Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Summary of open source code for deep learning models in the field of traffic prediction

License

NotificationsYou must be signed in to change notification settings

aptx1231/Traffic-Prediction-Open-Code-Summary

Repository files navigation

This is a summary for deep learning models with open code for traffic prediction.

These models are classified based on the following tasks.

  • Traffic flow prediction

  • Traffic speed prediction

  • On-Demand service prediction

  • Travel time prediction

  • Traffic accident prediction

  • Traffic location prediction

  • Others

TaskModelPaperCodePublication
Traffic flow predictionST-ResNetDeep Spatio-Temporal Residual Networks for Citywide Crowd Flows PredictiontfPytorchKerasAAAI2017/A
ACFMACFM: A Dynamic Spatial-Temporal Network for Traffic PredictionPytorchACM MM2018/A
STDNRevisiting spatial-temporal similarity: A deep learning framework for traffic predictionKerasAAAI2019/A
ASTGCNAttention based spatial-temporal graph convolutional networks for traffic flow forecastingPytorchAAAI2019/A
ST-MetaNetUrban traffic prediction from spatio-temporal data using deep meta learningMXNetKDD2019/A
STSGCNSpatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data ForecastingMXNetAAAI2020/A
STGNNSTGNN: Traffic Flow Prediction via Spatial Temporal Graph Neural NetworkPytorchWWW2020/A
AGCRNAdaptive Graph Convolutional Recurrent Network for Traffic ForecastingPytorchNIPS2020/A
DSANPreserving Dynamic Attention for Long-Term Spatial-Temporal Predictiontf2KDD2020/A
MPGCNPredicting Origin-Destination Flow via Multi-Perspective Graph Convolutional NetworkPytorchICDE2020/A
ST-GDNTraffic Flow Forecasting with Spatial-Temporal Graph Diffusion NetworktfAAAI2021/A
TrGNNTraffic Flow Prediction with Vehicle TrajectoriesPytorchAAAI2021/A
STFGNNSpatial-Temporal Fusion Graph Neural Networks for Traffic Flow ForecastingMXNetAAAI2021/A
STGODESTGODE : Spatial-Temporal Graph ODE Networks for Traffic Flow ForecastingPytorchKDD2021/A
ASTGNNLearning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic ForecastingPytorchTKDE2021/A
STG-NCDEGraph Neural Controlled Differential Equations for Traffic ForecastingPytorchAAAI2022/A
STDENSTDEN Towards Physics-Guided Neural Networks for Traffic Flow PredictionPytorchAAAI2022/A
SAETraffic Flow Prediction With Big Data: A Deep Learning ApproachKerasTITS2015/B
STNNSpatio-Temporal Neural Networks for Space-Time Series Forecasting and Relations DiscoveryPytorchICDM2017/B
ST-3DNetDeep Spatial–Temporal 3D Convolutional Neural Networks for Traffic Data ForecastingKerasTITS2019/B
STAG-GCNSpatiotemporal Adaptive Gated Graph Convolution Network for Urban Traffic Flow ForecastingPytorchCIKM2020/B
ST-CGASpatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow ForecastingKerasCIKM2020/B
ResLSTMDeep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail TransitKerasTITS2020/B
DGCNDynamic Graph Convolution Network for Traffic Forecasting Based on Latent Network of Laplace Matrix EstimationPytorchTITS2020/B
ToGCNTopological Graph Convolutional Network-Based Urban Traffic Flow and Density PredictionPytorchTITS2020/B
Multi-STGCnetMulti-STGCnet: A Graph Convolution Based Spatial-Temporal Framework for Subway Passenger Flow ForecastingKerasIJCNN2020/C
Conv-GCNMulti-Graph Convolutional Network for Short-Term Passenger Flow Forecasting in Urban Rail TransitKerasIET-ITS2020/C
TCC-LSTM-LSMA temporal-aware LSTM enhanced by loss-switch mechanism for traffic flow forecastingKerasNeurocomputing2021/C
LSTM/GRUUsing LSTM and GRU neural network methods for traffic flow predictionKerasYAC2016/none
Cluster_LSTMForeseeing Congestion using LSTM on Urban Traffic Flow ClustersKerasICSAI2019/none
CRANNA Spatio-Temporal Spot-Forecasting Framework forUrban Traffic PredictionPytorchApplied Soft Computing2020/none
GNN-flowLearning Mobility Flows from Urban Features with Spatial Interaction Models and Neural NetworksPytorchIEEE SMARTCOMP2020/none
Deep_Sedanion_NetworkTraffic flow prediction using Deep Sedenion NetworksPytorcharXiv2020
MATGCNMulti-Attention Temporal Graph Convolution Network for Traffic Flow ForecastingPytorch本科毕设
Traffic speed predictionDCRNNDiffusion convolutional recurrent neural network: Data-driven traffic forecastingtfPytorchICLR2018/none
STGCNSpatio-temporal graph convolutional networks: A deep learning framework for traffic forecastingtfMXNetPytorchKerasIJCAI2018/A
BaiduTrafficDeep sequence learning with auxiliary information for traffic predictiontfKDD2018/A
Graph WaveNetGraph wavenet for deep spatial-temporal graph modelingPytorchIJCAI2019/A
Graph WaveNet-V2Incrementally Improving Graph WaveNet Performance on Traffic PredictionPytorcharXiv2019/none
GMANGman: A graph multi-attention network for traffic predictiontfAAAI2020/A
MRA-BGCNMulti-Range Attentive Bicomponent Graph Convolutional Network for Traffic ForecastingPytorchAAAI2020/A
MTGNNConnecting the Dots: Multivariate Time Series Forecasting with Graph Neural NetworksPytorchKDD2020/A
Curb-GANCurb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Generative Adversarial NetworksPytorchKDD2020/A
AFStochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networkstfICDE2020/A
FC-GAGAFC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic ForecastingtfAAAI2021/A
HGCNHierarchical Graph Convolution Networks for Traffic ForecastingPytorchAAAI2021/A
ST-NormST-Norm: Spatial and Temporal Normalization for Multi-variateTime Series ForecastingPytorchKDD2021/A
DMSTGCNDynamic and Multi-faceted Spatio-temporal Deep Learning for Traffic Speed ForecastingPytorchKDD2021/A
GTSDiscrete Graph Structure Learning for Forecasting Multiple Time SeriesPytorchICLR2021/none
DKFNGraph Convolutional Networks with Kalman Filtering for Traffic PredictionPytorchSIGSPATIAL2020/none
T-GCNT-gcn: A temporal graph convolutional network for traffic predictiontfTITS2019/B
TGC-LSTMTraffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecastingPytorchTITS2020/B
ST-GRATST-GRAT: A Novel Spatio-temporal Graph Attention Network for Accurately Forecasting Dynamically Changing Road SpeedPytorchCIKM2020/B
GaANGaAN: Gated Attention Networks for Learning on Large and Spatiotemporal GraphsMXNetUAI2018/B
TL-DCRNNTransfer Learning with Graph Neural Networks for Short-Term Highway Traffic ForecastingtfICPR2020/C
ST-MGATST-MGAT: Spatial-Temporal Multi-Head Graph Attention Networks for Traffic ForecastingPytorchICTAI2020/C
DGFNDynamic Graph Filters Networks: A Gray-box Model for Multistep Traffic Forecastingtf2ITSC2020/none
ATDMOn the Inclusion of Spatial Information for Spatio-Temporal Neural NetworksPytorcharXiv2020/none
STTNSpatial-Temporal Transformer Networks for Traffic Flow ForecastingPytorcharXiv2020/none
DGCRNDynamic Graph Convolutional Recurrent Network for Traffic Prediction Benchmark and SolutionPytorcharXiv2021/none
STAWnetSpatial-temporal attention wavenet: A deep learning framework for traffic prediction considering spatial-temporal dependenciesPytorchIET Intelligent Transport Systems2021/C
On-Demand service predictionDMVST-NetDeep Multi-View Spatial-Temporal Network for Taxi Demand PredictionKerasAAAI2018/A
STG2SeqStg2seq: Spatial-temporal graph to sequence model for multi-step passenger demand forecastingtfIJCAL2019/A
GEMLOrigin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand ModelingKerasKDD2019/A
CCRNNCoupled Layer-wise Graph Convolution for Transportation Demand PredictionPytorchAAAI2021/A
CSTNContextualized Spatial–Temporal Network for Taxi Origin-Destination Demand PredictionKerasTITS2019/B
GraphLSTMGrids versus graphs: Partitioning space for improved taxi demand-supply forecastsPytorchTITS2020/B
DPFEEstimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic dataPytorchTransportation Research Part C: Emerging Technologies2018/none
ST-ED-RMGCPredicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional networkKerasTransportation Research Part C: Emerging Technologies2021/none
Travel time predictionDeepTTEWhen will you arrive? estimating travel time based on deep neural networksPytorchAAAI2018/A
HetETAHetETA: Heterogeneous Information Network Embedding for Estimating Time of ArrivaltfKDD2020/A
TTPNetTTPNet: A Neural Network for Travel Time Prediction Based on Tensor Decomposition and Graph EmbeddingPytorchTKDE2020/A
HyperETAHyperETA: An Estimated Time of Arrival Method based on Hypercube ClusteringPytorchtechrxiv2021/None
GSTAGSTA: gated spatial–temporal attention approach for travel time predictiontf2Neural Computing and Applications2021/None
Traffic accident predictionRiskOracleRiskOracle: A Minute-Level Citywide Traffic Accident Forecasting FrameworktfAAAI2020/A
RiskSeqForesee Urban Sparse Traffic Accidents: A Spatiotemporal Multi-Granularity PerspectivetfTKDE2020/A
GSNetGSNet: Learning Spatial-Temporal Correlations from Geographical and Semantic Aspects for Traffic Accident Risk ForecastingPytorchAAAI2021/A
DSTGCNDeep Spatio-Temporal Graph Convolutional Network for Traffic Accident PredictionPytorchNeurocomputing2020/C
Traffic location predictionSTRNNPredicting the Next Location: A Recurrent Model with Spatial and Temporal ContextsPytorchAAAI2016/A
DeepMoveDeepMove: Predicting Human Mobility with Attentional Recurrent NetworksPytorchWWW2018/A
HST-LSTMHST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location PredictionPytorchIJCAI2018/A
VANextPredciting Human Mobility via Variational AttentiontfWWW2019/A
FQAMulti-agent Trajectory Prediction with Fuzzy Query AttentionPytorchNIPS2020/A
MALMCSDynamic Public Resource Allocation based on Human Mobility PredictionpythonUbiComp2020/A
SERMSERM: A Recurrent Model for Next Location Prediction in Semantic TrajectoriesKerasCIKM2017/B
Map matchingST-MatchingMap-matching for low-sampling-rate GPS trajectoriesPythonSIGSPATIAL2009/None
IVMMAn Interactive-Voting Based Map Matching AlgorithmPythonMDM2010/C
HMMMHidden Markov map matching through noise and sparsenessPythonSIGSPATIAL2009/None
PIFThe Path Inference Filter: Model-Based Low-Latency Map Matching of Probe Vehicle DataPythonTITS2014/B
Othersseq2seqSequence to Sequence Learning with Neural NetworksKerasNIPS2014/A
NASREmpowering A* Search Algorithms with Neural Networks for Personalized Route RecommendationtfKDD2019/A
HRNRLearning Effective Road Network Representation with Hierarchical Graph Neural NetworksPytorchKDD2020/A
SHARESemi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability PredictionPytorchAAAI2020/A
TALEPre-training Time-Aware Location Embeddings from Spatial-Temporal TrajectoriesPytorchTKDE2021/A
PVCGNPhysical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership PredictionPytorchTITS2020/B
DCRNNEvaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approachtfTransportation Research Part C: Emerging Technologies2020/none
LibCityLibCity: An Open Library for Traffic PredictionPytorchSIGSPATIAL2021/None

[8]ページ先頭

©2009-2025 Movatter.jp