14 of 28)PASS: tr1 :: tests/cwchar1:07 (15 of 28)PASS: tr1 :: tests/cwchar1:08 (16 of 28)PASS: tr1 :: tests/cwchar1:10 (17 of 28)PASS: tr1 :: tests/cwchar1:16 (18 of 28)PASS: tr1 :: tests/cwchar1:17 (19 of 28)PASS: tr1 :: tests/cwchar1:14 (20 of 28)PASS: tr1 :: tests/cwchar1:12 (21 of 28)PASS: tr1 :: tests/cwchar1:13 (22 of 28)PASS: tr1 :: tests/cwchar1:19 (23 of 28)PASS: tr1 :: tests/cwchar1:18 (24 of 28)PASS: tr1 :: tests/cwchar1:15 (25 of 28)PASS: tr1 :: tests/cwchar1:25 (26 of 28)PASS: tr1 :: tests/cwchar1:26 (27 of 28)PASS: tr1 :: tests/cwchar1:27 (28 of 28)Testing Time: 3.96s Expected Passes : 23 Unsupported Tests : 5
In the above example we see that 23 tests succeeded and 5 were unsupported.
Our tests use the standardlit result codes, and an undocumented result code:SKIPPED
. For our tests, only thePASS
,XFAIL
,XPASS
,FAIL
,UNSUPPORTED
, andSKIPPED
result codes are relevant.
ThePASS
andFAIL
result codes are self-explanatory. We want our tests toPASS
and notFAIL
.
TheXPASS
andXFAIL
result codes are less obvious.XPASS
is actually a failure result and indicates that weexpected a test to fail but it passed.XFAIL
is a successful result and indicates that we expected the test to failand it did. Typically anXPASS
result means that theexpected_results.txt
file for the testsuite needs to bemodified. If theXPASS
result is a test legitimately passing, the usual course of action would be to remove aFAIL
entry from theexpected_results.txt
. However, some tests fromlibcxx
mark themselves asXFAIL
(meaning theyexpect to fail) for features they have added tests for but have yet to implement inlibcxx
. If the STL implementsthose features first the tests will begin passing unexpectedly for us and returnXPASS
results. In order to resolvethis it is necessary to add aPASS
entry to theexpected_results.txt
of the testsuite in question.
TheUNSUPPORTED
result code means that the requirements for a test are not met and so it will not be run. Currentlyall tests which use the/BE
or/clr:pure
options are unsupported.
TheSKIPPED
result code indicates that a given test was explicitly skipped by adding aSKIPPED
entry to theexpected_results.txt
. A test may be skipped for a number of reasons, which include, but are not limited to:
- being an incorrect test
- taking a very long time to run
- failing or passing for the incorrect reason
The STL is built atop other compiler support libraries that ship with Windows and Visual Studio, like the UCRT,VCRuntime, and VCStartup. The following diagram describes the dependencies between those components and their shipvehicles.
This project welcomes contributions and suggestions. Most contributions require you to agree to aContributor License Agreement (CLA) declaring that you have the right to, and actually do, grant usthe rights to use your contribution. For details, visithttps://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to providea CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructionsprovided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted theMicrosoft Open Source Code of Conduct. For more information see theCode of Conduct FAQ or contactopencode@microsoft.com with any additional questions or comments.
Copyright (c) Microsoft Corporation.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception