Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

用pytorch 方法复现了二十多个经典的推荐算法论文,其中包含排序论文和推荐召回论文,并在demo里面选了一个召回模型和排序模型的运行示例。

NotificationsYou must be signed in to change notification settings

YinzhenWan/recome_wan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 

Repository files navigation

  • 1.本项目通过pytorch 框架大概复现了推荐系统相关的22个模型,其中包含多篇排序论文和多篇序列召回和图召回论文。
  • 2.本项目一共包含demo和recome_wan这两个文件夹。
  • 3.在demo里面分别选了一个召回模型和排序模型来作为示例,如果想调试其他的召回和排序模型,可以直接修改demo里面的rank_example.py文件或者recall_example.py的代码即可。
  • 4.在recome_wan这个文件夹里,一共包含datasets、models、trainer、utils这四个大的模块。
  • 5.其中datasets文件夹主要是数据类型和数据编码的处理,models里面包含了layers、rank_models和recall_models这三个文件夹。layers主要存放的是一些通用的层比如embedding层、Mlp层。rank_models里存放的就是排序相关的模型,recall_models里存放的就是召回相关的模型。trainer主要是用来训练、验证、测试召回和排序的模型。utils包含一些关于召回模型的评价。注:以下表格只展示了一些重要的模型,对一些简单的模型不做表格展示。
modelpaper
dcnDCN:Deep & Cross Network for Ad Click Predictions
deepfmDeepFM: A Factorization-Machine based Neural Network for CTR Prediction
fibinetFiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction
mmoeMMOE:Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts
lineLINE: Large-scale Information Network Embedding
comirecCOMIREC:Controllable Multi-Interest Framework for Recommendation
gru4recGRU4REC:Session-based Recommendations with Recurrent Neural Networks
mindMIND:Multi-interest network with dynamic routing for recommendation at Tmall
youtubednnYOUTUBEDNN:Deep Neural Networks for YouTube Recommendations
lightgcnLightGcn: Simplifying and Powering Graph Convolution Network for Recommendation
deepwalkDeepWalk: Online Learning of Social Representations
node2vecNode2Vev: Scalable Feature Learning for Networks
dinDIN:Deep Interest Network for Click-Through Rate Prediction
sdneSDNE:Structural Deep Network Embedding
graphsageGRAPHSAGE:Inductive Representation Learning on Large Graphs
egesEGES:Enhanced Graph Embedding with Side Information

About

用pytorch 方法复现了二十多个经典的推荐算法论文,其中包含排序论文和推荐召回论文,并在demo里面选了一个召回模型和排序模型的运行示例。

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp