Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Nodejs bindings to OpenCV 3 and OpenCV 4

License

NotificationsYou must be signed in to change notification settings

justadudewhohacks/opencv4nodejs

Repository files navigation

05/2022: This repository is not maintained anymore, please use@u4/opencv4nodejs for a more active fork

opencv4nodejs

opencv4nodejs

Build StatusBuild statusCoveragenpm downloadnode versionSlack

opencv4nodejs allows you to use the native OpenCV library in nodejs. Besides a synchronous API the package provides an asynchronous API, which allows you to build non-blocking and multithreaded computer vision tasks. opencv4nodejs supports OpenCV 3 and OpenCV 4.

The ultimate goal of this project is to provide a comprehensive collection of nodejs bindings to the API of OpenCV and the OpenCV-contrib modules. To get an overview of the currently implemented bindings, have a look at thetype declarations of this package. Furthermore, contribution is highly appreciated. If you want to add missing bindings check out thecontribution guide.

Examples

Seeexamples for implementation.

Face Detection

face0face1

Face Recognition with the OpenCV face module

Check outNode.js + OpenCV for Face Recognition.

facerec

Face Landmarks with the OpenCV face module

facelandmarks

Face Recognition withface-recognition.js

Check outNode.js + face-recognition.js : Simple and Robust Face Recognition using Deep Learning.

IMAGE ALT TEXT

Hand Gesture Recognition

Check outSimple Hand Gesture Recognition using OpenCV and JavaScript.

gesture-rec_sm

Object Recognition with Deep Neural Networks

Check outNode.js meets OpenCV’s Deep Neural Networks — Fun with Tensorflow and Caffe.

Tensorflow Inception

huskycarbanana

Single Shot Multibox Detector with COCO

dishes-detectioncar-detection

Machine Learning

Check outMachine Learning with OpenCV and #"auto">resulttable

Object Tracking

trackbgsubtracttrackbycolor

Feature Matching

matchsift

Image Histogram

plotbgrplotgray

Boiler plate for combination of opencv4nodejs, express and websockets.

opencv4nodejs-express-websockets - Boilerplate express app for getting started on opencv with nodejs and to live stream the video through websockets.

Automating lights by people detection through classifier

Check outAutomating lights with Computer Vision & NodeJS.

user-presence

How to install

npm install --save opencv4nodejs

Native node modules are built via node-gyp, which already comes with npm by default. However, node-gyp requires you to have python installed. If you are running into node-gyp specific issues have a look at known issues withnode-gyp first.

Important note: node-gyp won't handle whitespaces properly, thus make sure, that the path to your project directory doesnot contain any whitespaces. Installing opencv4nodejs under "C:\Program Files\some_dir" or similar will not work and will fail with: "fatal error C1083: Cannot open include file: 'opencv2/core.hpp'"!**

On Windows you will furthermore need Windows Build Tools to compile OpenCV and opencv4nodejs. If you don't have Visual Studio or Windows Build Tools installed, you can easily install the VS2015 build tools:

npm install --global windows-build-tools

Installing OpenCV Manually

Setting up OpenCV on your own will require you to set an environment variable to prevent the auto build script to run:

# linux and osx:export OPENCV4NODEJS_DISABLE_AUTOBUILD=1# on windows:set OPENCV4NODEJS_DISABLE_AUTOBUILD=1

Windows

You can install any of the OpenCV 3 or OpenCV 4releases manually or via theChocolatey package manager:

# to install OpenCV 4.1.0choco install OpenCV -y -version 4.1.0

Note, this will come without contrib modules. To install OpenCV under windows with contrib modules you have to build the library from source or you can use the auto build script.

Before installing opencv4nodejs with an own installation of OpenCV you need to expose the following environment variables:

  • OPENCV_INCLUDE_DIR pointing to the directory with the subfolderopencv2 containing the header files
  • OPENCV_LIB_DIR pointing to the lib directory containing the OpenCV .lib files

Also you will need to add the OpenCV binaries to your system path:

  • add an environment variableOPENCV_BIN_DIR pointing to the binary directory containing the OpenCV .dll files
  • append;%OPENCV_BIN_DIR%; to your system path variable

Note: Restart your current console session after making changes to your environment.

MacOSX

Under OSX we can simply install OpenCV via brew:

brew updatebrew install opencv@4brew link --force opencv@4

Linux

Under Linux we have to build OpenCV from source manually or using the auto build script.

Installing OpenCV via Auto Build Script

The auto build script comes in form of theopencv-build npm package, which will run by default when installing opencv4nodejs. The script requires you to have git and a recent version of cmake installed.

Auto Build Flags

You can customize the autobuild flags usingOPENCV4NODEJS_AUTOBUILD_FLAGS=.Flags must be space-separated.

This is an advanced customization and you should have knowledge regarding the OpenCV compilation flags. Flags added by default are listedhere.

Installing a Specific Version of OpenCV

You can specify the Version of OpenCV you want to install via the script by setting an environment variable:export OPENCV4NODEJS_AUTOBUILD_OPENCV_VERSION=4.1.0

Installing only a Subset of OpenCV modules

If you only want to build a subset of the OpenCV modules you can pass the-DBUILD_LIST cmake flag via theOPENCV4NODEJS_AUTOBUILD_FLAGS environment variable. For exampleexport OPENCV4NODEJS_AUTOBUILD_FLAGS=-DBUILD_LIST=dnn will build only modules required fordnn and reduces the size and compilation time of the OpenCV package.

Configuring Environments via package.json

It's possible to specify build environment variables by inserting them into thepackage.json as follows:

{"name":"my-project","version":"0.0.0","dependencies": {"opencv4nodejs":"^X.X.X"  },"opencv4nodejs": {"disableAutoBuild":1,"opencvIncludeDir":"C:\\tools\\opencv\\build\\include","opencvLibDir":"C:\\tools\\opencv\\build\\x64\\vc14\\lib","opencvBinDir":"C:\\tools\\opencv\\build\\x64\\vc14\\bin"  }}

The following environment variables can be passed:

  • autoBuildBuildCuda
  • autoBuildFlags
  • autoBuildOpencvVersion
  • autoBuildWithoutContrib
  • disableAutoBuild
  • opencvIncludeDir
  • opencvLibDir
  • opencvBinDir

Usage with Docker

opencv-express - example for opencv4nodejs with express.js and docker

Or simply pull fromjustadudewhohacks/opencv-nodejs for opencv-3.2 + contrib-3.2 with opencv4nodejs globally installed:

FROM justadudewhohacks/opencv-nodejs

Note: The aforementioned Docker image already hasopencv4nodejs installed globally. In order to prevent build errors during annpm install, yourpackage.json should not includeopencv4nodejs, and instead should include/require the global package either by requiring it by absolute path or setting theNODE_PATH environment variable to/usr/lib/node_modules in your Dockerfile and requiring the package as you normally would.

Different OpenCV 3.x base images can be found here:https://hub.docker.com/r/justadudewhohacks/.

Usage with Electron

opencv-electron - example for opencv4nodejs with electron

Add the following script to your package.json:

"electron-rebuild":"electron-rebuild -w opencv4nodejs"

Run the script:

$ npm run electron-rebuild

Require it in the application:

constcv=require('opencv4nodejs');

Usage with NW.js

Any native modules, including opencv4nodejs, must be recompiled to be used withNW.js. Instructions on how to do this are available in theUse Native Modules section of the the NW.js documentation.

Once recompiled, the module can be installed and required as usual:

constcv=require('opencv4nodejs');

Quick Start

constcv=require('opencv4nodejs');

Initializing Mat (image matrix), Vec, Point

constrows=100;// heightconstcols=100;// width// empty MatconstemptyMat=newcv.Mat(rows,cols,cv.CV_8UC3);// fill the Mat with default valueconstwhiteMat=newcv.Mat(rows,cols,cv.CV_8UC1,255);constblueMat=newcv.Mat(rows,cols,cv.CV_8UC3,[255,0,0]);// from array (3x3 Matrix, 3 channels)constmatData=[[[255,0,0],[255,0,0],[255,0,0]],[[0,0,0],[0,0,0],[0,0,0]],[[255,0,0],[255,0,0],[255,0,0]]];constmatFromArray=newcv.Mat(matData,cv.CV_8UC3);// from node bufferconstcharData=[255,0, ...];constmatFromArray=newcv.Mat(Buffer.from(charData),rows,cols,cv.CV_8UC3);// Pointconstpt2=newcv.Point(100,100);constpt3=newcv.Point(100,100,0.5);// Vectorconstvec2=newcv.Vec(100,100);constvec3=newcv.Vec(100,100,0.5);constvec4=newcv.Vec(100,100,0.5,0.5);

Mat and Vec operations

constmat0=newcv.Mat(...);constmat1=newcv.Mat(...);// arithmetic operations for Mats and VecsconstmatMultipliedByScalar=mat0.mul(0.5);// scalar multiplicationconstmatDividedByScalar=mat0.div(2);// scalar divisionconstmat0PlusMat1=mat0.add(mat1);// additionconstmat0MinusMat1=mat0.sub(mat1);// subtractionconstmat0MulMat1=mat0.hMul(mat1);// elementwise multiplicationconstmat0DivMat1=mat0.hDiv(mat1);// elementwise division// logical operations Mat onlyconstmat0AndMat1=mat0.and(mat1);constmat0OrMat1=mat0.or(mat1);constmat0bwAndMat1=mat0.bitwiseAnd(mat1);constmat0bwOrMat1=mat0.bitwiseOr(mat1);constmat0bwXorMat1=mat0.bitwiseXor(mat1);constmat0bwNot=mat0.bitwiseNot();

Accessing Mat data

constmatBGR=newcv.Mat(...,cv.CV_8UC3);constmatGray=newcv.Mat(...,cv.CV_8UC1);// get pixel value as vector or number valueconstvec3=matBGR.at(200,100);constgrayVal=matGray.at(200,100);// get raw pixel value as arrayconst[b,g,r]=matBGR.atRaw(200,100);// set single pixel valuesmatBGR.set(50,50,[255,0,0]);matBGR.set(50,50,newVec(255,0,0));matGray.set(50,50,255);// get a 25x25 sub region of the Mat at offset (50, 50)constwidth=25;constheight=25;constregion=matBGR.getRegion(newcv.Rect(50,50,width,height));// get a node buffer with raw Mat dataconstmatAsBuffer=matBGR.getData();// get entire Mat data as JS arrayconstmatAsArray=matBGR.getDataAsArray();

IO

// load image from fileconstmat=cv.imread('./path/img.jpg');cv.imreadAsync('./path/img.jpg',(err,mat)=>{  ...})// save imagecv.imwrite('./path/img.png',mat);cv.imwriteAsync('./path/img.jpg',mat,(err)=>{  ...})// show imagecv.imshow('a window name',mat);cv.waitKey();// load base64 encoded imageconstbase64text='..';//Base64 encoded stringconstbase64data=base64text.replace('data:image/jpeg;base64','').replace('data:image/png;base64','');//Strip image type prefixconstbuffer=Buffer.from(base64data,'base64');constimage=cv.imdecode(buffer);//Image is now represented as Mat// convert Mat to base64 encoded jpg imageconstoutBase64=cv.imencode('.jpg',croppedImage).toString('base64');// Perform base64 encodingconsthtmlImg='<img src=data:image/jpeg;base64,'+outBase64+'>';//Create insert into HTML compatible <img> tag// open capture from webcamconstdevicePort=0;constwCap=newcv.VideoCapture(devicePort);// open video captureconstvCap=newcv.VideoCapture('./path/video.mp4');// read frames from captureconstframe=vCap.read();vCap.readAsync((err,frame)=>{  ...});// loop through the captureconstdelay=10;letdone=false;while(!done){letframe=vCap.read();// loop back to start on end of stream reachedif(frame.empty){vCap.reset();frame=vCap.read();}// ...constkey=cv.waitKey(delay);done=key!==255;}

Useful Mat methods

constmatBGR=newcv.Mat(...,cv.CV_8UC3);// convert typesconstmatSignedInt=matBGR.convertTo(cv.CV_32SC3);constmatDoublePrecision=matBGR.convertTo(cv.CV_64FC3);// convert color spaceconstmatGray=matBGR.bgrToGray();constmatHSV=matBGR.cvtColor(cv.COLOR_BGR2HSV);constmatLab=matBGR.cvtColor(cv.COLOR_BGR2Lab);// resizeconstmatHalfSize=matBGR.rescale(0.5);constmat100x100=matBGR.resize(100,100);constmatMaxDimIs100=matBGR.resizeToMax(100);// extract channels and create Mat from channelsconst[matB,matG,matR]=matBGR.splitChannels();constmatRGB=newcv.Mat([matR,matB,matG]);

Drawing a Mat into HTML Canvas

constimg= ...// convert your image to rgba color spaceconstmatRGBA=img.channels===1  ?img.cvtColor(cv.COLOR_GRAY2RGBA)  :img.cvtColor(cv.COLOR_BGR2RGBA);// create new ImageData from raw mat dataconstimgData=newImageData(newUint8ClampedArray(matRGBA.getData()),img.cols,img.rows);// set canvas dimensionsconstcanvas=document.getElementById('myCanvas');canvas.height=img.rows;canvas.width=img.cols;// set image dataconstctx=canvas.getContext('2d');ctx.putImageData(imgData,0,0);

Method Interface

OpenCV method interface from official docs or src:

voidGaussianBlur(InputArray src, OutputArray dst, Size ksize,double sigmaX,double sigmaY =0,int borderType = BORDER_DEFAULT);

translates to:

constsrc=newcv.Mat(...);// invoke with required argumentsconstdst0=src.gaussianBlur(newcv.Size(5,5),1.2);// with optional paramatersconstdst2=src.gaussianBlur(newcv.Size(5,5),1.2,0.8,cv.BORDER_REFLECT);// or pass specific optional parametersconstoptionalArgs={borderType:cv.BORDER_CONSTANT};constdst2=src.gaussianBlur(newcv.Size(5,5),1.2,optionalArgs);

Async API

The async API can be consumed by passing a callback as the last argument of the function call. By default, if an async method is called without passing a callback, the function call will yield a Promise.

Async Face Detection

constclassifier=newcv.CascadeClassifier(cv.HAAR_FRONTALFACE_ALT2);// by nesting callbackscv.imreadAsync('./faceimg.jpg',(err,img)=>{if(err){returnconsole.error(err);}constgrayImg=img.bgrToGray();classifier.detectMultiScaleAsync(grayImg,(err,res)=>{if(err){returnconsole.error(err);}const{ objects, numDetections}=res;    ...});});// via Promisecv.imreadAsync('./faceimg.jpg').then(img=>img.bgrToGrayAsync().then(grayImg=>classifier.detectMultiScaleAsync(grayImg)).then((res)=>{const{ objects, numDetections}=res;        ...})).catch(err=>console.error(err));// using async awaittry{constimg=awaitcv.imreadAsync('./faceimg.jpg');constgrayImg=awaitimg.bgrToGrayAsync();const{ objects, numDetections}=awaitclassifier.detectMultiScaleAsync(grayImg);  ...}catch(err){console.error(err);}

With TypeScript

import*ascvfrom'opencv4nodejs'

Check out the TypeScriptexamples.

External Memory Tracking (v4.0.0)

Since version 4.0.0 was released, external memory tracking has been enabled by default. Simply put, the memory allocated for Matrices (cv.Mat) will be manually reported to the node process. This solves the issue of inconsistent Garbage Collection, which could have resulted in spiking memory usage of the node process eventually leading to overflowing the RAM of your system, prior to version 4.0.0.

Note, that in doubt this feature can bedisabled by setting an environment variableOPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING before requiring the module:

export OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1 // linuxset OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1 // windows

Or directly in your code:

process.env.OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1constcv=require('opencv4nodejs')

[8]ページ先頭

©2009-2025 Movatter.jp