- Notifications
You must be signed in to change notification settings - Fork47
RichardScottOZ/mineral-exploration-machine-learning
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This page lists resources for mineral exploration and machine learning, generally with useful code and examples.ML and Data Science is a huge field, these are resources I have found useful and/or interesting to me in practice.Links currently to a fork of a repository are because I have changed something to use and put in a list for reference.Resources are also given for data analysis, transformation and visualisation as that is most of the work.
Suggestions welcome: open a discussion, issue or pull request.
- Prospectivity
- Geology
- Natural Language Processing
- Remote Sensing
- Data Quality
- Community
- Cloud providers
- Domains
- Overview
- Web Services
- Data Portals
- Tools
- Ontologies
- Books
- Datasets
- Papers
- Other
- General Interest
- Map of Github
- DeepWiki -> automagic wiki style analysis of a repo via llm
- UNCOVER-ML Framework
- EIS Toolkit -> Python library for mineral prospectivity mapping from EIS Horizon EU Project
- PySpatialML -> Library that facilitates prediction and handling for raster machine learning automatically to geotiff, etc.
- DARPA Criticalmaas
- competition info
- scikit-map
- TorchGeo -> Pytorch library for remote sensing style models
- terratorch -> Flexible fine-tuning framework for Geospatial Foundation Models
- TorchSpatial
- geodl
- Geo Deep Learning -> Simple deep learning framework based on RGB
- AIDE: Artificial Intelligence for Disentangling Extremes
- ExPloRA -> ExPLoRA: Parameter-Efficient Extended Pre-training to Adapt Vision Transformers under Domain Shifts
- (https://www.researchgate.net/profile/Miguel-Angel-Fernandez-Torres/publication/381917888_The_AIDE_Toolbox_Artificial_intelligence_for_disentangling_extreme_events/links/66846648714e0b03153f38ae/The-AIDE-Toolbox-Artificial-intelligence-for-disentangling-extreme-events.pdf)
- pyClusterwise
- [paper] ->https://www.sciencedirect.com/science/article/pii/S0169136825001519?via%3Dihub -> Clustering in geo-data science: Navigating uncertainty to select the most reliable method
- GeoStat Framework -> Group of repositories with kriging and other
- CAST -> Caret Applications for Spatio-Temporal models
- geodl -> semantic segmentation of geospatial data using convolutional neural network-based deep learning
- geotargts -> Extension of targets to terra and stars
- Iron oxide copper-gold mineral potential maps
- [Lateritic Ni-Co prospectivity modeling in eastern Australia using an enhanced generative adversarial network and positive-unlabeled bagging] -> (https://zenodo.org/records/14037494)
- Machine learning for geological mapping : algorithms and applications -> PhD thesis with code and data
- minpot-toolkit -> Example of Hoggard et al Lab Boundary analysis with Sedimentary copper
- MPM-WofE -> Mineral Potential Mapping - Weights of Evidence
- Porphyry Copper Spatio-Temporal Exploration
- Prospectivity Mapping of Ni-Co Laterites
- Transform 2022 Tutorial -> Random forest example
- Tin-Tungsten
- Explorer Challenge -> OZ Minerals run competition with Data Science introduction
- Gawler_MPM -> Cobalt, Chromium, Nickel
- Geophysical Data Clustering in the Gawler Craton
- [Zenodo Data](Automated detection of mineralization-related craton structures using geophysical data and unsupervised machine learning)
- Winners -> SARIG data information
- Caldera -> Caldera Analytics analysis
- IncertoData
- Butterworth and Barnett -> Butterworth and Barnett entry
- Data Driven Mineralisation Mapping
- Transfer Prospectivity Learnnig
- paper -> Porphyry-type mineral prospectivity mapping with imbalanced data via prior geological transfer learning
- Mapa Preditivo -> Brazil student project
- Course_Predictive_Mapping_USP -> Course Project
- Mineral Prospectivity Mapping
- 3D Weights of Evidence
- Geological Complexity SMOTE -> includes fractal analysis
- MPM Jurena -> Jurena Mineral Province
- MPM by ensemble learning -> Qingchengzi Pb-Zn-Ag-Au polymetallic district China
- Mineral Prospectivity Prediction Convolutional Neural Networks -> CNN Example with a few architectures [a paper by this author uses GoogleNet]
- Mineral Prospectivity Prediction by CSAE
- Mineral Prospectivity Prediction by CAE
- Brazil Predictive Geology Maps -> Work by the Brazil geological survey
- depth to bedrock(Evaluating spatially enabled machine learning approaches for depth to bedrock mapping)
- DL-RMD -> A geophysically constrained electromagnetic resistivity model database for deep learning applications
- Earthscape -> EarthScape: A Multimodal Dataset for Surficial Geologic Mapping and Earth Surface Analysis
- Geological Image Classifier
- Geological mapping in the age of artificial intelligence -> Geological mapping in the age of artificial intelligence
- GeolNR -> Geological Implicit Neural Representation for three-dimensional structural geological modelling applications
- mapeamento_litologico_preditivo
- Mapping Global Lithospheric Mantle Pressure-Temperature Conditions by Machine-Learning Thermobarometry
- Neural Rock Typing
- PEACE -> Empowering Geologic Map Holistic Understanding with MLLMs)*paper -> GeoMap-Bench
- SimCLR Core Disturbance
- West Musgraves Geology Uncertainty -> Uncertainty map prediction with entropy analysis: highly useful
- Non Stationarity Mitigation Transformer
- Bedrock-vs-sediment
- autoencoders_remotesensing
- paper -> Remote sensing framework for geological mapping via stacked autoencoders and clustering
- Geological Section Generated based on per-pixel linked lists
- Into the Noddyverse -> a massive data store of 3D geological models for machine learning and inversion applications
- Geo-Bench
- Deep Learning Lithology
- Rock Protolith Predictor
- SA Geology Lithology Predictions
- Automated Well Log Correlation
- dawson-facies-2022 -> Transfer learning for geological images
- paper - > Impact of dataset size and convolutional neural network architecture on transfer learning for carbonate rock classification
- Litho-Classification -> Volcanic facies Classification using Random Forest
- Multi-view ensemble machine learning approach for 3D modeling using geological and geophysical data
- SedNet
- SCB-Net -> Lithological mapping using Spatially Constrained Bayesian Network
- Heterogenous Drilling - Nicta/Data61 project report for looking at modelling using drillholes that don't go far enough
- corel -> smart computer vision model that identifies facies and performs rock typing on core images
- Predicatops -> Stratigraphic predication designed for hydrocarbon
- stratal-geometries -> Predicting Stratigraphic Geometries from Subsurface Well Logs
- APGS -> Structural geology package
- Assessing plate reconstruction models using plate driving force consistency tests -> Jupyter notebook and data
- gplately
- [structural geology cookbook](https://github.com/gcmatos/structural-geology-cookbook]
- GEOMAPLEARN 1.0 -> Detecting geological structures from geological maps with machine learning
- Lineament Learning -> Fault prediction and mapping via potential field deep learning and clustering
- LitMod3D -> 3D integrated geophysical-petrological interactive modelling of the lithosphere and underlying upper mantle
- Machine Learning Based Mohometry -> Paleo Crustal Thickness Estimation and Evolution Visualization
- others
- GebPy -> generation of geological data for rocks and minerals
- OpenGeoSys -> development of numerical methods for the simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous and fractured media
- Stratigraphics.jl -> Creating 3D stratigraphy from 2D geostatistical processes
- Badlands -> Basin and Landscape Dynamics
- CitcomS -> finite element code designed to solve compressible thermochemical convection problems relevant to Earth's mantle.
- LaMEM -> simulate various thermo-mechanical geodynamical processes such as mantle-lithosphere interaction
- PTatin3D -> studying long time-scale processes relevant to geodynamics [original motivation :toolkit capable of studying high-resolution, three-dimensional models of lithospheric deformation]
- underworld -> Finite element modelling of geodynamics
- Discern detachment of the subducting slab in an ancient subduction zone using machine learning
- Structural Geophysics Tools -> QGIS aimed
- Cross-Domain Foundation Model Adaptation: Pioneering Computer Vision Models for Geophysical Data Analysis -> some of code to come
- Seismic Foundation Model -> "a new generation deep learning model in geophysics"
- Machine Learning and Geophysical Inversion -> reconstruct paper from Y. Kim and N. Nakata (The Leading Edge, Volume 37, Issue 12, Dec 2018)
- https://legacy.fatiando.org/gallery/gravmag/euler_moving_window.html
- Harmonica version eventually?https://hackmd.io/@fatiando/development-calls-2024?utm_source=preview-mode&utm_medium=rec
- https://notebook.community/joferkington/tutorials/1404_Euler_deconvolution/euler-deconvolution-examples
- https://github.com/ffigura/Euler-deconvolution-plateau
- [Recovering 3D Basement Relief Using Gravity Data Through Convolutional Neural Networks]
- Stable downward continuation of the gravity potential field implemented using deep learning
- Fast imaging for the 3D density structures by machine learning approach
- StorSeismic -> An approach to pre-train a neural network to store seismic data features
- PINNtomo -> Seismic tomography using physics-informed neural networks
- obspy -> framework for processing seismological
- ML4Rocks -> Some intro work
- Discern detachment of the subducting slab in an ancient subduction zone using machine learning -> Notebook
- Colab notebook -> Google Colab input file for benchmark results of ML-SEISMIC publication
- Unleashing the power of MachineLearning in Geodynamics
- Physics-Infomred Neural Networks for fault slip simulation with rate and state friction law
- simulation and frictional paramter estimation on slow slip events
- paper -> Physics-Informed Deep Learning for Estimating the Spatial Distribution of Frictional Parameters in Slow Slip Regions
- CODAinPractice -> Compositional Data Analysis in Practice
- GeoCoDa
- DAN-GRF -> Deep autoencoder network connected to geographical random forest for spatially aware geochemical anomaly detection
- Dash Geochemical Prospection -> Web-app classifying stream sediments with K-means
- Enhancing machine learning thermobarometry for clinopyroxene-bearing magmas
- paper -> Enhancing-ML-Thermobarometry-for-Clinopyroxene-Bearing-Magmas
- Zircon fertility models -> Decision trees to predict fertile zircon from porphyry copper deposits
- Machine Learning Zircon Trace Element Tool to Predict Porphyry Deposit Type and Resource Size
- geology_class0 -> A machine learning approach to discrimination of igneous rocks and ore deposits by zircon trace elements
- GeochemPrint
- Global geochemistry
- ICBMS Jacobina -> Analysis of pyrite chemistry from a gold deposit
- Interpretation of Trace Element Chemistry of Zircons from Bor and Cukaru Peki: Conventional Approach and Random Forest Classification
- indicator_minerals -> Can PCA can tell the story of the origin of tourmaline?
- Journal of Geochemical Exploration - Manifold
- LewisML -> Analysis of the Lewis Formation
- MICA -> Chemical composition, in Shiny
- Multivariate statistical analysis and bespoke deviation network modeling for geochemical anomaly detection of rare earth elements
- Prospectivity mapping of rare earth elements through geochemical data analysis -> Prospectivity mapping of rare earth elements through geochemical data analysis
- QMineral Modeller -> Mineral Chemistry virtual assistant from the Brazilian geological survey
- Secular Changes in the Occurrence of Subduction During the Archean -> Zenodo code archive
- [paper]https://www.researchgate.net/publication/380289934_Secular_Changes_in_the_Occurrence_of_Subduction_During_the_ArcheanA machine learning approach to discrimination of igneous rocks and ore deposits by zircon trace elements
- geochemical anomaly detection -> Multivariate Outlier Detection in Geochemical Datasets
- spacy -> NLP Library
- Text Extraction -> Text extraction from documents : paid ML as a service, but works very well, can extract tables efficiently
- Large Scale -> Large scale version
- NASA Concept Tagging -> Keyword prediction
- API -> API web service
- Presentation
- Petrography Report Data Extractor
- SA Exploration Topic Modelling -> Topic modelling from exploration reports
- Stratigraph
- Geocorpus
- Portuguese BERT
- BERT CWS
- Automated Extraction of Mining Company Drillhole Results
- pdfminer
- pdfplumber -> pdf table extraction
- pikepdf -> pdf image extraction
- PyMuPDF -> pdf parser
- camelot -> pdf text table extraction
- layoutparser -> deep learning layhout detection
- messytables -> find headers and datatypes
- GIS Metadata parsing -> extract data from xml etc.
- crssuggest -> coordinate reference system suggerstions
- tidyxl
- Apache Tika -> OCR, content analysis
- Parsee PDF Reader - PDF Reading/OCR
- Tesseract -> OCR
- Geoscience Language Models -> processing code pipeline and models [Glove, BERT) retrained on geoscience documents from Canada
- GeoVec -> Word embedding model trained on 300K geoscience papers
- GeoVec Model -> OSF Storage for GeoVec model
- paper
- GeoVecto Litho -> 3D Models interpolation from word embeddings
- GeoVEC Playground -> Working with the Padarian GeoVec glove word embeddings model
- GloVe -> Standford library for producing word embeddings
- gloVE python glove, glove-python highly problematic on windows: here Binary version for Windows installs:
- Mittens -> In memory vectorized glove implementation
- PetroNLP -> Organisation
- PetroVec -> Portuguese Word Embeddings for the Oil and Gas Industry: development and evaluation
- Petro KGraph -> Ontological work with petrovec
- paper -> [UNSEEN]
- wordembeddingsOG -> Portuguese Oil and Gas word embeddings
- Portuguese Word Embeddings
- Spanish Word Embeddings
- Multilingual alignment
- Application-of-natural-language-processing-for-finding-semantic-relation-of-elusive-natural-resource
- paper -> Geological Inference from Textual Data using Word Embeddings
- Geo NER Model -> Named entity recognition
- GeoBERT - hugging face repo for model in
- GLiNER -> Few shot deep learning NER
- INDUS -> NASA science tailored LLM suite
- How to find key geoscience terms in text without mastering NLP using Amazon Comprehend
- OzRock - OzRock: A labeled dataset for entity recognition in geological (mineral exploration) domain
- GAKG -> A Multimodal Geoscience Academic Knowledge Graph (Chinese)
- GeoERE-Net -> Understanding geological reports based on knowledge graphs using a deep learning approach
- GeoFault Ontology
- geosim -> Semantically Triggered Qualitative Simulation of a Geological Process
- [https://www.duo.uio.no/handle/10852/111467](Knowledge Modelling for Digital Geology) -> PhD thesis with two papers
- SIRIUS GeoAnnotator -> Website example from above
- Ontology CWS
- Stratigraphic Knowledge Graph (StraKG)
- pyenchant -> spelling checker
- JiuZhou -> Open Foundation Language Models for Geoscience
- Large Language Model for Geoscience
- GeoGalactica -> A Larger foundation language model in Geoscience
- GeoChat -> grounded Large Vision Language Model for Remote Sensing
- LAGDAL -> LLM Matching geology map information to location experiments
- OmniGeo -> Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence
- GeoGPT -> Deep Time Digital Earth Research Group from China project
- GeoGPT -> Deep Time Digital Earth Research Group from China project
- GeoGPT-Research-Project
- CNN Sentinel -> Overview about land-use classification from satellite data with CNNs based on an open dataset
- DEA notebooks -> Scalable machine learning example but lots of useful things here
- EASI cookbook notebooks -> CSIRO Earth Analytics platform introductions for ODC style analysis
- DS_UNet -> Unet fusing Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 Multispectral Imager
- Multi Pretext Masked Autoencoder (MP-MAE)
- data
- segment-geospatial -> Segment anything for geospatial uses
- SamGIS -> Segment Anything applied to GIS
- SatMAE++ -> Rethinking Transformers Pre-training for Multi-Spectral Satellite Imagery
- grid-mae -> Investigate using multiscale grids in a Vision Transformer Masked Autoencoder
- ScaleMae
- CIMAE -> CIMAE - Channel Independent Masked Autoencoder
- fork -> to give it the name for reference
- [Self-Supervised Representation Learning for Remote Sensing] -> Master's thesis includes the above and comparisons of several models
- U Barn
- earthnets
- GeoTorchAI -> GeoTorchAI: A Spatiotemporal Deep Learning Framework
- [pytorcheo](https://github.com/earthpulse/pytorchEO -> Deep Learning for Earth Observation applications and research
- pytorch cloud geotiff optimization
- paper -> Optimizing Cloud-to-GPU Throughput for Deep Learning With EarthObservation Data
- AiTLAS -> an open-source benchmark suite for evaluating state-of-the-art deep learning approaches for image classification in Earth Observation
- Segmentation Gym -> Gym is designed to be a "one stop shop" for image segmentation on "N-D" - any number of coincident bands in a multispectral image
- deep_learning_alteration_zones
- awesome mining band ratio collection -> collection of simple band ratio uses for highlight various minerals
- awesome remote sensing foundation models
- ChatEarthNet
- Zenodo
- [paper] -> a global-scale image–text dataset empowering vision–language geo-foundation models
- Clay -> An open source AI model and interface for Earth
- [GeoDINO]A Vision Foundation Model for Earth Observation Leveraging DINO Architecture and Sentinel-2 Multi-Spectral Data
- IBM-NASA-GEOSPATIAL Prithvi
- Image segmentation by foundation model finetuning -> For Prithvi
- AM-RADIO: Agglomerative Vision Foundation Model
- paper -> - Reduce All Domains Into One
- RemoteCLIP -> A Vision Language Foundation Model for Remote Sensing
- SpectralGPT
- zenodo) -> remote sensing foundation model customized for spectral data
- paper -> Unseen
- [Terramind] (https://github.com/IBM/terramind) -> any-to-any generative foundation model for Earth Observation
- paper -> Terramind paper
- ASTER Conversion -> Conversion from ASTER hd5 to geotiff NASA github
- HLS Data Resources -> Harmonized Landsat Sentinel wrangling
- sarsen -> xarray based SAR image processing and correction
- openEO -> openEO develops an open API to connect R, Python, JavaScript and other clients to EO cloud back-ends
- Conventional-to-Transformer-for-Hyperspectral-Image-Classification-Survey-2024
- Hyperspectral Deep Learning Review
- Hyperspectral Autoencoders
- Deeplearn HSI
- 3DCAE-hyperspectral-classification
- DeHIC
- Rev-Net
- paper -> A Reversible Generative Network for Hyperspectral Unmixing With Spectral Variability
- Pysptools -> also has useful heuristic algorithms
- Spectral Python
- Spectral Dataset RockSL -> Open spectral dataset
- Unmixing
- Unmamba -> Cascaded Spatial–Spectral Mamba for Blind Hyperspectral Unmixing
A Joint Multi-Scale Graph Attention and Classify-Driven Autoencoder Framework for Hyperspectral Unmixing
- CasFormer: Cascaded Transformers for Fusion-aware Computational Hyperspectral Imaging
- Spectral Normalization for Keras
- S^2HM^2 -> S2HM2: A Spectral-Spatial Hierarchical Masked Modeling Framework for Self-Supervised Feature Learning and Classification of Large-Scale Hyperspectral Image
- Deep Colormap Extraction from Visualizations
- Semantic Segmentation for Extracting Historic Surface Mining Disturbance from Topographic Maps -> Example is for coal mines
- International Chronostratigraphic Color Codes -> RGB codes and others in spreadsheet and other formats
- LithClass -> USGS version of lithology color codes
- color version
- SeisWiz -> Lightweight python SEG-Y viewer
- Intelligent Prospector -> Sequential data acquisition planning
- Zenodo
- Deep Angle -> Fast calculation of contact angles in tomography images using deep learning
- Network Analysis of Mineralogical Systems
- Data -> Data from paper here
- Geoanalytics and machine learning
- Machine Learning Subsurface
- ML Geoscience
- Be a Geoscience Detective
- Earth ML -> Some basic tutorials in PyData approaches
- GeoMLA -> Machine Learning algorithms for spatial and spatiotemporal data
- open-geospatial -> Install multiple common packages at once
- Geospatial CLI - List of geospatial command line tools
- Satellite Image Deep Learning
- Earth Observation
- Earth Artificial Intelligence
- Open Source GIS -> Comprehensive overview of the ecosystem
- Geoscience Data Quality for Machine Learning -> Geoscience Data Quality for Machine Learning
- Australian Gravity Data -> Overview and analysis of gravity station data
- Geodiff -> Comparison of vector data
- Redflag -> Analysis of data and an overview to detect problems
- CuML -> CUDA accelerated
- Dask-ml -> Distributed versions of some common ML algorithms
- geospatial-rf -> Functions and wrappers to assist with random forest applications in a spatial context
- Geospatial-ml -> Install multiple common packages at once
- Nested Fusion
- paper -> Nested Fusion: Dimensionality Reduction and Latent Structure Analysis of Multi-Scale Nested Data for M2020 PIXL RGBU and XRF Data
- scores -> Verifying and evaluating models and predictions with xarray
- NG Boost -> probabilistic regression
- Probabilistic ML
- Bagging PU with BO -> Positive Unlabeled Bagging with Bayesian Optimisation
- GisSOM -> Geospatial centred Self Organising Maps from Finland Geological Survey
- paper -> example of GisSOM example
- SimpSOM -> Self Organising Maps
- Bayseg -> Spatial segmentation
- InterpretML -> Interpreting models of tabular data
- InterpretML -> Community addition
- Deep Colormap Extraction -> Trying to extract a data scale from pictures
- Extract and Classify Images from Geoscience Documents
- Xbatcher -> Xarray based data reading for deep learning
- zen3geo -> Xbatcher style data science with pytorch
- Shap Values
- Weight Watcher -> Analyse how well networks are trained
- weightwatcher.ai
- weightwatcher-ai.com -> Professional web version
- Self Supervised -> Pytorch lightning implementations of multiple algorithms
- Simclr
- Awesome self-supervised learning -> Curated list
- Software Underground - Community of people interested in exploring the intersection of the subsurface and code
- Chat Signup - SWUNG community chat signup
- Mattermost- Community chat service
- Old Slack Channel(deprecated, see mattermost above)
- Geoscience Open Source Tie-In
- Videos
- Awesome Open Geoscience[note Oil and Gas Biased]
- Transform 2021 Hacking Examples
- Segysak 2021 Tutorial
- T21 Seismic Notebook
- Practical Seismic with Python
- Transform 2021 Simpeg
- Pangeo
- Digital Earth Australia
- Open Source Geospatial Foundation
- OSGeoLive -> Bootable DVD/USB with lots of open source geospatial software
- ASEG -> videos from Australia Society of Exploration Geoscientists
- AI for Geological Modelling and Mapping -> videos from the conference day
- conference
- ec2 Spot Labs -> Making automatically working sith Spot instances easier
- Sagemaker Geospatial ML
- Sagemaker -> ML Managed Service
- Shepard -> Automated cloud formation setup of AWS Batch Pipelines: this is great
- Mlmax - Start fast library
- Smallmatter
- Pyutil
- Deep Learning Containers
- Loguru -> Logging library
- AWS GDAL Robot -> Lambda and batch processing of geotiffs
- Serverless Seismic Processing
- LIthops -> multi-cloud distributed computing framework
If listed it is assumed they are generally data, if just pictures like WMS it will say so.
- AUSLAMP - > Tennant Creek - MtIsa
- Field Geology
- Deep Lithosphere -> Deep Lithospheric Mineral Potential
- Geochronology -> Geochronology
- Geological Provinces
- WMS -> WMS picture
- EGGS -> Estimates of Geological and Geophysical Surfaces
- Proterozoic Alkaline Rocks - Proterozoic Alkaline Rocks Dataset WFS {also has WMS}
- Cenozoic
- Mesozoic
- Paleozoic
- Archaean
- Stratigraphy -> Stratigraphic Units
- Geophysics Surveys
- Seismic Surveys -> Onshore seismic surveys
- Magnetotelluric -> Northern Australia AUSLAMP Stations
- Ni-Cu-PEGE -> Intrusion hosted Nickel Copper PGE Deposits
- EFTF Area -> Exploring for the future areas
- Temperature -> Interpreted temperature
- DEA -> Digital Earth Australia
- Land Cover
- Waterbodies
- BOM -> Bureau of Meteorology Hydrogeochemistry
- NSW
- WCS
- WFS Mineral Drillholes
- WFS Petroleum Drillholes
- WFS Coal Drillholes
- Seismic -> Seismic and others
- Queensland
- Geoscientific -> Geophysics and Report Index
- Geology
- Regional
- State
- Tenements
- Roads
- Watercourse
- NTGS -> Northern Territory Geological Survey
- GNS -> List of web services
- GeoInfo -> Rest services
- SIG Andes -> Andes geology
EGDI -> EGDI Minerals
- BGS -> British Geological Survey
- Geoindex -> mineral occurrence example
- Rest -> BGS Rest services
- Inspire 625
- GTK -> Geological Survey of Finland
- Arctic Minerals -> Arctic 1M Mineral Occurrences
- Rest example -> Many more mapservers
- IGR -> WMS only
- IGR minres -> WMS only
- Spain
- Geology -> 200K
- 1M -> 1M
- 50K -> 50K
- IGME Geode
- Geophysics
- Copper - Copper
- GeoFPI - > Geology and Minerals South Portuguese Zone
- Water
- Geoinform -> [currently suspended]
- China -> WMS mineral deposit wap
- orefield -> Mineral occurrence points
- India Mineral -> WMS
- India Geophysics
- Korea
- ASEAN wms -> no data, just picture
- Africa Geoportal -> Rest services
- Africa 10M -> Africa 10M Mineral Occurrenceshttps://pubs.usgs.gov/of/2005/1294/e/OF05-1294-E.pdf
- IPIS Artisanal Mines - > There is a WMS version too
- github
- Uganda -> GMIS WMS
- Mineral Exploration Web Services -> QGIS plugin with access to many relevant web services
- Open Street Map -> useful general tile service
- Open Data API -> GSQ Open Data Portal API
- CORE -> Open Research Texts
- API Notebook -> Example and fucntions
- SHARE -> Open Science API
- USGS Publications
- CROSSREF
- xDD -> former GeoDeepDive
- ADEPT -> GUI to xDD to search 15M harvested papers
- OpenAlex
- Macrostrat
- OpenMinData -> facilitate querying and retrieving data on minerals and geomaterials from the Mindat API
- Iceland Geological Society
- Earth Model Collaboration -> access to various Earth models, visualization tools for model preview, facilities to extract model data/metadata and access to the contributed processing software and scripts.
- ISC Bulletin -> Earthquake focal mechanism search
- Magnetics Information Consortium -> paleomagnetic, geomagnetic, rock magnetic
- Earthchem -> Community-driven preservation, discovery, access, and visualization of geochemical, geochronological, and petrological data
- Geoscience Australia Data Catalogue
- AusAEM
- Geoscience Australia Portal
- Exploring for the Future Portal -> Geoscience Australia web portal with download information
- AusAEM
- AusLAMP
- Geochronology and Isotopes
- Hydrogeology Catchments -> search for catchments layer
- Critical Minerals Mapping Initiative
- Australian Stratigraphic Units
- Australian Borehole Stratigraphic Units -> Compilation for groundwater of sedimentary units
- Geoscience Australia Geophysics thredds -> OpendDAP and https access
- MORPH gdb -> Officer Musgrave drilling data
- CSIRO Data Access Portal
- Regolith Depth
- TWI -> Topographic Wetness Index
- ASTER Geoscience Maps -> Website
- FTP -> CSIRO ftp site
- ASTER Maps notes -> Notes for the above
- 3D Geology -> Models from multiple areas
- Groundwater Explorer -> Bureau of Meteorology
- SARIG -> South Australia Geological Survey geospatial map based search
- SARIG Catalogue -> data catalogue
- 3D Models
- Data Packages - Annual update
- s3 Reports -> Reports and textracted versions in s3 bucket with web interface)
- Reports
- Seismic
- Seismic downloads -> One page of links
- STRIKE -> Northern Territory Geological Survey
- GEMIS
- McArthur Basin -> 3D Model
- Geophysical Surveys
- Geophysics -> reference
- Drilling and Geochemistry -> reference
- Data Package -> data package
- GEOVIEW -> Western Australia Geological Survey
- DMIRS -> DMIRS Data and Software Centre
- Download URLS -> dataset of download links
- Drilling and Geochemistry
- Download package - improvement?
- Geochemistry
- Petroleum Wells with depths
- data WA subset
- Earth Resources
- GeoVIC -> Webmaps needs registration to be more useful
- Exploration Database -> Online
- GERM -> Geological Resource Map of New Zealand
- Geology -> Web Map
- CPRM -> Brazil Geological Survey
- Downloads -> Brazil Geological Survey Downloads
- Rigeo -> Institutional Repository of Geosciences
- Ingemmet GeoPROMINE -> Geological Survey of Peru
- GeoMAPE
- Minerals4EU
- GTK -> Geological Survey of Finland
- Geochemical Maps -> pdf only!
- SGU -> Swedish Geological Survey
- IGME -> Spanish Geological Survey
- GSI -> Geological Survey of Ireland
- GSI - Map viewer
- Goldmine -> Map and document search
- data.gov.ie -> National portal view
- isde -> Irish Spatial Data Exchange
- NGU -> Norway Geological Survey
- database -> Mineral resources and stratigraphy lookups
- github
- API
- Geoporta -> Geophysics
- GEONORGE -> Data catalogue with download
- Russian Geological Research Institute -> Inaccessible currently
- RGU -> GIS project of deposits
- Infoterre -> French Geological Survey
- GS -> Czech Geological Survey
- IGR -> Romania Geological Survey
- Mineral Resources
- Natural Resources Canada
- github
- Geoscience Data Repository -> DAP Server
- Mining Web Map Portal
- DEM -> Canada DEM in COG format
- CDEM -> Digital Elevation Model (2011)
- Ontario
- Quebec
- SIGEOM Database
- Drilling
- British Columbia
- Mineral occcurrence database
- Yukon
- Nova Scotia
- provincial
- Prince Edward Island
- Saskatchewan
- Mineral occurrence database
- Newfoundland -> didn't work in Chrome, tried it in Edge
- New Brunswick
- Alberta
- Interactive Mapping Application
- Northwest Territories
- Mineral Tenure
- Nunavut Geoscience
- USGS -> Map database
- MRDS -> Mineral Resources Data Systems
- Earth Explorer -> USGS Remote Sensing Data Portal
- National Map Database
- National Map Database
- Alaska
- ReSci -> Registry of Scientific Collections of the National Geological and Geophysical Data Preservation Program
- Michigan
- Cadastre
- Hydrogeology -> Hydrogeology and geology from groundwater atlas
- West Africa -> Mineral deposits
- Namibia
- Mineral Occurrences
- Miners
- South Africa -> South Africa geological survey
- Mineral Occurrences -> Example where you need to log in to download
- Uganda -> GMIS portal
- Metallic minerals
- Tanzania
- Mineral Occurrences
- Mines
- SIGM -> Tunisia Geology and Mining
- Zambia -> Zambia tenements here
- Bhukosh -> India Geological Survey
- Note Rajasthan geology doesn't work except piecemeal which is painful - if you want it, let me
- [IGG Data] (https://unit.aist.go.jp/igg/en/database/index.html)
- StratDB
- GEM Global Active Faults
- RRuff Mineral Properties
- article -> Evolutionary system of mineralogy
- OneGeology
- catalog
- OSF -> Open Science Foundation
- Sediment Hosted Base Metals -> Sediment Hosted Base Metals
- Lithosphere Athenosphere Boundary -> LAB Hoggard/Czarnota
- Geological Survey list
- Northern Territory GEMIS
- South Australia SARIG
- Western Australia WAMEX
- Queensland
- NSW Digs
- PorterGEO -> World mineral deposits databases with summary overviews
- Sustainable Minerals Institute -> Queensland organisation of university affiliated researchers producing datasets and knowledge
- British Columbia
- Search -> Mineral Assessment Reports
- Publications -> Publications
- Ontario -> Mineral Asssessment Reports
- Alberta
- Yukon
- Footprint
- Manitoba
- Newfoundland and Labrador
- Northwest Territories
- Nova Scotia
- Quebec
- Saskatchewan
- British Geological Survey NERC
- Mineral Potential
- Search
- API example
- Publications
- MEIGA -> MEIGA 600 BGS mineral exploration project reports
- GeoLagret -> Sweden
- MinData -> Compilation of rock locations from around the world
- Mineral Database -> Exportable list of minerals with scientific properties and ages
- NASA
- ResearchGate -> Researcher and professional network
- QGIS -> GIS Data Visualisation and Analysis Open Source desktop application, has some ML tools : Indispensible for some quick and easy viewing
- 2D Geology in QGIS -> Workshop for QGIS NA 2020 introducing geologic maps and cross-sections for students and hobbyists
- OpenLog -> Drillhole plugin beta
- Geo-SAM -> QGIS plugin for Segment Anything with rasters
- QGIS Project Packager
- Weights-of-Evidence
- plugin
- GRASS
- saga -> mirror of sourceforge
PyVista -> VTK wrapping api for great data visualisation and analysis
- PVGeo
- Pyvista-Xarray -> Transforming xarray data to VTK 3D painlessly: a great library!
- OMFVista -> Pyvista for Open Mining Format
- Scipy 2022 Tutorial
PyMeshLab -> Mesh transformation
- GUI -> Desktop version
Geolambda -> AWS Lambda setup
- geoh5py -> getting data to and from geoh5 projects
- geoapps -> notebook based applications for geophysics via geoh5py
- geoh5vista
- gams -> magnetic data analysis
- paper - A Framework for Mineral Geoscience Data and Model Portability - geoh5
- Python resources for earth science
- geoutils -> geospatial analysis and foster inter-operability between other Python GIS packages.
- Geopandas
- Dask-geopandas
- geofileops -> Increased speed spatial joins via database functions and geopackage
- Kart -> Distributed version control for daata
- PyESRIDump -> Library to grab data at scale from ESRI Rest
- DuckDB Spatial Extension -> Can also use standalone no install necessary executable
- SF
- terra -> terra provides methods to manipulate geographic (spatial) data in "raster" and "vector" form.
- exactextract -> command line zonal stats in C
- Rasters.jl -> reading and writing common raster data types
- Rasterio -> python base library for raster data handling
- georeader -> process raster data from different satellite missions
- Rasterstats -> summarising geospatial raster datasets based on vector geometries
- Xarray -> Multidimensional Labelled array handling and analysis
- Rioxarray -> Fabulous high level api for xarray handling of raster data
- Geocube -> Rasterisation of vector data api
- ODC-GEO -> Tools for remote sensing based raster handling with many extremely handy tools like colorisation, grid workflows
- Rasterix -> Raster tricks for xarray
- COG Validator -> checking format of cloud optimised geotiffs
- Griffine -> utilities for working with affine grids
- serverless-datacube-demo -> xarray via lithops / Coiled / Modal
- Xarray Spatial -> Statistical analysis of raster data such as classification like natural breaks
- xarray-einstats -> Stats, linear algebra and einops for xarray
- xdggs -> Other types of grids
- xgcm -> Histograms with labels
- xrft -> Xarray based Fourier Transforms
- xvec -> Vector data cubes for Xarray
- Raster -> R library
- terra -> provides methods to manipulate geographic (spatial) data in "raster" and "vector" form.
- stars -> spatiotemporal Arrays: Raster and Vector Datacubes
- exactextracr -> raster zonal statistics for R
- raster-benchmark -> Benchmarking some raster libaries in python and R
- Whitebox Tools -> python api, gui, etc. have used for topographical wetness index calculation
- PiAutoStage -> 'An Open-Source 3D Printed Tool for the Automatic Collection of High-Resolution Microscope Imagery;' designed for mineral samples.
- AEM to seg-y
- ASEG GDF2
- CGG Outfile reader
- Geosoft Grid to Raster
- Loop Geosoft Grid
- Harmonica Geosoft Grid -> Pull request in progress on conversion to xarray
- AuScope -> Data from binary GOCAD models
- GOCAD SG Grid Reader
- geomodel-2-3dweb -> In here they have a method to extract data from binary GOCAD SG Grids
- Leapfrog Mesh Reader
- OMF -> Open Mining Format for conversion between things
- PDF Miner
- VTK to DXF
- Pygeochemtools -> library and command line to enable rapid QC and plotting of geochemical data
- SA Geochemical Maps -> Data Analysis and plotting of South Australia geochemistry data from the Geological Survey of SA
- Geochemical levenning
- Scott Halley's geochemistry tutorial
- Periodic Table
- Geologic Time Scale -> Code to produce, but also has a nice regular csv of the Ages
Gempy -> Implicit Modellinggeo-lm -> GemPy models via Llama-4
Gemgis -> Geospatial Data Analysis assistance
LoopStructural -> Implicity Modelling
Manual python geologia -> Analysis of geology data
Map2Loop -> 3D Modelling Automation
- Loop3D -> GUI for Map2Loop
SA Stratigraphy -> Stratigraphy database editor webapp
Global Tectonics -> Open source dataset to build on, plates, margins etc.
- Geoscience Australia Utilities
- Geophysics for Practicing Geoscientists
- Potential Field Toolbox -> Some xarray based Fast Fourier Transform filters - derivatives, pseudogravity, rpg etc.
- Notebook -> Class with some examples [Vertical derivative, Pseudogravity, Upward Continuation etc)
- Computation geophysics sandbox
- RIS Basement Sediment -> Depth to Magnetic Basement in Antarctica
- Signal Image Processing
- Geoscience Australia AEM
- UH Electromagnetics -> Coursework notebooks on understanding this domain
- AEM Interpretation
- EMag Py -> FDEM
- ResIPy -> DC / IP
- Harmonica
- Filter examples -> Fast Fourier transform based processing via xarray
- Australian Gravity Data
- Worms
- Worms update <- potential fields worm creation with some minor updates to handle new networkx api*github mirror
- Osborne Magnetic -> Survey data processing example
- Segyio
- Segysak -> Xarray based seg-y data handling and analysis
- Geophysical notes -> Seismic data processing
- MtPy
- Tutorials
- MtPy -> update of the above to make things easier
- Mineral Stats Toolkit -> Distance to MT features analysis
- Lithospheric conductors paper
- mtwaffle -> MT data analysis examples
- pyMT
- resistics
- MECMUS -> tools to read Electrical Conductivity model of the USA
- model
- GMT
- Verde
- Grid_aeromag -> Brazilian gridding example
- pyinterp -> Multidimensional gridding via Boost
- Pseudogravity -> From Blakely, 95
- SimPEG
- Gimli
- Tomofast-x
- USGS anonymous ftp
- USGS Software -> longer list of older useful stuff: dosbox, anyone?
- Geophysics Subroutines -> Fortran code
- 2020 Aachen Inversion problems -> Overview of gravity inversion theory
- dh2loop -> Drilling Interval assistance
- drilldown -> Drilling visualisation in notebooks via geoh5py -> note desurveying
- PyGSLib -> Downhole surveying and interval normalising
- pyborehole -> Processing and visualizing borehole data
- dhcomp -> composites geophysical data to a set of intervals
- Awesome spectral indices -> Guide to spectral index creation
- Open Data Cube
- DEA Notebooks -> Code for use in ODC style workflows
- Datacube-stats -> Statistical analysis library for ODC
- Geo Notebooks -> Code examples from Element 84
- Raster4ML -> A large number of vegetation indices
- Lefa -> Fracture analysis, lineaments
- Kerchunk -> Serverless access to cloud based data via Zarr
- Kerchunk geoh5 -> Access to Geoscient Analyst/geoh5 projects serverlessly via kerchunk
- Tifffile variant
- Virtuallizar -> Similar idea to kerchunk
- icehunk -> Transactional storage engine for tensor / ND-array data designed for use on cloud object storage.
- DEA Stackstac -> Examples of working with Digital Earth Australia data
- Intake-stac
- ML AOI Extension
- ML Model Extension Specification -> Machine Learning Model Specification for CatalogingSpatio-Temporal Models
- ODC-Stac -> Database free Open Data Cube
- Pystac
- Sat-search
- Stackstac -> Metadata speeded up dask and xarray timeseries
- Nickel Mineral Potential Mapping -> ESRI Based analysis
- Prospectivity Online Tool
- Bluecap -> Framework from Monash University for assessing mine viability
- Zipfs Law -> Curve fitting the distribution of Mineral Depositions
- PyASX -> ASX Data Feed scraping
- Metal Price API -> Containerised Microservice
- Napari -> Multidimensional image viewer
- Holoviews -> Large scale data visualisation
- Graphviz -> Graph plotting/viewing assistance windows installation info
- Spatial-kde
- CET Perceptually Uniform Colormaps
- PU Colormaps -> Formatted for user in Geoscience Analyst
- Colormap distortions -> A Panel app to demonstrate distortions created by non-perceptual colormaps on geophysical data
- Ripping Data from Colormpas
- Open Geoscience Code Projects
- Geospatial >- installs multiple common python packages
- Geospatial python -> Curated list
- GDAL -> Absolutely crucial data transformation and analysis framework
- Tools -> Note has many command line tools that are very useful as well
- Julia Earth -> Fostering geospatial data science and geostatistical modeling in Earth sciences
- Julia Geodynamics -> computational geodynamics code
- Introduction to Julia for Geoscience
- Anaconda -> Get lots installed already with this package manager.
- GDAL et al -> Take the pain out of GDAL and Tensorflow installs here
- Git Bash -> Getting conda to work in Git Bash
- Numpy Multidimensional arrays
- Pandas Tabular data analysis
- Matplotlib visualisation
- Zarr -> Compressed, chunked distributed arrays
- Dask -> Parallel, distributed computing
- Dask Cloud Provider -> Automatically start dask clusters on the cloud
- Dask Median -> Notebook giving a Dask median function prototype
- Python Geospatial Ecosystem -> Curated information
- GeoRust -> Collection of geospatial utilities in rust
- DuckDB -> In process OLAP DB at speed - has some geospatial and array capabilities
- ibis + Duckdb geopsatial -> scipy2024 talk
- Python Data Science Template -> Project package setup
- Awesome python data science -> Curated guide
- distfit -> Probability density fitting
- AWS Deep Learning Containers
- Spatial Docker
- DL Docker Geospatial
- Rocker
- Docker Lambda
- Geobase
- DL Docker Geospatial
- Geological Society of Queensland vocabularies
- Geological Society of Western Australia
- Stratigraphic
- Geoscience Knowledge Manager
- GeoSciML Vocabularies
- Python geospatial analysis cookbook
- Geoprocessing with Python -> Manning livebook
- Textbook
- Machine Learning in the Oil and Gas industry
- Geocomputation with R
- Earthdata Cloud Cookbook -> How to access NASA resources
- Data Cleaner's Cookbook -> Putting unix tools to good use for data wrangling and cleaning
- Encyclopedia of Mathematical Geosciences
- Handbook of Mathematical Geosciences
- GXPy -> Geosoft Python API
- EarthArxiv -> Download papers from the preprint archive
- Essoar -> Preprint paper archive
- GOGI -> GOGI Oil and Gas wells
- OGIM -> Oil and Gas Infrastructure Mapping [including wells]
- paper -> OGIM paper
- supplement -> Permian Basin ML check
- paper -> Wellpad detection from space
- Bedrock -> Generalised geology of the world
- GLIM -> Global lithology map
- Paleogeology An Atlas of Phanerozoic Paleogeographic Maps
- Sedimentary Layers -> Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers
- World Stress Map -> Global compilation of information on the crustal present-day stress field
- GMBA -> Global mountain inventory
- EMC -> global 3D inverse model of electrical conductivity
- LAB SLNAAFSA
- LAB CAM2016
- Moho -> GEMMA Data
- Moho -> Szwillus Data
- Seismic Velocity - > Debayle et al
- LithoRef18 -> A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets
- CRUST1.0 -> global crustal model netcdf
- Overview homepage
- Deep Time Digital Earth -> Data and visualisation for a variety of data sources and models
- EarthChem -> Community-driven preservation, discovery, access, and visualization of geochemical, geochronological, and petrological data
- GEOROC -> Geochemical composition of rocks
- global geology -> A short recipe to make a global geology map in GIS format (e.g. shapefile), with age ranges mapped to the GTS2020 timescale
- Large Igenous Provinces Commission
- Mantle Plumes
- Sediment Thickness -> Map
- spatialreference.org -> repository for the website
- Predictive grids of major oxide concentrations in surface rock and regolith over the Australian continent -> Various oxides
- Alkaline Rocks Atlas
- Cenozoic
- Mesozoic
- Paleozoic
- Archaean
- search
- Proterozoic Alkaline Rocks -> Proterozoic alkaline and related igneous rocks of Australia GIS
- Cenozoic
- Mesozoic
- Paleozoic
- Archaean
- Hydrogeology -> Hydrogeology Map of Australia
- Hydrogeology -> 5M
- Layered Geology -> 1M
- Surface Geology -> 1M Scale
- The Australian Mafic-Ultramafic Magmatic Events GIS Dataset
- Gravity -> 2019 Australian National Gravity Grids
- TMI -> Magnetic Anomaly Map of Australia, Seventh Edition, 2019 TMI
- 40m -> 40m version
- VRTP -> Total Magnetic Intensity (TMI) Grid of Australia with Variable Reduction to Pole (VRTP) 2019
- 1VD -> Total Magnetic Intensity Grid of Australia 2019 - First Vertical Derivative (1VD)
- Radiometrics -> Complete Radiometric Grid of Australia (Radmap) v4 2019 with modelled infill
- K -> Radiometric Grid of Australia (Radmap) v4 2019 filtered pct potassium grid
- U -> Radiometric Grid of Australia (Radmap) v4 2019 filtered ppm uranium
- Th -> Radiometric Grid of Australia (Radmap) v4 2019 filtered ppm thorium
- Th/K -> Radiometric Grid of Australia (Radmap) v4 2019 ratio thorium over potassium
- U/K -> Radiometric Grid of Australia (Radmap) v4 2019 ratio uranium over potassium
- U/Th -> Radiometric Grid of Australia (Radmap) v4 2019 ratio uranium over thorium
- U squared/Th -> Radiometric Grid of Australia (Radmap) v4 2019 ratio uranium squared over thorium
- Dose Rate-> Radiometric Grid of Australia (Radmap) v4 2019 filtered terrestrial dose rate
- Ternary Picture -> Radiometric grid of Australia (Radmap) v4 2019 - Ternary image (K, Th, U)
- AusAEM 1 -> AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey; GA Layered Earth Inversion Products
- AusAEM 1 -> AusAEM Year 1 NT/QLD: TEMPEST® airborne electromagnetic data and Em Flow® conductivity estimates
- AusAEM 1 -> AusAEM1 Interpretation Data Package
- AusAEM 2 -> AusAEM 02 WA/NT 2019-20 Airborne Electromagnetic Survey
- AusAEM–WA -> AusAEM–WA, Murchison Airborne Electromagnetic Survey Blocks
- AusAEM–WA -> AusAEM-WA, Southwest-Albany Airborne Electromagnetic Survey Blocks
- AusAEM–WA -> AusAEM WA 2020-21, Eastern Goldfields & East Yilgarn Airborne
- AusAEM–WA -> AusAEM (WA) 2020-21, Earaheedy & Desert Strip
- AusAEM ERC -> AusAEM Eastern Resources Corridor
- AusAEM WRC -> AusAEM Western Resources Corridor
- interp overview
- National surface and near-surface conductivity grids -> National ML interpolation for AusEM in similar fashion to Northern Australia
- AusLAMP SEA -> Resistivity model of the southeast Australian mainland from AusLAMP magnetotelluric data
- Victoria Data
- NSW Data
- AusLAMP TISA -> Resistivity model derived from magnetotellurics: AusLAMP-TISA project
- AusLAMP Delamerian -> Lithospheric resistivity model of the Delamerian Orogen from AusLAMP magnetotelluric data
- AusLAMP NE SA
- AusLAMP Gawler
- AusLAMP Stations -> circa 2017
- Tasmanides Paper
- Geological setting, age and endowment of major Australian mineral deposits
- A Comprehensive dataset for Australian mine production 1799 to 2021
- Overview - Geoscience Australia -> Overview of publications and datasets
- Sediment Hosted Zinc
- Report
- Sediment Hosted Copper
- Report
- Abstract
- Carbonatite Rare Earth Elements
- Landsat Bare Earth - Bare earth median from Landsat
- Enhanced barest earth Landsat imagery for soil and lithological modelling: Dataset -> Details of an enhancement
- Global mining footprint mapped from high-resolution satellite imagery**Paper
- DEM -> Australia 1 sec SRTM DEM of various varieties
- AU Tomo -> Next-generation velocity model of the Australian crust from synchronous and asynchronous ambient noise imaging
- Multiscale Topographic Position - RGB
- Info
- Topographic Wetness Index - 1 and 3 arc seconds
- Info
- Topographic Position Index - 1 and 3 arc seconds
- Info
- Weathering Intensity Model
- Info
- {Info](https://researchdata.edu.au/weathering-intensity-model-australia/1361069)
- Cover thickness TISA -> Cover thickness points for Tennant Creek Mt Isa with interpolated grids
- High resolution conductivity mapping using regional AEM survey and machine learning -> ML conductivity interpolation for AusAEM
- Extended abstract
- Solid Geology -> Solid Geology of the North Australian Craton
- Inversion Models -> The North Australian Craton 3D Gravity and Magnetic Inversion Models
- Ni-Cu-PGE -> Potential for intrusion-hosted Ni-Cu-PGE sulfide deposits in Australia: A continental-scale analysis of mineral system prospectivity
- TISA IOCG -> Iron oxide copper-gold (IOCG) mineral potential assessment for the Tennant Creek – Mt Isa region: geospatial data
- TISA Alteration -> Producing Magnetite and Hematite Alteration Proxies using 3D Gravity and Magnetic Inversion
- Bedrock Geology
- Crystalline Basement -> Crystalline basement intersecting drillholes
- Mines and Mineral Deposits
- Mineral Drillholes
- Solid Geology 3D
- 100K Faults
- Archaean
- Archaean Faults
- Mesoproterozoic -> Middle
- Mesoproterozoic -> Middle faults
- Mesoproterozoic - > Late
- Mesoproterozoic Faults -> Late faults
- Neoproterozoic
- Neoproterozoic faults
- Stuart Shelf Sedimentary Copper 3D Model
- Surface Geology
- AusLAMP 3D -> Magnetotelluric inversions
- GCAS -> Gawler Craton Airborne Survey
- Gravity -> Gravity grids
- Stations -> Gravity stations
- Magnetics -> Magnetics
- Seismic Lines -> Seismic lines
- Gawler MPP -> Gawler Mineral Promotion Project - Data
- Overview
- Deep Mining Queensland-> Deep Mining Queensland
- Deposit Atlas -> Northwest Mineral Province Deposit Atlas
- Geology -> Geology series overview
- Mineral and Energy Report -> NORTH-WEST QUEENSLAND MINERAL AND ENERGY PROVINCE REPORT 2011 - NWQMEP
- Vectoring -> Mineral geochemistry vectoring
- Petroleum Wells
- Coal Seam Gas Wells
- Drillholes
- Toolkit -> Multielement toolkit and laboratory
- Arunta IOCG -> Iron oxide-copper-gold potential of the southern Arunta Region
- South Uranium -> Southern Northern Territory uranium and geothermal energy systems assessment digil data package
- Tennant Creek -> Conductivity Model Derived from Magnetotelluric Data in the East Tennant Region, Northern Territory
- Seamless Geology -> NSW Seamless Geology Data Package (older version also on this page)
- 100K Bedrock
- 100K mapsheets for surface you have to download individually and combine - they aren't consistent
- 250K mapsheets for surface you have to download individually and combine - they aren't consistent
- 500K Bedrock
- Abandoned Mines
- Mineral Occurrences
- Capricorn-> Prospectivity analysis using a mineral systems approach - Capricorn case study project
- King Leopold -> Mineral prospectivity of the King Leopold Orogen and Lennard Shelf: analysis of potential field data in the west Kimberley region
- Yilgarn Gold
- Yilgarn 2 -> Predictive mineral discovery in the eastern Yilgarn Craton: an example of district-scale targeting of an orogenic gold mineral system
- [Shop note] -> WA has a few prospectivity packages available to purchase on USB drive for 50-60AU type prices - see in geospaital maps section
- Mineral Data Pack -> Mineral Exploration Data Pack
- National-Scale Geophysical, Geologic, and Mineral Resource Data and Grids -> Also has some Australia data
- Groundwater wells -> Database
- Maximum horizontal stress orientation and relative stress magnitude (faulting regime) data throughout North America
- Database of Canadian surveys -> some standardisation done here
- Map
- Geology -> Updated Bedrock geology map
- Geology -> Bedrock geology compilation and regional synthesis of south Rae and parts of Hearne domains, Churchill Province, Northwest Territories, Saskatchewan, Nunavut, Manitoba and Alberta
- Moho -> National database of Moho depth estimates estimates from seismic refraction and teleseismic surveys
- Dap Search -> Geoportal search - note annoyingly these are in Geosoft grids - see elsewere for conversion possibilties
- [Gravity, Magnetics, Radiometrics] -> Mostly country scale
- FODD -> Fennoscandian Mineral Deposits
- MPM -> Mineral Potentinal Mapping project
- https://www.sciencedirect.com/science/article/pii/S2590197422000064?via%3Dihub#bib20- -> Geoscience language models and their intrinsic evaluation -> NRCan code above [includes model]
- https://www.researchgate.net/publication/334507958_Word_embeddings_for_application_in_geosciences_development_evaluation_and_examples_of_soil-related_concepts -> GeoVec [includes model]
- https://www.researchgate.net/publication/347902344_Portuguese_word_embeddings_for_the_oil_and_gas_industry_Development_and_evaluation -> PetroVec [includes model]
- A resource for automated search and collation of geochemical datasets from journal supplements
- https://github.com/sydney-machine-learning/autoencoders_remotesensing -> Stacked Autoencoders for Lithological Mapping
- These you can reproduce the output geospatially from the data given.
- https://www.sciencedirect.com/science/article/pii/S016913682100010X#s0135 -> Prospectivity modelling of Canadian magmatic Ni (±Cu ± Co ± PGE) sulphide mineral systems [well worth reading]
- https://www.sciencedirect.com/science/article/pii/S0169136821006612#b0510 -> Data–driven prospectivity modelling of sediment–hosted Zn–Pb mineral systems and their critical raw materials [well worth reading]
- https://www.researchgate.net/publication/358956673_Towards_a_fully_data-driven_prospectivity_mapping_methodology_A_case_study_of_the_Southeastern_Churchill_Province_Quebec_and_Labrador
- https://eprints.utas.edu.au/32368/ -> Machine-assisted modelling of lithology and metasomatism
- https://github.com/TomasNaprstek/Aeromagnetic_CNN - Aeromagnetic CNN
- Paperhttps://www.researchgate.net/publication/354772176_Convolution_Neural_Networks_Applied_to_the_Interpretation_of_Lineaments_in_Aeromagnetic_Data
- PhD -> New Methods for the Interpolation and Interpretation of Lineaments in Aeromagnetic Data
- Paperhttps://www.researchgate.net/publication/354772176_Convolution_Neural_Networks_Applied_to_the_Interpretation_of_Lineaments_in_Aeromagnetic_Data -> Convolution Neural Networks Applied to the Interpretation of Lineaments in Aeromagnetic Data
- https://geoscience.data.qld.gov.au/report/cr113697 -> NWMP Data-Driven Mineral Exploration And Geological Mapping [CSIRO too]
- https://www.sciencedirect.com/journal/artificial-intelligence-in-geosciences -> Artificial Intelligence in Geosciences
- Generally Not ML, or no Code/Data and sometimes no availability at all
- Eventually will separate out into things that have data packages or not like NSW Zone studies.
- However, if interested in an area you can often georeference a picture if nothing else as a rough guide.
- Generally these are not reproducible - a few like the NSW prospectivity zone studies and NWQMP are with some work.
- The occasional paper in this section may be listed above
- https://www.researchgate.net/publication/337650865_A_combinative_knowledge-driven_integration_method_for_integrating_geophysical_layers_with_geological_and_geochemical_datasets
- https://link.springer.com/article/10.1007/s11053-023-10237-w - A New Generation of Artificial Intelligence Algorithms for Mineral Prospectivity Mapping
- https://www.researchgate.net/publication/235443297_Addressing_challenges_with_exploration_datasets_to_generate_usable_mineral_potential_maps
- https://www.researchgate.net/publication/330077321_An_Improved_Data-Driven_Multiple_Criteria_Decision-Making_Procedure_for_Spatial_Modeling_of_Mineral_Prospectivity_Adaption_of_Prediction-Area_Plot_and_Logistic_Functions
- Artificial intelligence and machine learning to enhance critical mineral deposit discovery ->https://www.sciencedirect.com/science/article/pii/S2772883825000111?via%3Dihub
- Artificial intelligence for mineral exploration: A review and perspectives on future directions from data science ->https://www.sciencedirect.com/science/article/pii/S0012825224002691
- https://www.researchgate.net/project/Bayesian-Machine-Learning-for-Geological-Modeling-and-Geophysical-Segmentation
- https://www.researchgate.net/publication/229714681_Classifiers_for_Modeling_of_Mineral_Potential
- https://www.researchgate.net/publication/352251078_Data_Analysis_Methods_for_Prospectivity_Modelling_as_applied_to_Mineral_Exploration_Targeting_State-of-the-Art_and_Outlook
- https://www.researchgate.net/publication/267927728_Data-Driven_Evidential_Belief_Modeling_of_Mineral_Potential_Using_Few_Prospects_and_Evidence_with_Missing_Values
- https://www.linkedin.com/pulse/deep-learning-meets-downward-continuation-caldera-analytics/?trackingId=Ybkv3ukNI7ygH3irCHZdGw%3D%3D
- https://www.researchgate.net/publication/382560010_DINOv2_Rocks_Geological_Image_Analysis_Classification_Segmentation_and_Interpretability
- https://www.researchgate.net/publication/368489689_Discrimination_of_Pb-Zn_deposit_types_using_sphalerite_geochemistry_New_insights_from_machine_learning_algorithm
- https://link.springer.com/article/10.1007/s11430-024-1309-9 -> Explainable artificial intelligence models for mineral prospectivity mapping
- https://www.researchgate.net/publication/229792860_From_Predictive_Mapping_of_Mineral_Prospectivity_to_Quantitative_Estimation_of_Number_of_Undiscovered_Prospects
- https://www.researchgate.net/publication/339997675_Fully_reversible_neural_networks_for_large-scale_surface_and_sub-surface_characterization_via_remote_sensing
- https://www.researchgate.net/publication/220164488_Geocomputation_of_mineral_exploration_targets
- https://www.researchgate.net/publication/272494576_Geological_knowledge_discovery_and_minerals_targeting_from_regolith_using_a_machine_learning_approach
- https://www.researchgate.net/publication/280013864_Geometric_average_of_spatial_evidence_data_layers_A_GIS-based_multi-criteria_decision-making_approach_to_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/355467413_Harnessing_the_Power_of_Artificial_Intelligence_and_Machine_Learning_in_Mineral_Exploration-Opportunities_and_Cautionary_Notes
- https://www.researchgate.net/publication/335819474_Importance_of_spatial_predictor_variable_selection_in_machine_learning_applications_-Moving_from_data_reproduction_to_spatial_prediction
- https://www.researchgate.net/publication/337003268_Improved_supervised_classification_of_bedrock_in_areas_of_transported_overburden_Applying_domain_expertise_at_Kerkasha_Eritrea - Gazley/Hood
- https://www.researchgate.net/publication/360660467_Lithospheric_conductors_reveal_source_regions_of_convergent_margin_mineral_systems
- https://api.research-repository.uwa.edu.au/portalfiles/portal/5263287/Lysytsyn_Volodymyr_2015.pdf (PhD thesis) GIS-based epithermal copper prospectivity mapping of the Mt Isa Inlier, Australia: Implications for exploration targeting
- https://www.researchgate.net/publication/374972769_Knowledge_and_technology_transfer_in_and_beyond_mineral_exploration -> Knowledge and technology transfer in and beyond mineral exploration
- https://www.researchgate.net/publication/331946100_Machine_learning_for_data-driven_discovery_in_solid_Earth_geoscience
- https://theses.hal.science/tel-04107211/document - Machine Learning Approaches for Sub-surface Geological Heterogeneous Sources
- https://www.researchgate.net/publication/309715081_Magmato-hydrothermal_space_A_new_metric_for_geochemical_characterisation_of_metallic_ore_deposits - Magmato-hydrothermal space: A new metric for geochemical characterisation of metallic ore deposits
- https://www.researchgate.net/publication/220164234_Mapping_complexity_of_spatial_distribution_of_faults_using_fractal_and_multifractal_models_Vectoring_towards_exploration_targets
- https://www.researchgate.net/publication/220163838_Objective_selection_of_suitable_unit_cell_size_in_data-driven_modeling_of_mineral_prospectivity
- https://www.researchgate.net/publication/273500012_Prediction-area_P-A_plot_and_C-A_fractal_analysis_to_classify_and_evaluate_evidential_maps_for_mineral_prospectivity_modeling
- https://www.researchgate.net/publication/354925136_Soil-sample_geochemistry_normalised_by_class_membership_from_machine-learnt_clusters_of_satellite_and_geophysics_data [Gazley/Hood]
- https://link.springer.com/article/10.1007/s12665-024-11870-1 -> Quantification of the uncertainty of geoscientific maps relying on human sensory engagement
- https://www.researchgate.net/publication/235443294_The_effect_of_map-scale_on_geological_complexity
- https://www.researchgate.net/publication/235443305_The_effect_of_map_scale_on_geological_complexity_for_computer-aided_exploration_targeting
- https://link.springer.com/article/10.1007/s11053-024-10322-8 -> Workflow-Induced Uncertainty in Data-Driven Mineral Prospectivity Mapping
- https://www.mdpi.com/2072-4292/15/16/4074 -> A Spatial Data-Driven Approach for Mineral Prospectivity Mapping
- https://www.researchgate.net/publication/353253570_A_Truly_Spatial_Random_Forests_Algorithm_for_Geoscience_Data_Analysis_and_Modelling
- https://www.researchgate.net/publication/253217016_Advanced_methodologies_for_the_analysis_of_databases_of_mineral_deposits_and_major_faults
- https://www.researchgate.net/publication/362260616_Assessing_the_impact_of_conceptual_mineral_systems_uncertainty_on_prospectivity_predictions
- https://www.researchgate.net/publication/352310314_Central_Lachlan_Mineral_Potential_Study
- https://meg.resourcesregulator.nsw.gov.au/sites/default/files/2024-05/EITH%202024%20Muller_Exploration_in_the_House_keynote.pdf -> Critical minerals – prospectivity mapping using generative AI
- https://www.tandfonline.com/doi/pdf/10.1080/22020586.2019.12073159?needAccess=true - > Integrating a Minerals Systems Approach with Machine Learning: A Case Study of ‘Modern Minerals Exploration’ in the Mt Woods Inlier – northern Gawler Craton, South Australia
- https://www.researchgate.net/publication/365697240_Mineral_potential_modelling_of_orogenic_gold_systems_in_the_Granites-Tanami_Orogen_Northern_Territory_Australia_A_multi-technique_approach
- https://publications.csiro.au/publications/publication/PIcsiro:EP2022-0483 -> Signatures of Key Mineral Systems in the Eastern Mount Isa Province, Queensland: New Perspectives from Data Analytics
- https://link.springer.com/article/10.1007/s11004-021-09989-z -> Stochastic Modelling of Mineral Exploration Targets
- https://www.researchgate.net/publication/276171631_Supervised_Neural_Network_Targeting_and_Classification_Analysis_of_Airborne_EM_Magnetic_and_Gamma-ray_Spectrometry_Data_for_Mineral_Exploration
- https://www.researchgate.net/publication/353058758_Using_Machine_Learning_to_Map_Western_Australian_Landscapes_for_Mineral_Exploration
- https://www.researchgate.net/publication/264535019_Weights-of-evidence_and_logistic_regression_modeling_of_magmatic_nickel_sulfide_prospectivity_in_the_Yilgarn_Craton_Western_Australia
- https://www.researchgate.net/publication/263542691_ANALYSIS_OF_SPATIAL_DISTRIBUTION_OF_EPITHERMAL_GOLD_DEPOSITS_IN_THE_DESEADO_MASSIF_SANTA_CRUZ_PROVINCE
- https://www.researchgate.net/publication/263542560_EVIDENTIAL_BELIEF_MAPPING_OF_EPITHERMAL_GOLD_POTENTIAL_IN_THE_DESEADO_MASSIF_SANTA_CRUZ_PROVINCE_ARGENTINA
- https://www.researchgate.net/publication/277940917_Porphyry_epithermal_and_orogenic_gold_prospectivity_of_Argentina
- https://www.researchgate.net/publication/269518805_Prospectivity_for_epithermal_gold-silver_deposits_in_the_Deseado_Massif_Argentina
- https://www.researchgate.net/publication/235443303_Prospectivity_mapping_for_multi-stage_epithermal_gold_mineralization_in_Argentina
- https://www.researchgate.net/publication/367245252_Geochemical_multifractal_modeling_of_soil_and_stream_sediment_data_applied_to_gold_prospectivity_mapping_of_the_Pitangui_Greenstone_Belt_northwest_of_Quadrilatero_Ferrifero_Brazil
- https://www.researchgate.net/publication/381880769_How_do_non-deposit_sites_influence_the_performance_of_machine_learning-based_gold_prospectivity_mapping_A_study_case_in_the_Pitangui_Greenstone_Belt_Brazil
- https://www.researchsquare.com/article/rs-5066453/v1 -> Enhancing Lithium Exploration in the Borborema Province, Northeast Brazil: Integrating Airborne Geophysics, Low-Density Geochemistry, and Machine Learning Algorithms
- https://www.researchgate.net/publication/362263694_Machine_Learning_Methods_for_Quantifying_Uncertainty_in_Prospectivity_Mapping_of_Magmatic-Hydrothermal_Gold_Deposits_A_Case_Study_from_Juruena_Mineral_Province_Northern_Mato_Grosso_Brazil
- https://www.researchgate.net/publication/360055592_Predicting_mineralization_and_targeting_exploration_criteria_based_on_machine-learning_in_the_Serra_de_Jacobina_quartz-pebble-metaconglomerate_Au-U_deposits_Sao_Francisco_Craton_Brazil
- https://www.researchgate.net/publication/272170968_A_Comparative_Analysis_of_Weights_of_Evidence_Evidential_Belief_Functions_and_Fuzzy_Logic_for_Mineral_Potential_Mapping_Using_Incomplete_Data_at_the_Scale_of_Investigation A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation
- https://www.researchgate.net/publication/360386350_Application_of_Fuzzy_Gamma_Operator_to_Generate_Mineral_Prospectivity_Mapping_for_Cu-Mo_Porphyry_Deposits_Case_Study_Kighal-Bourmolk_Area_Northwestern_Iran
- https://www.researchgate.net/publication/348823482_Combining_fuzzy_analytic_hierarchy_process_with_concentration-area_fractal_for_mineral_prospectivity_mapping_A_case_study_involving_Qinling_orogenic_belt_in_central_China
- https://tupa.gtk.fi/raportti/arkisto/m60_2003_1.pdf -> Conceptual Fuzzy Logic Prospectivity Analysis of the Kuusamo Area
- https://www.researchgate.net/publication/356508827_Geophysical-spatial_Data_Modeling_using_Fuzzy_Logic_Applied_to_Nova_Aurora_Iron_District_Northern_Minas_Gerais_State_Southeastern_Brazil
- https://www.researchgate.net/publication/356937528_Mineral_prospectivity_mapping_a_potential_technique_for_sustainable_mineral_exploration_and_mining_activities_-_a_case_study_using_the_copper_deposits_of_the_Tagmout_basin_Morocco
- https://eartharxiv.org/repository/view/8898/ -> Geoscientific Input Feature Selection for CNN-driven Mineral Prospectivity Mapping
- http://www.geosciencebc.com/i/pdf/SummaryofActivities2015/SoA2015_Granek.pdf -> Advanced Geoscience Targeting via Focused Machine Learning Applied to the QUEST Project Dataset, British Columbia
- https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0340340 -> Application of machine learning algorithms to mineral prospectivity mapping
- https://www.researchgate.net/publication/369599705_A_study_of_faults_in_the_Superior_province_of_Ontario_and_Quebec_using_the_random_forest_machine_learning_algorithm_spatial_relationship_to_gold_mines
- A balanced mineral prospectivity model of Canadian magmatic Ni (± Cu ± Co ± PGE) sulphide mineral systems using conditional variational autoencoders ->https://www.sciencedirect.com/science/article/pii/S0169136824004621
- https://link.springer.com/article/10.1007/s11053-025-10468-z -> Class Label Representativeness in Machine Learning-Based Mineral Prospectivity Mapping
- https://www.researchgate.net/publication/273176257_Data-_and_Knowledge_driven_mineral_prospectivity_maps_for_Canada's_North
- https://www.researchgate.net/publication/300153215_Data_mining_for_real_mining_A_robust_algorithm_for_prospectivity_mapping_with_uncertainties
- https://www.sciencedirect.com/science/article/pii/S1674987123002268 -> Development and application of feature engineered geological layers for ranking magmatic, volcanogenic, and orogenic system components in Archean greenstone belts
- https://qspace.library.queensu.ca/bitstream/handle/1974/28138/Cevik_Ilkay_S_202009_MASc.pdf?sequence=3&isAllowed=y -> MACHINE LEARNING ENHANCEMENTS FOR KNOWLEDGE DISCOVERY IN MINERAL EXPLORATION AND IMPROVED MINERAL RESOURCE CLASSIFICATION
- https://www.researchgate.net/publication/343511849_Identification_of_intrusive_lithologies_in_volcanic_terrains_in_British_Columbia_by_machine_learning_using_Random_Forests_the_value_of_using_a_soft_classifier
- https://www.researchgate.net/publication/365782501_Improving_Mineral_Prospectivity_Model_Generalization_An_Example_from_Orogenic_Gold_Mineralization_of_the_Sturgeon_Lake_Transect_Ontario_Canada
- https://www.researchgate.net/publication/348983384_Mineral_prospectivity_mapping_using_a_VNet_convolutional_neural_network
- corporate link
- https://www.researchgate.net/publication/369048379_Mineral_Prospectivity_Mapping_Using_Machine_Learning_Techniques_for_Gold_Exploration_in_the_Larder_Lake_Area_Ontario_Canada
- https://link.springer.com/article/10.1007/s11053-024-10451-0 -> Mineral Prospectivity Modeling of Graphite Deposits and Occurrences in Canada
- https://www.researchgate.net/publication/337167506_Orogenic_gold_prospectivity_mapping_using_machine_learning
- https://www.researchgate.net/publication/290509352_Precursors_predicted_by_artificial_neural_networks_for_mass_balance_calculations_Quantifying_hydrothermal_alteration_in_volcanic_rocks
- https://link.springer.com/article/10.1007/s11053-024-10438-x#Sec9 -> Pan-Canadian Predictive Modeling of Lithium–Cesium–Tantalum Pegmatites with Deep Learning and Natural Language Processing
- https://link.springer.com/article/10.1007/s11053-024-10369-7 -> Predictive Modeling of Canadian Carbonatite-Hosted REE +/− Nb Deposits
- https://www.sciencedirect.com/science/article/pii/S0098300422001406 -> Preliminary geological mapping with convolution neural network using statistical data augmentation on a 3D model
- https://www.researchgate.net/publication/352046255_Study_of_the_Influence_of_Non-Deposit_Locations_in_Data-Driven_Mineral_Prospectivity_Mapping_A_Case_Study_on_the_Iskut_Project_in_Northwestern_British_Columbia_Canada
- https://www.researchgate.net/publication/220164155_Support_vector_machine_A_tool_for_mapping_mineral_prospectivity
- https://www.researchgate.net/publication/348111963_Support_Vector_Machine_and_Artificial_Neural_Network_Modelling_of_Orogenic_Gold_Prospectivity_Mapping_in_the_Swayze_greenstone_belt_Ontario_Canada
- PhD thesis ->https://zone.biblio.laurentian.ca/bitstream/10219/3736/1/PhD%20Thesis%20Maepa_20210603.%281%29.pdf -> Exploration targeting for gold deposits using spatial data analytics, machine learning and deep transfer learning in the Swayze and Matheson greenstone belts, Ontario, Canada
- https://data.geology.gov.yk.ca/Reference/95936#InfoTab -> Updates to the Yukon Geological Survey’s mineral potential mapping methodology
- http://www.geosciencebc.com/i/pdf/SummaryofActivities2015/SoA2015_Granek.pdf -> Advanced Geoscience Targeting via Focused Machine Learning Applied to the QUEST Project Dataset, British Columbia
- https://www.researchgate.net/publication/323452014_The_Utility_of_Machine_Learning_in_Identification_of_Key_Geophysical_and_Geochemical_Datasets_A_Case_Study_in_Lithological_Mapping_in_the_Central_African_Copper_Belt
- https://www.researchgate.net/publication/334436808_Lithological_Mapping_in_the_Central_African_Copper_Belt_using_Random_Forests_and_Clustering_Strategies_for_Optimised_Results
- https://www.researchgate.net/publication/374968979_3D_cooperative_inversion_of_airborne_magnetic_and_gravity_gradient_data_using_deep_learning_techniques - 3D cooperative inversion of airborne magnetic and gravity gradient data using deep learning techniques [UNSEEN]
- https://www.researchgate.net/publication/369919958_3D_mineral_exploration_Cu-Zn_targeting_with_multi-source_geoscience_datasets_in_the_Weilasituo-bairendaba_district_Inner_Mongolia_China
- https://www.researchgate.net/publication/350817136_3D_Mineral_Prospectivity_Mapping_Based_on_Deep_Metallogenic_Prediction_Theory_A_Case_Study_of_the_Lala_Copper_Mine_Sichuan_China
- https://www.researchgate.net/publication/336771580_3D_Mineral_Prospectivity_Mapping_with_Random_Forests_A_Case_Study_of_Tongling_Anhui_China
- https://www.sciencedirect.com/science/article/pii/S0169136823005772 -> 3D mineral prospectivity modeling in the Sanshandao goldfield, China using the convolutional neural network with attention mechanism
- https://www.sciencedirect.com/science/article/pii/S0009281924001144 -> 3D mineral prospectivity modeling using deep adaptation network transfer learning: A case study of the Xiadian gold deposit, Eastern China
- https://www.sciencedirect.com/science/article/pii/S0009281924000497 -> 3D mineral prospectivity modeling using multi-scale 3D convolution neural network and spatial attention approaches
- https://www.researchgate.net/publication/366201930_3D_Quantitative_Metallogenic_Prediction_of_Indium-Rich_Ore_Bodies_in_the_Dulong_Sn-Zn_Polymetallic_Deposit_Yunnan_Province_SW_China
- https://www.researchgate.net/publication/329600793_A_combined_approach_using_spatially-weighted_principal_components_analysis_and_wavelet_transformation_for_geochemical_anomaly_mapping_in_the_Dashui_ore-concentration_district_Central_China
- https://www.researchgate.net/publication/349034539_A_Comparative_Study_of_Machine_Learning_Models_with_Hyperparameter_Optimization_Algorithm_for_Mapping_Mineral_Prospectivity
- https://www.researchgate.net/publication/354132594_A_Convolutional_Neural_Network_of_GoogLeNet_Applied_in_Mineral_Prospectivity_Prediction_Based_on_Multi-source_Geoinformation
- https://www.researchgate.net/publication/369865076_A_deep-learning-based_mineral_prospectivity_modeling_framework_and_workflow_in_prediction_of_porphyry-epithermal_mineralization_in_the_Duolong_Ore_District_Tibet
- https://www.researchgate.net/publication/374982967_A_Framework_for_Data-Driven_Mineral_Prospectivity_Mapping_with_Interpretable_Machine_Learning_and_Modulated_Predictive_Modeling
- https://www.sciencedirect.com/science/article/pii/S0169136824002026 -> A Global-Local collaborative approach to quantifying spatial non-stationarity in three-dimensional mineral prospectivity modeling
- https://link.springer.com/article/10.1007/s11053-024-10344-2 -> A Heterogeneous Graph Construction Method for Mineral Prospectivity Mapping [UNSEEN]
- https://www.researchgate.net/publication/353421842_A_hybrid_logistic_regression_gene_expression_programming_model_and_its_application_to_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/375764940_A_lightweight_convolutional_neural_network_with_end-to-end_learning_for_three-dimensional_mineral_prospectivity_modeling_A_case_study_of_the_Sanhetun_Area_Heilongjiang_Province_Northeastern_China
- https://www.researchgate.net/publication/339821823_A_Monte_Carlo-based_framework_for_risk-return_analysis_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/373715610_A_Multimodal_Learning_Framework_for_Comprehensive_3D_Mineral_Prospectivity_Modeling_with_Jointly_Learned_Structure-Fluid_Relationships
- https://www.sciencedirect.com/science/article/pii/S0169136824001343 -> A novel hybrid ensemble model for mineral prospectivity prediction: A case study in the Malipo W-Sn mineral district, Yunnan Province, China
- https://www.researchgate.net/publication/347344551_A_positive_and_unlabeled_learning_algorithm_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/335036019_An_Autoencoder-Based_Dimensionality_Reduction_Algorithm_for_Intelligent_Clustering_of_Mineral_Deposit_Data
- https://www.researchgate.net/publication/363696083_An_Integrated_Framework_for_Data-Driven_Mineral_Prospectivity_Mapping_Using_Bagging-Based_Positive_Unlabeled_Learning_and_Bayesian_Cost-Sensitive_Logistic_Regression
- https://link.springer.com/article/10.1007/s11053-024-10349-x -> An Uncertainty-Quantification Machine Learning Framework for Data-Driven Three-Dimensional Mineral Prospectivity Mapping
- https://link.springer.com/article/10.1007/s11004-023-10076-8 - An Interpretable Graph Attention Network for Mineral Prospectivity Mapping
- https://www.researchgate.net/publication/332751556_Application_of_hierarchical_clustering_singularity_mapping_and_Kohonen_neural_network_to_identify_Ag-Au-Pb-Zn_polymetallic_mineralization_associated_geochemical_anomaly_in_Pangxidong_district
- https://www.mdpi.com/2075-163X/14/9/945 -> Application of Machine Learning to Characterize Metallogenic Potential Based on Trace Elements of Zircon: A Case Study of the Tethyan Domain
- https://www.researchgate.net/publication/339096362_Application_of_nonconventional_mineral_exploration_techniques_case_studies
- https://www.researchgate.net/publication/325702993_Assessment_of_Geochemical_Anomaly_Uncertainty_Through_Geostatistical_Simulation_and_Singularity_Analysis
- https://www.researchgate.net/publication/368586826_Bagging-based_Positive-Unlabeled_Data_Learning_Algorithm_with_Base_Learners_Random_Forest_and_XGBoost_for_3D_Exploration_Targeting_in_the_Kalatongke_District_Xinjiang_China
- https://link.springer.com/article/10.1007/s11004-024-10153-6 -> Causal Discovery and Deep Learning Algorithms for Detecting Geochemical Patterns Associated with Gold-Polymetallic Mineralization: A Case Study of the Edongnan Region [UNSEEN]
- https://www.sciencedirect.com/science/article/pii/S0169136824001409 -> CNN-Transformers for mineral prospectivity mapping in the Maodeng–Baiyinchagan area, Southern Great Xing'an Range
- https://www.researchgate.net/publication/347079505_Convolutional_neural_network_and_transfer_learning_based_mineral_prospectivity_modeling_for_geochemical_exploration_of_Au_mineralization_within_the_Guandian-Zhangbaling_area_Anhui_Province_China
- https://www.researchgate.net/publication/352703015_Data-driven_based_logistic_function_and_prediction-area_plot_for_mineral_prospectivity_mapping_a_case_study_from_the_eastern_margin_of_Qinling_orogenic_belt_central_China
- https://www.sciencedirect.com/science/article/abs/pii/S0012825218306123 -> Deep learning and its application in geochemical mapping
- https://www.frontiersin.org/articles/10.3389/feart.2024.1308426/full -> Deep gold prospectivity modeling in the Jiaojia gold belt, Jiaodong Peninsula, eastern China using machine learning of geometric and geodynamic variables
- https://www.researchgate.net/publication/352893038_Detection_of_geochemical_anomalies_related_to_mineralization_using_the_GANomaly_network
- https://www.researchgate.net/publication/357685352_Determination_of_Predictive_Variables_in_Mineral_Prospectivity_Mapping_Using_Supervised_and_Unsupervised_Methods
- https://www.sciencedirect.com/science/article/abs/pii/S0375674221001370 -> Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition
- https://www.researchgate.net/publication/340401748_Effects_of_Random_Negative_Training_Samples_on_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/360333702_Ensemble_learning_models_with_a_Bayesian_optimization_algorithm_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/267927676_Evaluation_of_uncertainty_in_mineral_prospectivity_mapping_due_to_missing_evidence_A_case_study_with_skarn-type_Fe_deposits_in_Southwestern_Fujian_Province_China
- https://www.mdpi.com/2075-163X/14/5/492 ->Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China
- https://www.researchgate.net/publication/379852209_Fractal-Based_Multi-Criteria_Feature_Selection_to_Enhance_Predictive_Capability_of_AI-Driven_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/338789096_From_2D_to_3D_Modeling_of_Mineral_Prospectivity_Using_Multi-source_Geoscience_Datasets_Wulong_Gold_District_China
- https://www.researchgate.net/publication/359714254_Geochemical_characterization_of_the_Central_Mineral_Belt_U_Cu_Mo_V_mineralization_Labrador_Canada_Application_of_unsupervised_machine-learning_for_evaluation_of_IOCG_and_affiliated_mineral_potential
- https://www.researchgate.net/publication/350788828_Geochemically_Constrained_Prospectivity_Mapping_Aided_by_Unsupervised_Cluster_Analysis
- https://www.researchgate.net/publication/267927506_GIS-based_mineral_potential_modeling_by_advanced_spatial_analytical_methods_in_the_southeastern_Yunnan_mineral_district_China
- https://www.researchgate.net/publication/380190183_Geologically_Constrained_Convolutional_Neural_Network_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/332997161_GNER_A_Generative_Model_for_Geological_Named_Entity_Recognition_Without_Labeled_Data_Using_Deep_Learning
- https://www.researchgate.net/publication/307011381_Identification_and_mapping_of_geochemical_patterns_and_their_significance_for_regional_metallogeny_in_the_southern_Sanjiang_China
- https://link.springer.com/article/10.1007/s11053-024-10334-4 -> Identification of Geochemical Anomalies Using an End-to-End Transformer
- https://www.researchgate.net/publication/359627130_Identification_of_ore-finding_targets_using_the_anomaly_components_of_ore-forming_element_associations_extracted_by_SVD_and_PCA_in_the_Jiaodong_gold_cluster_area_Eastern_China
- https://www.researchgate.net/publication/282621670_Identifying_geochemical_anomalies_associated_with_Au-Cu_mineralization_using_multifractal_and_artificial_neural_network_models_in_the_Ningqiang_district_Shaanxi_China
- https://www.sciencedirect.com/science/article/abs/pii/S0375674224000943 -> Integrate physics-driven dynamics simulation with data-driven machine learning to predict potential targets in maturely explored orefields: A case study in Tongguangshan orefield, Tongling, China
- https://www.researchgate.net/publication/329299202_Integrating_sequential_indicator_simulation_and_singularity_analysis_to_analyze_uncertainty_of_geochemical_anomaly_for_exploration_targeting_of_tungsten_polymetallic_mineralization_Nanling_belt_South_
- https://www.sciencedirect.com/science/article/abs/pii/S0883292724001987 -> Integrating soil geochemistry and machine learning for enhanced mineral exploration at the dayu gold deposit, south China block
- https://www.mdpi.com/2071-1050/15/13/10269 -> Intelligent Identification and Prediction Mineral Resources Deposit Based on Deep Learning
- https://link.springer.com/article/10.1007/s11053-024-10396-4 -> Interpretable SHAP Model Combining Meta-learning and Vision Transformer for Lithology Classification Using Limited and Unbalanced Drilling Data in Well Logging
- https://www.researchgate.net/publication/358555996_Learning_3D_mineral_prospectivity_from_3D_geological_models_using_convolutional_neural_networks_Application_to_a_structure-controlled_hydrothermal_gold_deposit
- https://www.researchgate.net/publication/352476625_Machine_Learning-Based_3D_Modeling_of_Mineral_Prospectivity_Mapping_in_the_Anqing_Orefield_Eastern_China
- https://www.mdpi.com/2076-3417/15/8/4082 -> Machine-Learning-Based Integrated Mining Big Data and Multi-Dimensional Ore-Forming Prediction: A Case Study of Yanshan Iron Mine, Hebei, China
- https://www.researchgate.net/publication/331575655_Mapping_Geochemical_Anomalies_Through_Integrating_Random_Forest_and_Metric_Learning_Methods
- https://www.researchgate.net/publication/229399579_Mapping_geochemical_singularity_using_multifractal_analysis_Application_to_anomaly_definition_on_stream_sediments_data_from_Funin_Sheet_Yunnan_China
- https://www.researchgate.net/publication/328255422_Mapping_mineral_prospectivity_through_big_data_analytics_and_a_deep_learning_algorithm
- https://www.researchgate.net/publication/334106787_Mapping_Mineral_Prospectivity_via_Semi-supervised_Random_Forest
- https://www.researchgate.net/publication/236270466_Mapping_of_district-scale_potential_targets_using_fractal_models
- https://www.researchgate.net/publication/357584076_Mapping_prospectivity_for_regolith-hosted_REE_deposits_via_convolutional_neural_network_with_generative_adversarial_network_augmented_data
- https://www.researchgate.net/publication/328623280_Maximum_Entropy_and_Random_Forest_Modeling_of_Mineral_Potential_Analysis_of_Gold_Prospectivity_in_the_Hezuo-Meiwu_District_West_Qinling_Orogen_China
- https://www.sciencedirect.com/science/article/pii/S016913682400163X -> Metallogenic prediction based on fractal theory and machine learning in Duobaoshan Area, Heilongjiang Province
- https://www.sciencedirect.com/science/article/pii/S0169136824003810 -> Mineral prospectivity mapping susceptibility evaluation based on interpretable ensemble learning
- https://link.springer.com/article/10.1007/s11053-024-10386-6 -> Mineral Prospectivity Mapping Based on Spatial Feature Classification with Geological Map Knowledge Graph Embedding: Case Study of Gold Ore Prediction at Wulonggou, Qinghai Provinc
- https://www.researchgate.net/publication/235443301_Mineral_potential_mapping_in_a_frontier_region
- https://www.researchgate.net/publication/235443302_Mineral_potential_mapping_in_frontier_regions_A_Mongolian_case_study
- https://www.researchgate.net/publication/369104190_Mineral_Prospectivity_Mapping_Using_Attention-based_Convolutional_Neural_Network
- https://www.nature.com/articles/s41598-024-73357-0 -> Mineral prospectivity prediction based on convolutional neural network and ensemble learning
- https://www.researchgate.net/publication/329037175_Mineral_prospectivity_analysis_for_BIF_iron_deposits_A_case_study_in_the_Anshan-Benxi_area_Liaoning_province_North-East_China
- https://link.springer.com/article/10.1007/s11053-024-10335-3 -> Mineral Prospectivity Prediction Based on Self-Supervised Contrastive Learning and Geochemical Data: A Case Study of the Gold Deposit in the Malanyu District, Hebei Province, China [USEEN]
- https://www.researchgate.net/publication/377694139_Manganese_mineral_prospectivity_based_on_deep_convolutional_neural_networks_in_Songtao_of_northeastern_Guizhou
- https://www.researchgate.net/publication/ 351649498_Mineral_Prospectivity_Mapping_based_on_Isolation_Forest_and_Random_Forest_Implication_for_the_Existence_of_Spatial_Signature_of_Mineralization_in_Outliers
- https://www.researchgate.net/publication/358528670_Mineral_Prospectivity_Mapping_Based_on_Wavelet_Neural_Network_and_Monte_Carlo_Simulations_in_the_Nanling_W-Sn_Metallogenic_Province
- https://www.researchgate.net/publication/352983697_Mineral_prospectivity_mapping_by_deep_learning_method_in_Yawan-Daqiao_area_Gansu
- https://www.researchgate.net/publication/367106018_Mineral_Prospectivity_Mapping_of_Porphyry_Copper_Deposits_Based_on_Remote_Sensing_Imagery_and_Geochemical_Data_in_the_Duolong_Ore_District_Tibet - Mineral Prospectivity Mapping of Porphyry Copper Deposits Based on Remote Sensing Imagery and Geochemical Data in the Duolong Ore District, Tibet
- https://www.researchgate.net/publication/355749736_Mineral_prospectivity_mapping_using_a_joint_singularity-based_weighting_method_and_long_short-term_memory_network
- https://www.researchgate.net/publication/369104190_Mineral_Prospectivity_Mapping_Using_Attention-based_Convolutional_Neural_Network
- https://www.researchgate.net/publication/365434839_Mineral_Prospectivity_Mapping_Using_Deep_Self-Attention_Model
- https://www.researchgate.net/publication/379674196_Mineral_prospectivity_mapping_using_knowledge_embedding_and_explainable_ensemble_learning_A_case_study_of_the_Keeryin_ore_concentration_in_Sichuan_China
- Mineral Prospectivity Mapping Using Semi-supervised Machine Learning ->https://link.springer.com/article/10.1007/s11004-024-10161-6
- https://www.researchgate.net/publication/350817877_Mineral_Prospectivity_Prediction_via_Convolutional_Neural_Networks_Based_on_Geological_Big_Data
- https://www.researchgate.net/publication/338871759_Modeling-based_mineral_system_approach_to_prospectivity_mapping_of_stratabound_hydrothermal_deposits_A_case_study_of_MVT_Pb-Zn_deposits_in_the_Huayuan_area_northwestern_Hunan_Province_China
- https://www.sciencedirect.com/science/article/pii/S0169136824003172 -> New insights into the metallogenic genesis of the Xiadian Au deposit, Jiaodong Peninsula, Eastern China: Constraints from integrated rutile in-situ geochemical analysis and machine learning discrimination
- https://www.researchgate.net/publication/332547136_Prospectivity_Mapping_for_Porphyry_Cu-Mo_Mineralization_in_the_Eastern_Tianshan_Xinjiang_Northwestern_China
- https://www.sciencedirect.com/science/article/pii/S0169136824001823 -> Quantitative prediction methods and applications of digital ore deposit models
- https://www.researchgate.net/publication/344303914_Random-Drop_Data_Augmentation_of_Deep_Convolutional_Neural_Network_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/371044606_Supervised_Mineral_Prospectivity_Mapping_via_Class-Balanced_Focal_Loss_Function_on_Imbalanced_Geoscience_DatasetsSupervised Mineral Prospectivity Mapping via Class-Balanced Focal Loss Function on Imbalanced Geoscience Datasets
- https://www.researchgate.net/publication/361520562_Recognizing_Multivariate_Geochemical_Anomalies_Related_to_Mineralization_by_Using_Deep_Unsupervised_Graph_Learning
- https://www.sciencedirect.com/science/article/pii/S0169136824003937 -> Semi-supervised graph convolutional networks for integrating continuous and binary evidential layers for mineral exploration targeting
- https://www.sciencedirect.com/science/article/pii/S0009281924001375 -> Spatial weighting — An effective incorporation of geological expertise into deep learning models
- https://www.researchgate.net/publication/371044606_Supervised_Mineral_Prospectivity_Mapping_via_Class-Balanced_Focal_Loss_Function_on_Imbalanced_Geoscience_Datasets
- https://www.researchgate.net/publication/360028637_Three-Dimensional_Mineral_Prospectivity_Mapping_by_XGBoost_Modeling_A_Case_Study_of_the_Lannigou_Gold_Deposit_China
- https://link.springer.com/article/10.1007/s11053-024-10387-5 - Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model
- https://www.researchgate.net/publication/361589587_Unlabeled_Sample_Selection_for_Mineral_Prospectivity_Mapping_by_Semi-supervised_Support_Vector_Machine
- https://www.researchgate.net/publication/343515866_Using_deep_variational_autoencoder_networks_for_recognizing_geochemical_anomalies
- https://link.springer.com/article/10.1007/s11004-024-10151-8 -> Using Three-dimensional Modeling and Random Forests to Predict Deep Ore Potentials: A Case Study on Xiongcun Porphyry Copper–Gold Deposit in Tibet, China
- https://www.researchgate.net/publication/361194407_Visual_Interpretable_Deep_Learning_Algorithm_for_Geochemical_Anomaly_Recognition
- https://www.researchgate.net/publication/342339753_A_machine_learning_approach_to_tungsten_prospectivity_modelling_using_knowledge-driven_feature_extraction_and_model_confidence
- https://www.researchgate.net/project/Enhancing-the-Geological-Understanding-of-SW-England-Using-Machine-Learning-Algorithms
- https://www.researchgate.net/publication/360661926_Target-scale_prospectivity_modeling_for_gold_mineralization_within_the_Rajapalot_Au-Co_project_area_in_northern_Fennoscandian_Shield_Finland_Part_2_Application_of_self-organizing_maps_and_artificial_n
- https://www.sciencedirect.com/science/article/pii/S0169136824004037 -> Addressing imbalanced data for machine learning based mineral prospectivity mapping
- https://publications.csiro.au/publications/#publication/PIcsiro:EP146125/SQmineral%20prospectivity/RP1/RS50/RORECENT/STsearch-by-keyword/LISEA/RI12/RT26 -> A novel spatial analysis approach for assessing regional-scale mineral prospectivity In Northern Finland
- https://www.researchgate.net/publication/332352805_Boosting_for_Mineral_Prospectivity_Modeling_A_New_GIS_Toolbox
- https://www.researchgate.net/publication/324517415_Can_boosting_boost_minimal_invasive_exploration_targeting
- https://www.researchgate.net/publication/248955109_Combined_conceptualempirical_prospectivity_mapping_for_orogenic_gold_in_the_northern_Fennoscandian_Shield_Finland
- https://www.researchgate.net/publication/283451958_Data-driven_logistic-based_weighting_of_geochemical_and_geological_evidence_layers_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/320280611_Evaluation_of_boosting_algorithms_for_prospectivity_mapping
- https://www.researchgate.net/publication/298297988_Fuzzy_logic_data_integration_technique_used_as_a_nickel_exploration_tool
- https://www.researchgate.net/publication/259372191_Gravity_data_in_regional_scale_3D_and_gold_prospectivity_modelling_-_example_from_the_Central_Lapland_greenstone_belt_northern_Finland
- https://www.researchgate.net/publication/315381587_Introduction_to_the_special_issue_GIS-based_mineral_potential_targeting
- https://www.researchgate.net/publication/320709733_Knowledge-driven_prospectivity_model_for_Iron_oxide-Cu-Au_IOCG_deposits_in_northern_Finland
- https://tupa.gtk.fi/raportti/arkisto/57_2021.pdf -> Mineral Prospectivity and Exploration Targeting MinProXT 2021 Webinar - paper compilation
- https://tupa.gtk.fi/raportti/arkisto/29_2023.pdf -> Mineral Prospectivity and Exploration Targeting MinProXT 2022 Webinar - paper compilation
- https://www.researchgate.net/publication/312180531_Optimizing_a_Knowledge-driven_Prospectivity_Model_for_Gold_Deposits_Within_Perapohja_Belt_Northern_Finland
- https://www.researchgate.net/publication/320703774_Prospectivity_Models_for_Volcanogenic_Massive_Sulfide_Deposits_VMS_in_Northern_Finland
- https://www.researchgate.net/publication/280875727_Receiver_operating_characteristics_ROC_as_validation_tool_for_prospectivity_models_-_A_magmatic_Ni-Cu_case_study_from_the_Central_Lapland_Greenstone_Belt_Northern_Finland
- https://www.researchgate.net/publication/332298116_Scalability_of_the_Mineral_Prospectivity_Modelling_-_An_orogenic_gold_case_study_from_northern_Finland
- https://www.researchgate.net/publication/251786465_Spatial_data_analysis_as_a_tool_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/331006924_Unsupervised_clustering_and_empirical_fuzzy_memberships_for_mineral_prospectivity_modelling
- https://www.researchgate.net/publication/227256267_Application_of_Data-Driven_Evidential_Belief_Functions_to_Prospectivity_Mapping_for_Aquamarine-Bearing_Pegmatites_Lundazi_District_Zambia
- https://www.researchgate.net/publication/226842511_Mapping_of_prospectivity_and_estimation_of_number_of_undiscovered_prospects_for_lode_gold_southwestern_Ashanti_Belt_Ghana
- https://www.researchgate.net/publication/233791624_Spatial_association_of_gold_deposits_with_remotely_-_sensed_faults_South_Ashanti_belt_Ghana
- https://www.researchgate.net/publication/226092981_A_Hybrid_Neuro-Fuzzy_Model_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/225328359_A_Hybrid_Fuzzy_Weights-of-Evidence_Model_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/227221497_Artificial_Neural_Networks_for_Mineral-Potential_Mapping_A_Case_Study_from_Aravalli_Province_Western_India
- https://www.researchgate.net/publication/222050039_Bayesian_network_classifiers_for_mineral_potential_mapping
- https://www.researchgate.net/publication/355397149_Gold_Prospectivity_Mapping_in_the_Sonakhan_Greenstone_Belt_Central_India_A_Knowledge-Driven_Guide_for_Target_Delineation_in_a_Region_of_Low_Exploration_Maturity
- https://www.researchgate.net/publication/272092276_Extended_Weights-of-Evidence_Modelling_for_Predictive_Mapping_of_Base_Metal_Deposit_Potential_in_Aravalli_Province_Western_India
- https://www.researchgate.net/publication/226193283_Knowledge-Driven_and_Data-Driven_Fuzzy_Models_for_Predictive_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/238027981_SVM-based_base-metal_prospectivity_modeling_of_the_Aravalli_Orogen_Northwestern_India
- https://www.researchgate.net/publication/372636338_Unsupervised_machine_learning_based_prospectivity_analysis_of_NW_and_NE_India_for_carbonatite-alkaline_complex-related_REE_deposits
- https://www.researchgate.net/publication/390072341_Enhancing_regional-scale_Pb-Zn_prospectivity_mapping_through_data_augmentation_Joint_application_of_unsupervised_random_forests_and_convolutional_neural_network
- https://www.researchgate.net/publication/325697373_A_comparative_analysis_of_artificial_neural_network_ANN_wavelet_neural_network_WNN_and_support_vector_machine_SVM_data-driven_models_to_mineral_potential_mapping_for_copper_mineralizations_in_the_Shah
- https://www.researchgate.net/publication/358507255_A_Comparative_Study_of_Convolutional_Neural_Networks_and_Conventional_Machine_Learning_Models_for_Lithological_Mapping_Using_Remote_Sensing_Data
- https://www.researchgate.net/publication/351750324_A_data_augmentation_approach_to_XGboost-based_mineral_potential_mapping_An_example_of_carbonate-hosted_Zn_Pb_mineral_systems_of_Western_Iran
- https://www.researchgate.net/publication/336471932_A_knowledge-guided_fuzzy_inference_approach_for_integrating_geophysics_geochemistry_and_geology_data_in_deposit-scale_porphyry_copper_targeting_Saveh-Iran
- https://www.researchgate.net/publication/348500913_A_new_strategy_for_spatial_predictive_mapping_of_mineral_prospectivity
- https://www.researchgate.net/publication/348482539_A_new_strategy_for_spatial_predictive_mapping_of_mineral_prospectivity_Automated_hyperparameter_tuning_of_random_forest_approach
- https://www.researchgate.net/publication/352251016_A_simulation-based_framework_for_modulating_the_effects_of_subjectivity_in_greenfield_Mineral_Prospectivity_Mapping_with_geochemical_and_geological_data
- https://www.researchgate.net/publication/296638839_An_AHP-TOPSIS_Predictive_Model_for_District-Scale_Mapping_of_Porphyry_Cu-Au_Potential_A_Case_Study_from_Salafchegan_Area_Central_Iran
- https://www.researchgate.net/publication/278029106_Application_of_Discriminant_Analysis_and_Support_Vector_Machine_in_Mapping_Gold_Potential_Areas_for_Further_Drilling_in_the_Sari-Gunay_Gold_Deposit_NW_Iran
- https://www.researchgate.net/publication/220164381_Application_of_geochemical_zonality_coefficients_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/330359897_Application_of_hybrid_AHP-TOPSIS_method_for_prospectivity_modeling_of_Cu_porphyry_in_Varzaghan_district_Iran
- https://www.researchgate.net/publication/356872819_Application_of_self-organizing_map_SOM_and_K-means_clustering_algorithms_for_portraying_geochemical_anomaly_patterns_in_Moalleman_district_NE_Iran
- https://www.researchgate.net/publication/258505300_Application_of_staged_factor_analysis_and_logistic_function_to_create_a_fuzzy_stream_sediment_geochemical_evidence_layer_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/358567148_Applications_of_data_augmentation_in_mineral_prospectivity_prediction_based_on_convolutional_neural_networks
- https://www.researchgate.net/publication/353761696_Assessing_the_effects_of_mineral_systems-derived_exploration_targeting_criteria_for_Random_Forests-based_predictive_mapping_of_mineral_prospectivity_in_Ahar-Arasbaran_area_Iran
- https://www.sciencedirect.com/science/article/abs/pii/S0375674225000871 -> A semi-supervised learning framework for intelligent mineral prospectivity mapping: Incorporation of the CatBoost and Gaussian mixture model algorithms [UNSEEN]
- https://www.researchgate.net/publication/270586282_Data-Driven_Index_Overlay_and_Boolean_Logic_Mineral_Prospectivity_Modeling_in_Greenfields_Exploration
- https://www.researchgate.net/publication/356660905_Deep_GMDH_Neural_Networks_for_Predictive_Mapping_of_Mineral_Prospectivity_in_Terrains_Hosting_Few_but_Large_Mineral_Deposits
- https://link.springer.com/article/10.1007/s12145-025-01708-0 Density based spatial clustering of applications with noise and fuzzy C-means algorithms for unsupervised mineral prospectivity mapping [UNSEEN]
- https://www.researchgate.net/publication/317240761_Enhancement_and_Mapping_of_Weak_Multivariate_Stream_Sediment_Geochemical_Anomalies_in_Ahar_Area_NW_Iran
- https://www.sciencedirect.com/science/article/pii/S0009281924001223 -> Enhancing training performance of convolutional neural network algorithm through an autoencoder-based unsupervised labeling framework for mineral exploration targeting
- https://www.researchgate.net/publication/356580903_Evidential_data_integration_to_produce_porphyry_Cu_prospectivity_map_using_a_combination_of_knowledge_and_data_driven_methods
- https://research-repository.uwa.edu.au/en/publications/exploration-feature-selection-applied-to-hybrid-data-integration-Exploration feature selection applied to hybrid data integrationmodeling: Targeting copper-gold potential in central
- https://www.researchgate.net/publication/333199619_Incorporation_of_principal_component_analysis_geostatistical_interpolation_approaches_and_frequency-space-based_models_for_portraying_the_Cu-Au_geochemical_prospects_in_the_Feizabad_district_NW_Iran
- https://www.researchgate.net/publication/351965039_Intelligent_geochemical_exploration_modeling_using_multiclass_support_vector_machine_and_integration_it_with_continuous_genetic_algorithm_in_Gonabad_region_Khorasan_Razavi_Iran
- https://www.researchgate.net/publication/310658663_Multifractal_interpolation_and_spectrum-area_fractal_modeling_of_stream_sediment_geochemical_data_Implications_for_mapping_exploration_targets
- https://www.researchgate.net/publication/267635150_Multivariate_regression_analysis_of_lithogeochemical_data_to_model_subsurface_mineralization_A_case_study_from_the_Sari_Gunay_epithermal_gold_deposit_NW_Iran
- https://www.researchgate.net/publication/330129457_Performance_evaluation_of_RBF-_and_SVM-based_machine_learning_algorithms_for_predictive_mineral_prospectivity_modeling_integration_of_S-A_multifractal_model_and_mineralization_controls
- https://www.researchgate.net/publication/353982380_Porphyry_Cu-Au_prospectivity_modelling_using_semi-supervised_learning_algorithm_in_Dehsalm_district_eastern_Iran_In_Farsi_with_extended_English_abstract
- https://www.researchgate.net/publication/320886789_Prospectivity_analysis_of_orogenic_gold_deposits_in_Saqez-Sardasht_Goldfield_Zagros_Orogen_Iran
- https://www.researchgate.net/publication/361529867_Prospectivity_mapping_of_orogenic_lode_gold_deposits_using_fuzzy_models_a_case_study_of_Saqqez_area_NW_of_Iran
- https://www.researchgate.net/publication/361717490_Quantifying_Uncertainties_Linked_to_the_Diversity_of_Mathematical_Frameworks_in_Knowledge-Driven_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/374730424_Recognition_of_mineralization-related_anomaly_patterns_through_an_autoencoder_neural_network_for_mineral_exploration_targeting
- https://www.researchgate.net/publication/349957803_Regional-Scale_Mineral_Prospectivity_Mapping_Support_Vector_Machines_and_an_Improved_Data-Driven_Multi-criteria_Decision-Making_Technique
- https://www.researchgate.net/publication/339153591_Sensitivity_analysis_of_prospectivity_modeling_to_evidence_maps_Enhancing_success_of_targeting_for_epithermal_gold_Takab_district_NW_Iran
- https://www.researchgate.net/publication/321076980_Spatial_analyses_of_exploration_evidence_data_to_model_skarn-type_copper_prospectivity_in_the_Varzaghan_district_NW_Iran
- https://www.researchgate.net/publication/304904242_Stepwise_regression_for_recognition_of_geochemical_anomalies_Case_study_in_Takab_area_NW_Iran
- https://www.researchgate.net/publication/350423220_Supervised_mineral_exploration_targeting_and_the_challenges_with_the_selection_of_deposit_and_non-deposit_sites_thereof
- https://www.sciencedirect.com/science/article/pii/S0009281924000801 -> Targeting porphyry Cu deposits in the Chahargonbad region of Iran: A joint application of deep belief networks and random forest techniques
- https://www.researchgate.net/publication/307874730_The_use_of_decision_tree_induction_and_artificial_neural_networks_for_recognizing_the_geochemical_distribution_patterns_of_LREE_in_the_Choghart_deposit_Central_Iran
- https://www.researchsquare.com/article/rs-4760956/v1 -> Uncertainty reduction with Hyperparameter Optimization in mineral prospectivity mapping: A Regularized Artificial Neural Network approach[UNSEEN]
- https://www.gsi.ie/en-ie/programmes-and-projects/tellus/activities/tellus-product-development/mineral-prospectivity/Pages/default.aspx - > NW Midlands Mineral Prospectivity Mapping
- https://www.mdpi.com/2075-163X/9/2/131/htm - Prospectivity Mapping of Mineral Deposits in Northern Norway Using Radial Basis Function Neural Networks
- https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.13031 _> Advanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote Sensing Imaging Data
- https://www.researchgate.net/publication/221911782_Application_of_Artificial_Neural_Network_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/359861043_Rock_Classification_in_a_Vanadiferous_Titanomagnetite_Deposit_Based_on_Supervised_Machine_Learning#fullTextFileContent Rock Classification in a Vanadiferous Titanomagnetite Deposit Based on Supervised Machine Learning
- https://www.researchgate.net/publication/382131746_Domain_Adaptation_from_Drilling_to_Geophysical_Data_for_Mineral_Exploration
- https://www.researchgate.net/publication/359632307_A_Geologically_Constrained_Variational_Autoencoder_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/263174923_Application_of_Mineral_Exploration_Models_and_GIS_to_Generate_Mineral_Potential_Maps_as_Input_for_Optimum_Land-Use_Planning_in_the_Philippines
- https://www.researchgate.net/publication/267927677_Data-driven_predictive_mapping_of_gold_prospectivity_Baguio_district_Philippines_Application_of_Random_Forests_algorithm
- https://www.researchgate.net/publication/276271833_Data-Driven_Predictive_Modeling_of_Mineral_Prospectivity_Using_Random_Forests_A_Case_Study_in_Catanduanes_Island_Philippines
- https://www.researchgate.net/publication/209803275_Evidential_belief_functions_for_data-driven_geologically_constrained_mapping_of_gold_potential_Baguio_district_Philippines
- https://www.researchgate.net/publication/241001432_Geologically_Constrained_Probabilistic_Mapping_of_Gold_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/263724277_Geologically_Constrained_Fuzzy_Mapping_of_Gold_Mineralization_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/229641286_Improved_Wildcat_Modelling_of_Mineral_Prospectivity
- https://www.researchgate.net/publication/238447208_Logistic_Regression_for_Geologically_Constrained_Mapping_of_Gold_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/248977334_Mineral_imaging_with_Landsat_TM_data_for_hydrothermal_alteration_mapping_in_heavily-vegetated_terrane
- https://www.researchgate.net/publication/356546133_Mineral_Prospectivity_Mapping_via_Gated_Recurrent_Unit_Model
- https://www.researchgate.net/publication/267640864_Random_forest_predictive_modeling_of_mineral_prospectivity_with_small_number_of_prospects_and_data_with_missing_values_in_Abra_Philippines
- https://www.researchgate.net/publication/3931975_Remote_detection_of_vegetation_stress_for_mineral_exploration
- https://www.researchgate.net/publication/263422015_Where_Are_Porphyry_Copper_Deposits_Spatially_Localized_A_Case_Study_in_Benguet_Province_Philippines
- https://www.researchgate.net/publication/233488614_Wildcat_mapping_of_gold_potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/226982180_Weights_of_Evidence_Modeling_of_Mineral_Potential_A_Case_Study_Using_Small_Number_of_Prospects_Abra_Philippines
- https://www.researchgate.net/publication/358431343_Application_of_Maximum_Entropy_for_Mineral_Prospectivity_Mapping_in_Heavily_Vegetated_Areas_of_Greater_Kurile_Chain_with_Landsat_8_Data
- https://www.researchgate.net/publication/354000754_Mineral_Prospectivity_Mapping_for_Forecasting_Gold_Deposits_in_the_Central_Kolyma_Region_North-East_Russia
- https://www.researchgate.net/publication/359294267_Data-driven_multi-index_overlay_gold_prospectivity_mapping_using_geophysical_and_remote_sensing_datasets
- https://link.springer.com/article/10.1007/s11053-024-10390-w -> Mineral Reconnaissance Through Scientific Consensus: First National Prospectivity Maps for PGE–Ni–Cu–Cr and Witwatersrand-type Au Deposits in South Africa
- https://www.researchgate.net/publication/361526053_Mineral_prospectivity_mapping_of_gold-base_metal_mineralisation_in_the_Sabie-Pilgrim%27s_Rest_area_Mpumalanga_Province_South_Africa
- https://www.researchgate.net/publication/264296137_PREDICTIVE_BEDROCK_AND_MINERAL_PROSPECTIVITY_MAPPING_IN_THE_GIYANI_GREENSTONE_BELT_SOUTH_AFRICA
- https://www.researchgate.net/publication/268196204_Predictive_mapping_of_prospectivity_for_orogenic_gold_Giyani_greenstone_belt_South_Africa
- https://www.researchgate.net/publication/225656353_Deriving_Optimal_Exploration_Target_Zones_on_Mineral_Prospectivity_Maps
- https://www.researchgate.net/publication/222198648_Knowledge-guided_data-driven_evidential_belief_modeling_of_mineral_prospectivity_in_Cabo_de_Gata_SE_Spain
- https://www.researchgate.net/publication/356639977_Machine_learning_models_for_Hg_prospecting_in_the_Almaden_mining_district
- https://www.researchgate.net/publication/43165602_Methodology_for_deriving_optimal_exploration_target_zones
- https://www.researchgate.net/publication/263542579_Optimal_Exploration_Target_Zones
- https://www.researchgate.net/publication/222892103_Optimal_field_sampling_for_targeting_minerals_using_hyperspectral_data
- https://www.researchgate.net/publication/271671416_Predictive_modelling_of_gold_potential_with_the_integration_of_multisource_information_based_on_random_forest_a_case_study_on_the_Rodalquilar_area_Southern_Spain
- https://link.springer.com/article/10.1007/s11053-024-10387-5 -> Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model [UNSEEN]
- https://www.researchgate.net/publication/259128115_Biogeochemical_expression_of_rare_earth_element_and_zirconium_mineralization_at_Norra_Karr_Southern_Sweden
- https://www.researchgate.net/publication/260086862_COMPARISION_OF_VMS_PROSPECTIVITY_MAPPING_BY_EBF_AND_WOFE_MODELING_THE_SKELLEFTE_DISTRICT_SWEDEN
- https://www.researchgate.net/publication/336086368_GIS-based_mineral_system_approach_for_prospectivity_mapping_of_iron-oxide_apatite-bearing_mineralisation_in_Bergslagen_Sweden
- https://www.researchgate.net/publication/229347041_Predictive_mapping_of_prospectivity_and_quantitative_estimation_of_undiscovered_VMS_deposits_in_Skellefte_district_Sweden
- https://www.researchgate.net/publication/260086947_PRELIMINARY_GIS-BASED_ANALYSIS_OF_REGIONAL-SCALE_VMS_PROSPECTIVITY_IN_THE_SKELLEFTE_REGION_SWEDEN
- https://www.sciencedirect.com/science/article/pii/S2666261224000270 -> Machine learning based prospect targeting: A case of gold occurrence in central parts of Tanzania, East Africa
- https://www.researchgate.net/publication/242339962_Predictive_mapping_for_orogenic_gold_prospectivity_in_Uganda
- https://www.researchgate.net/publication/262566098_Predictive_Mapping_of_Prospectivity_for_Orogenic_Gold_in_Uganda
- https://www.researchgate.net/publication/381219015_Machine_Learning_Application_in_Predictive_Mineral_Mapping_of_Southwestern_Uganda_Leveraging_Airborne_Magnetic_Radiometric_and_Electromagnetic_Data
- https://www.researchgate.net/publication/338663292_A_Predictive_Geospatial_Exploration_Model_for_Mississippi_Valley_Type_Pb-Zn_Mineralization_in_the_Southeast_Missouri_Lead_District
- Machine Learning and Plate Tectonic Analysis for Mantle Heterogeneity, Paleoclimate, and Critical Minerals ->https://repository.arizona.edu/handle/10150/675507?show=full
- https://www.sciencedirect.com/science/article/abs/pii/S0375674218300396?via%3Dihub -> Machine learning strategies for classification and prediction of alteration facies: Examples from the Rosemont Cu-Mo-Ag skarn deposit, SE Tucson Arizona
- [presentation of the above!]https://www.slideshare.net/JuanCarlosOrdezCalde/geology-chemostratigraphy-and-alteration-geochemistry-of-the-rosemont-cumoag-skarn-deposit-southern-arizona
- https://github.com/rohitash-chandra/research/blob/master/presentations/CSIRO%20Minerals-Seminar-September2022.pdf -> Machine Learning for Mineral Exploration: A Data Odyssey
- Videohttps://www.youtube.com/watch?v=zhXuPQy7mk8&t=561s -> Talks about using plate subduction and associated statistics via GPlates
- https://www.researchgate.net/publication/263542565_APPLICATION_OF_REMOTE_SENSING_AND_SPATIAL_DATA_INTEGRATION_TO_PREDICT_POTENTIAL_ZONES_FOR_AQUAMARINE-BEARING_PEGMATITES_LUNDAZI_AREA_NORTHEAST_ZAMBIA
- https://www.researchgate.net/publication/264041472_Geological_and_Mineral_Potential_Mapping_by_Geoscience_Data_Integration
- https://www.sciencedirect.com/science/article/pii/S2772883824000347 -> A review on the applications of airborne geophysical and remote sensing datasets in epithermal gold mineralisation mapping
- https://www.researchgate.net/publication/353530416_A_Systematic_Review_on_the_Application_of_Machine_Learning_in_Exploiting_Mineralogical_Data_in_Mining_and_Mineral_Industry
- https://www.researchgate.net/publication/365777421_Computer_Vision_and_Pattern_Recognition_for_the_Analysis_of_2D3D_Remote_Sensing_Data_in_Geoscience_A_Survey - Computer Vision and Pattern Recognition for the Analysis of 2D/3D Remote Sensing Data in Geoscience: A Survey
- https://www.researchgate.net/publication/352104303_Deep_Learning_for_Geophysics_Current_and_Future_Trends
- https://www.proquest.com/openview/e7bec6c8ee50183b5049516b000d4f5c/1?pq-origsite=gscholar&cbl=18750&diss=y -> Probabilistic Knowledge-Guided Machine Learning in Engineering and Geoscience Systems
- KGMLPrescribedFires repository for one paper / part of above dissertation
- https://pubs.er.usgs.gov/publication/ofr20211049 -> Deposit Classification Scheme for the Critical Minerals Mapping Initiative Global Geochemical Database
- https://www.escubed.org/journals/earth-science-systems-and-society/articles/10.3389/esss.2024.10109/full -> Geospatial Data and Deep Learning Expose ESG Risks to Critical Raw Materials Supply: The Case of Lithium
Causal Discovery and Deep Learning Algorithms for Detecting Geochemical Patterns Associated with Gold-Polymetallic Mineralization: A Case Study of the Edongnan Region
- https://link.springer.com/article/10.1007/s11053-024-10408-3 -> A New Sphalerite Thermometer Based on Machine Learning with Trace Element Geochemistry
- https://www.researchgate.net/publication/378150628_A_SMOTified_extreme_learning_machine_for_identifying_mineralization_anomalies_from_geochemical_exploration_data_a_case_study_from_the_Yeniugou_area_Xinjiang_China A SMOTified extreme learning machine for identifying mineralization anomalies from geochemical exploration data
- https://ui.adsabs.harvard.edu/abs/2018EGUGA..20.4169R/abstract -> Accelerating minerals exploration with in-field characterisation, sample tracking and active machine learning
- https://www.researchgate.net/publication/375509344_Alteration_assemblage_characterization_using_machine_learning_applied_to_high_resolution_drill-core_images_hyperspectral_data_and_geochemistry
- https://qspace.library.queensu.ca/items/38f52d19-609d-4916-bcd0-3ce20675dee3/full - > Application of Computational Methods to Data Integration and Geoscientific Problems in Mineral Exploration and Mining
- https://www.sciencedirect.com/science/article/pii/S0169136822005509?dgcid=rss_sd_all -> Applying neural networks-based modelling to the prediction of mineralization: A case-study using the Western Australian Geochemistry (WACHEM) database
- https://www.sciencedirect.com/science/article/pii/S0169136824002099 -> Development of a machine learning model to classify mineral deposits using sphalerite chemistry and mineral assemblages
- https://www.sciencedirect.com/science/article/pii/S0169136824002403 -> Discrimination of deposit types using magnetite geochemistry based on machine learning
- https://www.researchgate.net/publication/302595237_A_machine_learning_approach_to_geochemical_mapping
- https://www.researchgate.net/publication/369300132_DEEP-LEARNING_IDENTIFICATION_OF_ANOMALOUS_DATA_IN_GEOCHEMICAL_DATASETS_DEEP-LEARNING_IDENTIFICATION_OF_ANOMALOUS_DATA_IN_GEOCHEMICAL_DATASETS
- https://www.researchgate.net/publication/378549920_Denoising_of_geochemical_data_using_deep_learning-Implications_for_regional_surveys -> Denoising of Geochemical Data using Deep Learning–Implications for Regional Surveys]
- https://www.researchgate.net/publication/368489689_Discrimination_of_Pb-Zn_deposit_types_using_sphalerite_geochemistry_New_insights_from_machine_learning_algorithm
- https://www.researchgate.net/publication/381369176_Effectiveness_of_LOF_iForest_and_OCSVM_in_detecting_anomalies_in_stream_sediment_geochemical_data#:~:text=LOF%20outperformed%20iForest%20and%20OCSVM,patterns%20in%20the%20iForest%20map
- Fusion of Geochemical Data and Remote SensingData Based on Convolutional Neural Network ->https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10758357
- https://dzkjqb.cug.edu.cn/en/article/doi/10.19509/j.cnki.dzkq.tb20220423 -> Gaussian mixture model in geochemical anomaly delineation of stream sediments: A case study of Xupu, Hunan Province [UNSEEN]
- https://www.sciencedirect.com/science/article/pii/S0883292724002427 -> Geologically constrained unsupervised dual-branch deep learning algorithm for geochemical anomalies identification
- https://www.researchgate.net/publication/365953549_Incorporating_the_genetic_and_firefly_optimization_algorithms_into_K-means_clustering_method_for_detection_of_porphyry_and_skarn_Cu-related_geochemical_footprints_in_Baft_district_Kerman_Iran
- https://www.researchgate.net/publication/369768936_Infomax-based_deep_autoencoder_network_for_recognition_of_multi-element_geochemical_anomalies_linked_to_mineralization -> Paywalled
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424001626 -> Local phase-constrained convolutional autoencoder network for identifying multivariate geochemical anomalies
- https://www.researchgate.net/publication/354564681_Machine_Learning_for_Identification_of_Primary_Water_Concentrations_in_Mantle_Pyroxene
- https://www.researchgate.net/publication/366210211_Machine_Learning_Prediction_of_Ore_Deposit_Genetic_Type_Using_Magnetite_Geochemistry
- https://link.springer.com/article/10.1007/s42461-024-01013-2 -> NIR-Spectroscopy and Machine Learning Models to Pre-concentrate Copper Hosted Within Sedimentary Rocks[UNSEEN]
- https://www.researchsquare.com/article/rs-4106957/v1 -> Multi-element geochemical anomaly recognition applying geologically-constrained convolutional deep learning algorithm with Butterworth filtering
- https://www.researchgate.net/publication/369241349_Quantifying_continental_crust_thickness_using_the_machine_learning_method
- https://link.springer.com/article/10.1007/s11004-024-10158-1 -> Spatial-Spectrum Two-Branch Model Based on a Superpixel Graph Convolutional Network and 1DCNN for Geochemical Anomaly Identification
- https://www.researchgate.net/publication/334651800_Using_machine_learning_to_estimate_a_key_missing_geochemical_variable_in_mining_exploration_Application_of_the_Random_Forest_algorithm_to_multi-sensor_core_logging_data
- https://www.researchgate.net/publication/377892369_Apatite_trace_element_composition_as_an_indicator_of_ore_deposit_types_A_machine_learning_approachApatite trace element composition as an indicator of ore deposit types: A machine learning approach
- https://www.researchgate.net/publication/369729999_Visual_Interpretation_of_Machine_Learning_Genetical_Classification_of_Apatite_from_Various_Ore_Sources
- https://ieeexplore.ieee.org/abstract/document/10544529 -> Remote sensing data processing using convolutional neural networks for mapping alteration zones [UNSEEN]
- https://www.researchgate.net/publication/332263305_A_speedy_update_on_machine_learning_applied_to_bedrock_mapping_using_geochemistry_or_geophysics_examples_from_the_Pacific_Rim_and_nearby
- https://eprints.utas.edu.au/32368/ - thesis paper update
- https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2024.1407173/full -> Deep learning for geological mapping in the overburden area
- https://www.researchgate.net/publication/280038632_Estimating_the_fill_thickness_and_bedrock_topography_in_intermontane_valleys_using_artificial_neural_networks_-_Supporting_Information
- https://www.researchgate.net/publication/311783770_Mapping_the_global_depth_to_bedrock_for_land_surface_modeling
- https://www.researchgate.net/publication/379813337_Contribution_to_advancing_aquifer_geometric_mapping_using_machine_learning_and_deep_learning_techniques_a_case_study_of_the_AL_Haouz-Mejjate_aquifer_Marrakech_Morocco
- https://www.linkedin.com/pulse/depth-basement-modelling-machine-learning-perspective-n5gyc/?trackingId=qFSktvVPUiSa2V2nlmXVoQ%3D%3D
- https://pubmed.ncbi.nlm.nih.gov/35776744/ - Deep learning based lithology classification of drill core images
- https://www.researchgate.net/publication/381445417_Machine_Learning_for_Lithology_Analysis_using_a_Multi-Modal_Approach_of_Integrating_XRF_and_XCT_data
- https://www.researchgate.net/publication/379760986_A_machine_vision_approach_for_detecting_changes_in_drill_core_textures_using_optical_images
- https://www.sciencedirect.com/science/article/pii/S2949891024002112 -> Sensitivity analysis of similarity learning models for well-intervals based on logging data
- https://www.sciencedirect.com/science/article/pii/S2949891024003828 -> CoreViT: a new vision transformer model for lithology identification in cores
- https://www.researchgate.net/publication/390084932_A_Deep_Learning_Method_for_3D_Geological_Modeling_Using_ET4DD_with_Offset-Attention_Mechanism -> A deep learning method for 3D geological modeling using ET4DD with offset-attention mechanism [UNSEEN - repo listed in paper but not available]
- https://www.sciencedirect.com/science/article/pii/S0034425724002323 -> Deep learning-based geological map generation using geological routes
- https://www.researchgate.net/publication/354781583_Deep_learning_framework_for_geological_symbol_detection_on_geological_maps
- https://www.researchgate.net/publication/335104674_Does_shallow_geological_knowledge_help_neural-networks_to_predict_deep_units
- https://www.researchgate.net/publication/379939974_Graph_convolutional_network_for_lithological_classification_and_mapping_using_stream_sediment_geochemical_data_and_geophysical_data
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424001493-> FlexLogNet: A flexible deep learning-based well-log completion method of adaptively using what you have to predict what you are missing
- https://ieeexplore.ieee.org/abstract/document/10493129 -> Geological Background Prototype Learning Enhanced Network for Remote Sensing-Based Engineering Geological Lithology Interpretation in Highly Vegetated Areas [Unseen]
- https://www.sciencedirect.com/science/article/pii/S2096249524000619 -> Generating extremely low-dimensional representation of subsurface earth models using vector quantization and deep Autoencoder
- https://www.researchgate.net/publication/370175012_GeoPDNN_A_Semisupervised_Deep_Learning_Neural_Network_Using_Pseudolabels_for_Three-dimensional_Urban_Geological_Modelling_and_Uncertainty_Analysis_from_Borehole_Data
- https://www.researchsquare.com/article/rs-4805227/v1 -> Synergizing AI with Geology: Exploring VisionTransformers for Rock Classification
- https://www.researchgate.net/publication/343511849_Identification_of_intrusive_lithologies_in_volcanic_terrains_in_British_Columbia_by_machine_learning_using_Random_Forests_the_value_of_using_a_soft_classifier
- https://www.sciencedirect.com/science/article/pii/S0169136824000921 -> Machine learning-based field geological mapping: A new exploration of geological survey data acquisition strategyhttps://www.researchgate.net/publication/324411647_Predicting_rock_type_and_detecting_hydrothermal_alteration_using_machine_learning_and_petrophysical_properties_of_the_Canadian_Malartic_ore_and_host_rocks_Pontiac_Subprovince_Quebec_Canada
- https://www.sciencedirect.com/science/article/abs/pii/S0895981124001743 -> Utilizing Random Forest algorithm for identifying mafic and ultramafic rocks in the Gameleira Suite, Archean-Paleoproterozoic basement of the Brasília Belt, Brazil
- https://arxiv.org/pdf/2407.18100 -> DINOv2 Rocks Geological Image Analysis: Classification
- https://jgsb.sgb.gov.br/index.php/journal/article/view/252 -> Unveiling geological complexity in the Serra Dourada Granite using self-organizing maps and hierarchical clustering: Insights for REE prospecting in the Goiás Tin Province, Brasília Belt, Central Brazil
- https://agu.confex.com/agu/fm18/mediafile/Handout/Paper427843/Landforms%20Poster.pdf -> Using machine learning to classify landforms for minerals exploration
- https://www.tandfonline.com/doi/abs/10.1080/13658816.2024.2414409 -> GeomorPM: a geomorphic pretrained model integrating convolution and Transformer architectures based on DEM data
- https://www.researchgate.net/publication/389767586_Machine_Learning_for_Characterizing_Magma_Fertility_in_Porphyry_Copper_Deposits_A_Case_Study_of_Southeastern_Tibet
- https://www.sciencedirect.com/science/article/abs/pii/S0926985125000692 -> Identifying ultramafic rocks using artificial neural network method based on aeromagnetic data [UNSEEN]
- https://link.springer.com/article/10.1007/s11053-024-10396-4 -> Interpretable SHAP Model Combining Meta-learning and Vision Transformer for Lithology Classification Using Limited and Unbalanced Drilling Data in Well Logging [UNSEN]
- https://www.nature.com/articles/s41598-024-66199-3 -> Machine learning and remote sensing-based lithological mapping of the Duwi Shear-Belt area, Central Eastern Desert, Egypt
- https://link.springer.com/article/10.1007/s11053-024-10375-9 - SsL-VGMM: A Semisupervised Machine Learning Model of Multisource Data Fusion for Lithology Prediction [UNSEEN]
- https://www.researchgate.net/publication/380719080_An_integrated_machine_learning_framework_with_uncertainty_quantification_for_three-dimensional_lithological_modeling_from_multi-source_geophysical_data_and_drilling_data
- https://www.bio-conferences.org/articles/bioconf/pdf/2024/34/bioconf_rena23_01005.pdf -> Lithological Mapping using Artificial Intelligence and Remote Sensing data: A Case Study of Bab Boudir region Morocco
- https://pubs.geoscienceworld.org/msa/ammin/article-abstract/doi/10.2138/am-2023-9092/636861/The-application-of-transfer-learning-in-optical -> The application of “transfer learning” in optical microscopy: the petrographic classification of metallic minerals
- https://www.researchgate.net/publication/385074584_Deep_Learning-Based_Mineral_Classification_Using_Pre-Trained_VGG16_Model_with_Data_Augmentation_Challenges_and_Future_Directions
- https://link.springer.com/article/10.1007/s11053-025-10485-y -> Uncertainty Quantification of Microblock-Based Resource Models and Sequencing of Sampling
- https://www.researchgate.net/publication/335486001_A_Stratigraphic_Prediction_Method_Based_on_Machine_Learning
- https://www.researchgate.net/publication/346641320_Classifying_basin-scale_stratigraphic_geometries_from_subsurface_formation_tops_with_machine_learning
- https://www.sciencedirect.com/science/article/pii/S0098300421000285 -> A machine learning model for structural trend fields
- https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.13589 -> Inferring fault structures and overburden depth in 3D from geophysical data using machine learning algorithms – A case study on the Fenelon gold deposit, Quebec, Canada
- https://www.sciencedirect.com/science/article/pii/S019181412400138X -> Mapping paleostress trajectories by means of the clustering of reduced stress tensors determined from homogeneous and heterogeneous data sets
- https://www.researchgate.net/publication/332267249_Seismic_fault_detection_using_an_encoder-decoder_convolutional_neural_network_with_a_small_training_set
- https://www.researchgate.net/publication/377168034_Unsupervised_machine_learning_and_depth_clusters_of_Euler_deconvolution_of_magnetic_data_a_new_approach_to_imaging_geological_structures
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae226/7701418 -> Use of Decision Tree Ensembles for Crustal Structure Imaging from Receiver Functions
- https://www.researchgate.net/publication/371594975_Assessing_plate_reconstruction_models_using_plate_driving_force_consistency_tests
- https://www.researchgate.net/publication/333182666_Decoding_Earth's_plate_tectonic_history_using_sparse_geochemical_data
- https://www.researchgate.net/publication/376519740_Machine_learning_and_tectonic_setting_determination_Bridging_the_gap_between_Earth_scientists_and_data_scientists
- https://pubs.geoscienceworld.org/gsa/geology/article-abstract/doi/10.1130/G52466.1/648458/Prediction-of-CO2-content-in-mid-ocean-ridge -> Prediction of CO2 content in mid-ocean ridge basalts via a machine learning approach
- https://essopenarchive.org/users/841077/articles/1231187-bayesian-inference-in-geophysics-with-ai-enhanced-markov-chain-monte-carlo -> Bayesian Inference in Geophysics with AI-enhanced Markov chain Monte Carlo
- https://www.researchgate.net/publication/353789276_Geology_differentiation_by_applying_unsupervised_machine_learning_to_multiple_independent_geophysical_inversions
- https://www.sciencedirect.com/science/article/pii/S001379522100137X - Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain)
- https://www.sciencedirect.com/science/article/pii/S2666544121000253 - Microleveling aerogeophysical data using deep convolutional network and MoG-RPCA
- https://www.researchgate.net/publication/368550674_Objective_classification_of_high-resolution_geophysical_data_Empowering_the_next_generation_of_mineral_exploration_in_Sierra_Leone
- https://datarock.com.au/blog/transfer-learning-with-seismic-attributes -> Transfer Learning with Seismic Attributes
- https://api.research-repository.uwa.edu.au/ws/portalfiles/portal/390212334/THESIS_-_DOCTOR_OF_PHILOSOPHY_-_SMITH_Luke_Thomas_-_2023_.pdf -> Potential Field Geophysics Enhancement Using Conteporary Deep Learning
- https://ieeexplore.ieee.org/abstract/document/10767251 -> A Stable Method for Estimating the Derivatives of Potential Field Data Based on Deep Learning -> [UNSEEN]https://www.researchgate.net/publication/389575997_Pole_Transformation_of_Magnetic_Data_Using_CNN-Based_Deep_Learning_Models
- https://www.mdpi.com/2073-8994/17/4/523 -> Inversion of Gravity Anomalies Based on U-Net Network
- https://d197for5662m48.cloudfront.net/documents/publicationstatus/206704/preprint_pdf/59681a0a2c571bc2a9006f37517bc6ef.pdf -> A Fast Three-dimensional Imaging Scheme of Airborne Time Domain Electromagnetic Data using Deep Learning
- https://www.researchgate.net/publication/351507441_A_Neural_Network-Based_Hybrid_Framework_for_Least-Squares_Inversion_of_Transient_Electromagnetic_Data
- https://www.researchgate.net/profile/Yunhe-Liu/publication/382196526_An_Efficient_Bayesian_Inference_for_Geo-electromagnetic_Data_Inversion_based_on_Surrogate_Modeling_with_Adaptive_Sampling_DNN
- https://www.researchgate.net/publication/325980016_Agglomerative_hierarchical_clustering_of_airborne_electromagnetic_data_for_multi-scale_geological_studies
- https://www.earthdoc.org/content/papers/10.3997/2214-4609.202410980 -> Deep Learning Assisted 2-D Current Density Modelling of Very Low Frequency Electromagnetic Data
- https://npg.copernicus.org/articles/26/13/2019/ -> Denoising stacked autoencoders for transient electromagnetic signal denoising
- https://www.researchgate.net/publication/373836226_An_information_theoretic_Bayesian_uncertainty_analysis_of_AEM_systems_over_Menindee_Lake_Australia -> An information theoretic Bayesian uncertainty analysis of AEM systems over Menindee Lake, Australia
- https://www.researchgate.net/publication/348850484_Effect_of_Data_Normalization_on_Neural_Networks_for_the_Forward_Modelling_of_Transient_Electromagnetic_Data
- https://www.researchgate.net/publication/342153377_Fast_imaging_of_time-domain_airborne_EM_data_using_deep_learning_technology
- https://library.seg.org/doi/10.4133/JEEG4.2.93 -> Neural Network Interpretation of High Frequency Electromagnetic Ellipticity Data Part I: Understanding the Half-Space and Layered Earth Response
- https://arxiv.org/abs/2207.12607 -> Physics Embedded Machine Learning for Electromagnetic Data Imaging
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae244/7713480 -> Physics-guided deep learning-based inversion for airborne electromagnetic data
- https://library.seg.org/doi/abs/10.1190/geo2024-0282.1 -> Comparative Analysis of Deep Learning and Traditional Airborne Electromagnetic Data Processing: A Case Study [UNSEEN]
- https://www.researchgate.net/publication/359441000_Surface_parameters_and_bedrock_properties_covary_across_a_mountainous_watershed_Insights_from_machine_learning_and_geophysics
- https://www.researchgate.net/publication/337166479_Using_machine_learning_to_interpret_3D_airborne_electromagnetic_inversions
- https://www.researchgate.net/publication/344397798_TEMDnet_A_Novel_Deep_Denoising_Network_for_Transient_Electromagnetic_Signal_With_Signal-to-Image_Transformation
- https://www.researchgate.net/publication/366391168_Two-dimensional_fast_imaging_of_airborne_EM_data_based_on_U-net
- https://www.sciencedirect.com/science/article/pii/S0013795224001893 -> Geo-constrained clustering of resistivity data revealing the heterogeneous lithological architectures and the distinctive geoelectrical signature of shallow deposits
- https://ieeexplore.ieee.org/abstract/document/10597585 -> 3D Basement Relief and Density Inversion Based on EfficientNetV2 Deep Learning Network [UNSEEN]
- https://link.springer.com/article/10.1007/s11770-024-1096-5 -> 3D gravity inversion using cycle-consistent generative adversarial network [UNSEEN]
- https://www.researchgate.net/publication/365142017_3D_gravity_inversion_based_on_deep_learning
- https://www.researchgate.net/publication/378930477_A_Deep_Learning_Gravity_Inversion_Method_Based_on_a_Self-Constrained_Network_and_Its_Application
- https://www.researchgate.net/publication/362276214_DecNet_Decomposition_network_for_3D_gravity_inversion -> Olympic Dam example here
- https://www.researchgate.net/publication/368448190_Deep_Learning_to_estimate_the_basement_depth_by_gravity_data_using_Feedforward_neural_network
- https://www.researchgate.net/publication/326231731_Depth_and_Lineament_Maps_Derived_from_North_Cameroon_Gravity_Data_Computed_by_Artificial_Neural_Network_International_Journal_of_Geophysics_vol_2018_Article_ID_1298087_13_pages_2018
- https://www.researchgate.net/publication/366922016_Fast_imaging_for_the_3D_density_structures_by_machine_learning_approach
- https://www.researchgate.net/publication/370230217_Inversion_of_the_Gravity_Gradiometry_Data_by_ResUet_Network_An_Application_in_Nordkapp_Basin_Barents_Sea
- https://library.seg.org/doi/abs/10.1190/geo2024-0150.1 -> Integration of PSPU-Net gravity inversion neural network with gravity data for enhanced 3D basement relief estimation
- https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.897055/full -> High-precision downward continuation of the potential field based on the D-Unet network
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10672527 -> RTM Gravity Forward Modeling Using Improved Fully Connected Deep Neural Networks
- https://www.researchgate.net/publication/380391736_A_review_on_hyperspectral_imagery_application_for_lithological_mapping_and_mineral_prospecting_Machine_learning_techniques_and_future_prospects
- https://www.researchgate.net/publication/372876863_Ore-Grade_Estimation_from_Hyperspectral_Data_Using_Convolutional_Neural_Networks_A_Case_Study_at_the_Olympic_Dam_Iron_Oxide_Copper-Gold_Deposit_Australia [UNSEEN]
- https://www.researchgate.net/publication/383454185_Deep_joint_inversion_of_electromagnetic_seismic_and_gravity_data
- https://ieeexplore.ieee.org/abstract/document/10677418 -> Joint Inversion of Seismic and Resistivity Data Powered by Deep-learning [UNSEEN]
- Deep learning-based geophysical joint inversion using partial channel drop method ->https://www.sciencedirect.com/science/article/abs/pii/S0926985124002702
- https://www.mdpi.com/2076-3417/15/6/3125 -> A Hybrid Deep Learning Approach for Integrating Transient Electromagnetic and Magnetic Data to Enhance Subsurface Anomaly Detection
- https://www.researchgate.net/publication/348697645_3D_geological_structure_inversion_from_Noddy-generated_magnetic_data_using_deep_learning_methods
- https://www.researchgate.net/publication/360288249_3D_Inversion_of_Magnetic_Gradient_Tensor_Data_Based_on_Convolutional_Neural_Networks
- https://www.researchgate.net/publication/295902270_Artificial_neural_network_inversion_of_magnetic_anomalies_caused_by_2D_fault_structures
- https://www.researchgate.net/publication/354002966_Convolutional_neural_networks_for_the_characterization_of_magnetic_anomalies
- https://www.researchgate.net/publication/354772176_Convolution_Neural_Networks_Applied_to_the_Interpretation_of_Lineaments_in_Aeromagnetic_Data
- https://www.researchgate.net/publication/363550362_High-precision_downward_continuation_of_the_potential_field_based_on_the_D-Unet_network
- https://www.sciencedirect.com/science/article/pii/S0169136822004279?via%3Dihub -> Magnetic grid resolution enhancement using machine learning: A case study from the Eastern Goldfields Superterrane
- https://www.researchgate.net/publication/347173621_Predicting_Magnetization_Directions_Using_Convolutional_Neural_Networks -> Paywalled
- https://www.researchgate.net/publication/361114986_Reseaux_de_Neurones_Convolutifs_pour_la_Caracterisation_d'Anomalies_Magnetiques -> French original of the above
- https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-024-03842-3 -> 2D magnetotelluric imaging method based on visionary self-attention mechanism and data science
- https://ieeexplore.ieee.org/abstract/document/10955415- -> 3DInception-U: Lightweight Network for 3-D Magnetotelluric Inversion Based on Inception Module [UNSEE]
- https://ieeexplore.ieee.org/abstract/document/10530937 -> A Magnetotelluric Data Denoising Method Based on Lightweight Ensemble Learning [UNSEEN]
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae166/7674890 -> Deep basin conductor characterization using machine learning-assisted magnetotelluric Bayesian inversion in the SW Barents Sea
- http://en.dzkx.org/article/doi/10.6038/cjg2024R0580 -> Fast inversion method of apparent resistivity based on deep learning
- https://www.researchgate.net/publication/367504269_Flexible_and_accurate_prior_model_construction_based_on_deep_learning_for_2D_magnetotelluric_data_inversion
- https://www.sciencedirect.com/science/article/pii/S2214579624000510 -> Intelligent Geological Interpretation of AMT Data Based on Machine Learning
- https://ieeexplore.ieee.org/abstract/document/10551853 -> Magnetotelluric Data Inversion Based on Deep Learning with the Self-attention Mechanism
- https://www.researchgate.net/publication/361741409_Physics-Driven_Deep_Learning_Inversion_with_Application_to_Magnetotelluric
- https://www.researchgate.net/publication/355568465_Stochastic_inversion_of_magnetotelluric_data_using_deep_reinforcement_learning
- https://www.researchgate.net/publication/354360079_Two-dimensional_deep_learning_inversion_of_magnetotelluric_sounding_data
- https://ieeexplore.ieee.org/abstract/document/10530923 -> Three Dimensional Magnetotelluric Forward Modeling Through Deep Learning
- https://nature.com/articles/s41467-020-17841-x -> Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
- https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL099053 -> Eikonal Tomography With Physics-Informed Neural Networks: Rayleigh Wave Phase Velocity in the Northeastern Margin of the Tibetan Plateau
- https://arxiv.org/abs/2403.15095 -> End-to-End Mineral Exploration with Artificial Intelligence and Ambient Noise Tomography
- https://www.nature.com/articles/s41598-019-50381-z -> High-resolution seismic tomography of Long Beach, CA using machine learning
- https://www.sciencedirect.com/science/article/pii/S0040195124002166 -> Reprocessing and interpretation of legacy seismic data using machine learning from the Granada Basin, Spain
- https://ojs.uni-miskolc.hu/index.php/geosciences/article/view/3313 -> EDGE DETECTION OF TOMOGRAPHIC IMAGES USING TRADITIONAL AND DEEP LEARNING TOOLS
- https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2024JH000432 -> One‐Fit‐All Transformer for Multimodal Geophysical Inversion: Method and Application
- https://library.seg.org/doi/abs/10.1190/GEM2024-084.1 -> Quantifying uncertainty in 3D geophysical inverse problems: Advancing from deterministic to Bayesian and deep generative models [UNSEEN]
- https://www.osti.gov/biblio/2335471 - Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada [adjacent but interesting]
- https://gdr.openei.org/submissions/1402 - Associated code
- https://catalog.data.gov/dataset/python-codebase-and-jupyter-notebooks-applications-of-machine-learning-techniques-to-geoth
- https://www.researchgate.net/publication/341418586_Preliminary_Report_on_Applications_of_Machine_Learning_Techniques_to_the_Nevada_Geothermal_Play_Fairway_Analysis
- https://www.researchgate.net/publication/357942198_Mineral_classification_of_lithium-bearing_pegmatites_based_on_laser-induced_breakdown_spectroscopy_Application_of_semi-supervised_learning_to_detect_known_minerals_and_unknown_material
- https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046 -> Classifying Minerals using Deep Learning Algorithms
- https://www.researchgate.net/publication/370835450_Predicting_new_mineral_occurrences_and_planetary_analog_environments_via_mineral_association_analysis
- https://www.researchgate.net/publication/361230503_What_is_Mineral_Informatics
- https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2025.1530004/full#B23 -> Assessing named entity recognition by using geoscience domain schemas: the case of mineral systems
- https://www.researchgate.net/publication/358616133_Chinese_Named_Entity_Recognition_in_the_Geoscience_Domain_Based_on_BERT
- https://www.researchgate.net/publication/339394395_Dictionary-Based_Automated_Information_Extraction_From_Geological_Documents_Using_a_Deep_Learning_Algorithm
- https://www.aclweb.org/anthology/2020.lrec-1.568/ -> Embeddings for Named Entity Recognition in Geoscience Portuguese Literature
- https://www.researchgate.net/publication/359186219_Few-shot_learning_for_name_entity_recognition_in_geological_text_based_on_GeoBERT
- https://www.researchgate.net/publication/333464862_GeoDocA_-_Fast_Analysis_of_Geological_Content_in_Mineral_Exploration_Reports_A_Text_Mining_Approach
- https://www.researchgate.net/publication/366710921_Geological_profile-text_information_association_model_of_mineral_exploration_reports_for_fast_analysis_of_geological_content
- https://www.researchgate.net/publication/330835955_Geoscience_Keyphrase_Extraction_Algorithm_Using_Enhanced_Word_Embedding [UNSEEN]
- https://www.researchgate.net/publication/332997161_GNER_A_Generative_Model_for_Geological_Named_Entity_Recognition_Without_Labeled_Data_Using_Deep_Learning
- https://www.researchgate.net/publication/321850315_Information_extraction_and_knowledge_graph_construction_from_geoscience_literature
- https://www.researchgate.net/publication/365929623_Named_Entity_Annotation_Schema_for_Geological_Literature_Mining_in_the_Domain_of_Porphyry_Copper_Deposits
- https://www.researchgate.net/publication/329621358_Ontology-Based_Enhanced_Word_Embedding_for_Automated_Information_Extraction_from_Geoscience_Reports
- https://www.researchgate.net/publication/379808469_Ontology-driven_relational_data_mapping_for_constructing_a_knowledge_graph_of_porphyry_copper_deposits -> Ontology-driven relational data mapping for constructing a knowledge graph of porphyry copper deposits
- https://www.researchgate.net/publication/327709479_Prospecting_Information_Extraction_by_Text_Mining_Based_on_Convolutional_Neural_Networks-A_Case_Study_of_the_Lala_Copper_Deposit_China
- https://ieeexplore.ieee.org/document/8711400 -> Research and Application on Geoscience Literature Knowledge Discovery Technology
- https://www.researchgate.net/publication/332328315_Text_Mining_to_Facilitate_Domain_Knowledge_Discovery
- https://www.researchgate.net/publication/351238658_Understanding_Ore-Forming_Conditions_using_Machine_Reading_of_Text
- https://www.researchgate.net/publication/359089763_Visual_analytics_and_information_extraction_of_geological_content_for_text-based_mineral_exploration_reports
- https://www.researchgate.net/publication/354754114_What_is_this_article_about_Generative_summarization_with_the_BERT_model_in_the_geosciences_domain
- https://www.slideshare.net/phcleverley/where-text-analytics-meets-geoscience -> Where text analytics meets geoscience
Last edited: 29/09/2020The below are a collection of works from when I was doing a review
- https://www.researchgate.net/publication/331852267_Applying_Spatial_Prospectivity_Mapping_to_Exploration_Targeting_Fundamental_Practical_issues_and_Suggested_Solutions_for_the_Future
- https://www.researchgate.net/publication/284890591_Geochemical_Anomaly_and_Mineral_Prospectivity_Mapping_in_GIS
- https://www.researchgate.net/publication/341472154_Geodata_Science-Based_Mineral_Prospectivity_Mapping_A_Review
- https://www.researchgate.net/publication/275338029_Introduction_to_the_Special_Issue_GIS-based_mineral_potential_modelling_and_geological_data_analyses_for_mineral_exploration
- https://www.researchgate.net/publication/339074334_Introduction_to_the_special_issue_on_spatial_modelling_and_analysis_of_ore-forming_processes_in_mineral_exploration_targeting
- https://www.researchgate.net/publication/317319129_Natural_Resources_Research_Publications_on_Geochemical_Anomaly_and_Mineral_Potential_Mapping_and_Introduction_to_the_Special_Issue_of_Papers_in_These_Fields
- https://www.researchgate.net/publication/46696293_Selection_of_coherent_deposit-type_locations_and_their_application_in_data-driven_mineral_prospectivity_mapping
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EA002626 -> Comparative Study on Three Autoencoder-Based Deep Learning Algorithms for Geochemical Anomaly Identification
https://www.degruyter.com/document/doi/10.2138/am-2023-9115/html -> Machine learning applied to apatite compositions for determining mineralization potential [UNSEEN]
- https://www.researchgate.net/publication/272170968_A_Comparative_Analysis_of_Weights_of_Evidence_Evidential_Belief_Functions_and_Fuzzy_Logic_for_Mineral_Potential_Mapping_Using_Incomplete_Data_at_the_Scale_of_Investigation
- https://www.researchgate.net/publication/267816279_Fuzzification_of_continuous-value_spatial_evidence_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/301635716_Union_score_and_fuzzy_logic_mineral_prospectivity_mapping_using_discretized_and_continuous_spatial_evidence_values
- https://deliverypdf.ssrn.com/delivery.php?ID=555064031119110002088087068121000096050036019060022069010050000053011056029076002067121000064004002088113115000107115017083105004026015092089005123065040099024112018026013043065104094012124120126039100033055018066074125089104115090100009064122122019003015085069021024027072126106082092110&EXT=pdf&INDEX=TRUE -> Estimating uncertainties in 3-D models of complex fold-and-thrust 2 belts: a case study of the Eastern Alps triangle zone
- https://www.researchgate.net/publication/333339659_Incorporating_conceptual_and_interpretation_uncertainty_to_mineral_prospectivity_modelling
- https://www.researchgate.net/publication/235443307_Managing_uncertainty_in_exploration_targeting
- https://www.researchgate.net/publication/255909185_The_upside_of_uncertainty_Identification_of_lithology_contact_zones_from_airborne_geophysics_and_satellite_data_using_random_forests_and_support_vector_machines
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province -https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
- An assessment of the uranium and geothermal prospectivity of east-central South Australia -https://d28rz98at9flks.cloudfront.net/72666/Rec2011_034.pdf
- https://www.researchgate.net/publication/273073675_Building_a_machine_learning_classifier_for_iron_ore_prospectivity_in_the_Yilgarn_Craton
- http://dmpbookshop.eruditetechnologies.com.au/product/district-scale-targeting-for-gold-in-the-yilgarn-craton-part-2-of-the-yilgarn-gold-exploration-targeting-atlas.do$55 purchase
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-prospectivity-of-the-king-leopold-orogen-and-lennard-shelf-analysis-of-potential-field-data-in-the-west-kimberley-region-geographical-product-n14bnzp.do
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling-geographical-product-n12dzp.do
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling.do $22 purchase
- https://researchdata.edu.au/predictive-mineral-discovery-gold-mineral/1209568?source=suggested_datasets - Predictive mineral discovery in the eastern Yilgarn Craton: an example of district-scale targeting of an orogenic gold mineral system -https://d28rz98at9flks.cloudfront.net/82617/Y4_Gold_Targeting.zip
- http://dmpbookshop.eruditetechnologies.com.au/product/prospectivity-analysis-of-the-halls-creek-orogen-western-australia-using-a-mineral-systems-approach-geographical-product-n15af3zp.do
- https://researchdata.edu.au/prospectivity-analysis-using-063-m436/1424743 - Prospectivity analysis using a mineral systems approach - Capricorn case study project CSIRO Prospectivity analysis using a mineral systems approach - Capricorn case study project (13.5 GB Download)
- http://dmpbookshop.eruditetechnologies.com.au/product/regional-scale-targeting-for-gold-in-the-yilgarn-craton-part-1-of-the-yilgarn-gold-exploration-targeting-atlas.do $55 purchase
- https://www.researchgate.net/publication/263928515_Towards_Australian_metallogenic_maps_through_space_and_time
- https://www.sciencedirect.com/science/article/abs/pii/S0301926810002111 - Yilgarn
- https://www.researchgate.net/publication/340633563_CATALOG_OF_PROSPECTIVITY_MAPS_OF_SELECTED_AREAS_FROM_BRAZIL
- https://www.researchgate.net/publication/341936771_Modeling_of_Cu-Au_Prospectivity_in_the_Carajas_mineral_province_Brazil_through_Machine_Learning_Dealing_with_Imbalanced_Training_Data
- https://www.researchgate.net/publication/287270273_Nickel_prospective_modelling_using_fuzzy_logic_on_nova_Brasilandia_metasedimentary_belt_Rondonia_Brazil
- https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200261 - Sao Francisco Craton Nickel
- https://www.researchgate.net/publication/248211737_A_continent-wide_study_of_Australia's_uranium_potential
- https://www.researchgate.net/publication/334440382_Mapping_iron_oxide_Cu-Au_IOCG_mineral_potential_in_Australia_using_a_knowledge-driven_mineral_systems-based_approach
- https://researchdata.edu.au/predictive-model-opal-mining-approach/673159/?refer_q=rows=15/sort=score%20desc/class=collection/p=2/q=mineral%20prospectivity%20map/ - Opal
- https://data.gov.au/dataset/ds-ga-a8619169-1c2a-6697-e044-00144fdd4fa6/details?q= -> An assessment of the uranium and geothermal prospectivity of east central South Australia
- https://d28rz98at9flks.cloudfront.net/72666/Rec2011_034.pdf -> An assessment of the uranium and geothermal prospectivity of east-central South Australia
- https://www.pir.sa.gov.au/__data/assets/pdf_file/0011/239636/204581-001_wise_high.pdf - Eastern Gawler - WPA
- http://www.energymining.sa.gov.au/minerals/knowledge_centre/mesa_journal/previous_feature_articles/new_prospectivity_map
- https://catalog.sarig.sa.gov.au/geonetwork/srv/eng/catalog.search#/metadata/e59cd4ba-1a0a-4911-9e6a-58d80576678d - Olympic Domain IOCG Prospectivity model
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province -https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
- https://www.sciencedirect.com/science/article/abs/pii/S0301926810002111 - Yilgarn Karol Czarnota
- https://www.researchgate.net/publication/229333177_Prospectivity_analysis_of_the_Plutonic_Marymia_Greenstone_Belt_Western_Australia
- https://www.researchgate.net/publication/280039091_Mineral_systems_approach_applied_to_GIS-based_2D-prospectivity_modelling_of_geological_regions_Insights_from_Western_Australia
- https://www.researchgate.net/publication/351238658_Understanding_Ore-Forming_Conditions_using_Machine_Reading_of_Text
- https://www.researchgate.net/publication/285235798_An_assessment_of_the_uranium_and_geothermal_prospectivity_of_the_southern_Northern_Territory
- https://www.researchgate.net/publication/342352173_Modelling_gold_potential_in_the_Granites-Tanami_Orogen_NT_Australia_A_comparative_study_using_continuous_and_data-driven_techniques
- https://www.resourcesandgeoscience.nsw.gov.au/miners-and-explorers/geoscience-information/projects/mineral-potential-mapping#_southern-_new-_england-_orogen-mineral-potential
- https://www.smedg.org.au/GSNSW_2019_Blevin.pdf - Eastern Lachlan Orogen
- https://www.researchgate.net/publication/265915602_Comparing_prospectivity_modelling_results_and_past_exploration_data_A_case_study_of_porphyry_Cu-Au_mineral_systems_in_the_Macquarie_Arc_Lachlan_Fold_Belt_New_South_Wales
- https://www.researchgate.net/publication/340633563_CATALOG_OF_PROSPECTIVITY_MAPS_OF_SELECTED_AREAS_FROM_BRAZIL
- https://www.researchgate.net/publication/340633739_MINERAL_POTENTIAL_AND_OPORTUNITIES_FOR_THE_EXPLORATION_OF_NEW_GEOLOGICAL_GROUNDS_IN_BRAZIL
- https://www.semanticscholar.org/paper/Mineral-Potential-Mapping-for-Orogenic-Gold-in-the-Silva-Silva/a23a9ce4da48863da876758afa9e1d2723088853
- https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200261 - Supergene nickel deposits in outhwestern Sao Francisco Carton, Brazil
- https://www.researchgate.net/publication/258466504_Self-Organizing_Maps_A_Data_Mining_Tool_for_the_Analysis_of_Airborne_Geophysical_Data_Collected_over_the_Brazilian_Amazon
- https://www.researchgate.net/publication/258647519_Semiautomated_geologic_mapping_using_self-organizing_maps_and_airborne_geophysics_in_the_Brazilian_Amazon
- https://www.researchgate.net/publication/235443304_GIS-Based_prospectivity_mapping_for_orogenic_gold_A_case_study_from_the_Andorinhas_region_Brasil
- https://www.researchgate.net/publication/341936771_Modeling_of_Cu-Au_Prospectivity_in_the_Carajas_mineral_province_Brazil_through_Machine_Learning_Dealing_with_Imbalanced_Training_Data
- https://www.researchgate.net/publication/332031621_Predictive_lithological_mapping_through_machine_learning_methods_a_case_study_in_the_Cinzento_Lineament_Carajas_Province_Brazil
- https://www.researchgate.net/publication/340633659_Copper-gold_favorability_in_the_Cinzento_Shear_Zone_Carajas_Mineral_Province
- https://www.researchgate.net/publication/329477409_Favorability_potential_for_IOCG_type_deposits_in_the_Riacho_do_Pontal_Belt_New_insights_for_identifying_prospects_of_IOCG-type_deposits_in_NE_Brazil
- https://www.researchgate.net/publication/339453836_Uranium_anomalies_detection_through_Random_Forest_regression
- https://d1wqtxts1xzle7.cloudfront.net/48145419/Artificial_neural_networks_applied_to_mi20160818-5365-odv4na.pdf?1471522188=&response-content-disposition=inline%3B+filename%3DArtificial_neural_networks_applied_to_mi.pdf&Expires=1593477539&Signature=DNmSxKogrD54dE4LX~8DT4K7vV0ZGcf8Q2RRfXEPsCc8PGiBrbeBpy4NVQdCiENLz-YfSzVGk6LI8k5MEGxR~qwnUn9ISLHDuIau6VqBFSEA29jMixCbvQM6hbkUJKQlli-AuSPUV23TsSk76kB6amDYtwNHmBnUPzTQGZLj2XkzJza9PA-7W2-VrPQKHNPxJp3z8J0mPq4rhmHZLaFMMSL6QMpK5qpvSqi6Znx-kIhCprlyYfODisq0unOIwnEQstiMf2RnB6gPmGOodhNlLsSr01e7TvtvFDBOQvhhooeDeQrvkINN4DJjAIIrbrcQ8B2b-ATQS0a3QQe93h-VFA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA - Leite, E.P.L.; de Souza Filho, C.R. Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geoph. Prosp. 2009, 57, 1049–1065.
- https://link-springer-com.access.library.unisa.edu.au/content/pdf/10.1007/s11053-015-9263-2.pdf - A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation
- https://library.seg.org/doi/abs/10.1190/sbgf2011-245 - Gold Prospectivity Mapping of Andorinhas Greenstone Belt, Para
- https://www.researchgate.net/publication/260107484_Unsupervised_clustering_of_continental-scale_geophysical_and_geochemical_data_using_Self-Organising_Maps
- https://www.researchgate.net/publication/332263305_A_speedy_update_on_machine_learning_applied_to_bedrock_mapping_using_geochemistry_or_geophysics_examples_from_the_Pacific_Rim_and_nearby
- https://www.researchgate.net/publication/317312520_Catchment-based_gold_prospectivity_analysis_combining_geochemical_geophysical_and_geological_data_across_northern_Australia
- https://www.researchgate.net/publication/326571155_Continental-scale_mineral_prospectivity_assessment_using_the_National_Geochemical_Survey_of_Australia_NGSA_dataset
- https://www.researchgate.net/publication/334440382_Mapping_iron_oxide_Cu-Au_IOCG_mineral_potential_in_Australia_using_a_knowledge-driven_mineral_systems-based_approach
- https://www.researchgate.net/publication/282189370_Uranium_Prospectivity_Mapping_Across_the_Australian_Continent_via_Unsupervised_Cluster_Analysis_of_Integrated_Remote_Sensing_Data
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province -https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
- https://www.researchgate.net/publication/317312520_Catchment-based_gold_prospectivity_analysis_combining_geochemical_geophysical_and_geological_data_across_northern_Australia
- https://www.researchgate.net/publication/252707107_GIS-based_epithermal_copper_prospectivity_mapping_of_the_Mt_Isa_Inlier_Australia_Implications_for_exploration_targeting
- https://www.researchgate.net/publication/222211452_Predictive_modelling_of_prospectivity_for_Pb-Zn_deposits_in_the_Lawn_Hill_Region_Queensland_Australia
- https://www.researchgate.net/publication/336349643_MINERAL_POTENTIAL_MAPPING_AS_A_STRATEGIC_PLANNING_TOOL_IN_THE_EASTERN_LACHLAN_OROGEN_NSW
- https://www.publish.csiro.au/ex/pdf/ASEG2013ab236 - Mineral prospectivity analysis of the Wagga–Omeo belt in NSW
- https://www.researchgate.net/publication/329761040_NSW_Zone_54_Mineral_Systems_Mineral_Potential_Report
- https://www.researchgate.net/publication/337569823_Practical_Implementation_of_Random_Forest-Based_Mineral_Potential_Mapping_for_Porphyry_Cu-Au_Mineralization_in_the_Eastern_Lachlan_Orogen_NSW_Australia
- https://www.researchgate.net/publication/333551776_Translating_expressions_of_intrusion-related_mineral_systems_into_mappable_spatial_proxies_for_mineral_potential_mapping_Case_studies_from_the_Southern_New_England_Orogen_Australia
- https://www.researchgate.net/publication/323856713_Lithological_mapping_using_Random_Forests_applied_to_geophysical_and_remote_sensing_data_a_demonstration_study_from_the_Eastern_Goldfields_of_Australia
- https://publications.csiro.au/publications/#publication/PIcsiro:EP123339/SQmineral%20prospectivity/RP1/RS50/RORECENT/STsearch-by-keyword/LISEA/RI16/RT26 [nickel]
- https://www.researchgate.net/publication/257026553_Regional_prospectivity_analysis_for_hydrothermal-remobilised_nickel_mineral_systems_in_western_Victoria_Australia
- https://www.researchgate.net/publication/274714146_Reducing_subjectivity_in_multi-commodity_mineral_prospectivity_analyses_Modelling_the_west_Kimberley_Australia
- https://www.researchgate.net/publication/319013132_Identifying_mineral_prospectivity_using_3D_magnetotelluric_potential_field_and_geological_data_in_the_east_Kimberley_Australia
- https://www.researchgate.net/publication/280930127_Regional-scale_targeting_for_gold_in_the_Yilgarn_Craton_Part_1_of_the_Yilgarn_Gold_Exploration_Targeting_Atlas
- https://www.researchgate.net/publication/279533541_District-scale_targeting_for_gold_in_the_Yilgarn_Craton_Part_2_of_the_Yilgarn_Gold_Exploration_Targeting_Atlas
- https://www.researchgate.net/publication/257026568_Exploration_targeting_for_orogenic_gold_deposits_in_the_Granites-Tanami_Orogen_Mineral_system_analysis_targeting_model_and_prospectivity_analysis
- https://www.researchgate.net/publication/280039091_Mineral_systems_approach_applied_to_GIS-based_2D-prospectivity_modelling_of_geological_regions_Insights_from_Western_Australia (the West Arunta Orogen, West Musgrave Orogen and Gascoyne Province -http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling.do
- https://reader.elsevier.com/reader/sd/pii/S0169136810000417? - token=9FD1C06A25E7ECC0C384C0ECF976E4BC9C36047C53CEED08066811979A640E89DD94C49510D1B500C6FF5E69982E018E Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia
- https://research-repository.uwa.edu.au/en/publications/exploration-targeting-for-orogenic-gold-deposits-in-the-granites- - Tanami orogen
- https://www.researchgate.net/publication/332631130_Fuzzy_inference_systems_for_prospectivity_modeling_of_mineral_systems_and_a_case-study_for_prospectivity_mapping_of_surficial_Uranium_in_Yeelirrie_Area_Western_Australia_Ore_Geology_Reviews_71_839-852Tasmania
- https://publications.csiro.au/rpr/download?pid=csiro:EP102133&dsid=DS3 [nickel]
- https://www.researchgate.net/publication/248211962_A_new_method_for_spatial_centrographic_analysis_of_mineral_deposit_clusters
- https://www.researchgate.net/publication/275620329_A_Time-Series_Audit_of_Zipf's_Law_as_a_Measure_of_Terrane_Endowment_and_Maturity_in_Mineral_Exploration
- https://www.researchgate.net/publication/341087909_Assessing_the_variability_of_expert_estimates_in_the_USGS_Three-part_Mineral_Resource_Assessment_Methodology_A_call_for_increased_skill_diversity_and_scenario-based_training
- https://github.com/iagoslc/ZipfsLaw_Quadrilatero_Ferrifero
- https://www.researchgate.net/publication/222834436_Controls_on_mineral_deposit_occurrence_inferred_from_analysis_of_their_spatial_pattern_and_spatial_association_with_geological_features
- https://www.researchgate.net/publication/229792860_From_Predictive_Mapping_of_Mineral_Prospectivity_to_Quantitative_Estimation_of_Number_of_Undiscovered_Prospects
- https://www.researchgate.net/publication/330994502_Global_Grade-and-Tonnage_Modeling_of_Uranium_deposits
- https://pubs.geoscienceworld.org/segweb/economicgeology/article-abstract/103/4/829/127993/Linking-Mineral-Deposit-Models-to-Quantitative?redirectedFrom=fulltext
- https://www.researchgate.net/publication/238365283_Metal_endowment_of_cratons_terranes_and_districts_Insights_from_a_quantitative_analysis_of_regions_with_giant_and_super-giant_deposits
- https://www.researchgate.net/publication/308778798_Spatial_analysis_of_mineral_deposit_distribution_A_review_of_methods_and_implications_for_structural_controls_on_iron_oxide-copper-gold_mineralization_in_Carajas_Brazil
- https://www.researchgate.net/publication/229347041_Predictive_mapping_of_prospectivity_and_quantitative_estimation_of_undiscovered_VMS_deposits_in_Skellefte_district_Sweden
- https://www.researchgate.net/publication/342405763_Predicting_grade-tonnage_characteristics_of_undiscovered_mineralisation_application_of_the_USGS_Three-part_Undiscovered_Mineral_Resource_Assessment_to_the_Sandstone_Greenstone_Belt_of_the_Yilgarn_Bloc
- https://www.sciencedirect.com/science/article/pii/S0169136810000685
- https://www.researchgate.net/publication/240301743_Spatial_statistical_analysis_of_the_distribution_of_komatiite-hosted_nickel_sulfide_deposits_in_the_Kalgoorlie_terrane_Western_Australia_Clustered_or_Not
- https://www.researchgate.net/publication/331283650_Archean_crust_and_metallogenic_zones_in_the_Amazonian_Craton_sensed_by_satellite_gravity_data
- https://eartharxiv.org/2kjvc/ -> Global distribution of sediment-hosted metals controlled by craton edge stability
- https://www.researchgate.net/post/Is_it_possible_to_derive_free_air_anomaly_or_bouguer_anomaly_from_gravity_disturbance_data
- https://www.researchgate.net/publication/325344128_The_role_of_basement_control_in_Iron_Oxide-Copper-Gold_mineral_systems_revealed_by_satellite_gravity_models
- https://www.researchgate.net/publication/331428028_Supplementary_Material_for_the_paper_Archean_crust_and_metallogenic_zones_in_the_Amazonian_Craton_sensed_by_satellite_gravity_data
- https://www.leouieda.com/pdf/use-the-disturbance.pdf
- https://www.leouieda.com/papers/use-the-disturbance.html
- https://www.researchgate.net/publication/317137060_Forecasting_copper_prices_by_decision_tree_learning
- https://www.researchgate.net/publication/4874824_Mine_Size_and_the_Structure_of_Costs
- https://mpra.ub.uni-muenchen.de/62159/ -> Mineral exploration as a game of chance [Agent Based Modelling]
- Overviews and examples, with some focus on neural network approaches.
- https://www.researchgate.net/publication/388546200_A_Joint_Multi-Scale_Graph_Attention_and_Classify-Driven_Autoencoder_Framework_for_Hyperspectral_Unmixing
- https://www.researchgate.net/publication/224180646_A_neural_network_approach_for_pixel_unmixing_in_hyperspectral_data
- https://www.researchgate.net/publication/340690859_A_Supervised_Nonlinear_Spectral_Unmixing_Method_by_Means_of_Neural_Networks
- https://www.researchgate.net/publication/326205017_Classification_of_Hyperspectral_Data_Using_a_Multi-Channel_Convolutional_Neural_Network
- https://www.researchgate.net/publication/339062151_Classification_of_small-scale_hyperspectral_images_with_multi-source_deep_transfer_learning
- https://www.researchgate.net/publication/331824337_Comparative_Analysis_of_Unmixing_Algorithms_Using_Synthetic_Hyperspectral_Data
- https://www.researchgate.net/publication/335501086_Convolutional_Autoencoder_For_Spatial-Spectral_Hyperspectral_Unmixing
- https://www.researchgate.net/publication/341501560_Convolutional_Autoencoder_for_Spectral-Spatial_Hyperspectral_Unmixing
- https://www.researchgate.net/publication/333906204_Deep_convolutional_neural_networks_for_land-cover_classification_with_Sentinel-2_images
- https://www.researchgate.net/publication/356711693_Deep-learning-based_latent_space_encoding_for_spectral_unmixing_of_geological_materials
- https://www.researchgate.net/publication/331505001_Deep_learning_and_its_application_in_geochemical_mapping
- https://www.researchgate.net/publication/332696102_Deep_Learning_for_Classification_of_Hyperspectral_Data_A_Comparative_Review
- https://www.researchgate.net/publication/336889271_Deep_Learning_for_Hyperspectral_Image_Classification_An_Overview
- https://www.researchgate.net/publication/327995228_Deep_Spectral_Convolution_Network_for_Hyperspectral_Unmixing
- https://ieeexplore.ieee.org/abstract/document/10580951 -> Exploring Hybrid Contrastive Learning and Scene-to-Label Information for Multilabel Remote Sensing Image Classification [UNSEEN]
- https://www.researchgate.net/publication/356393038_Generalized_Unsupervised_Clustering_of_Hyperspectral_Images_of_Geological_Targets_in_the_Near_Infrared
- https://ieeexplore.ieee.org/abstract/document/10588073 -> Hyperspectral Image Classification Using Spatial and Spectral Features Based on Deep Learning [UNSEEN]
- https://www.researchgate.net/publication/333301728_Hyperspectral_Image_Classification_Method_Based_on_CNN_Architecture_Embedding_With_Hashing_Semantic_Feature
- https://www.researchgate.net/publication/323950012_Hyperspectral_Unmixing_Using_A_Neural_Network_Autoencoder
- https://www.researchgate.net/publication/339657313_Hyperspectral_unmixing_using_deep_convolutional_autoencoder
- https://www.researchgate.net/publication/339066136_Hyperspectral_Unmixing_Using_Deep_Convolutional_Autoencoders_in_a_Supervised_Scenario
- https://www.researchgate.net/publication/335878933_LITHOLOGICAL_CLASSIFICATION_USING_MULTI-SENSOR_DATA_AND_CONVOLUTIONAL_NEURAL_NETWORKS
- https://ieeexplore.ieee.org/abstract/document/10551851 -> MSNet: Self-Supervised Multiscale Network With Enhanced Separation Training for Hyperspectral Anomaly Detection
- https://www.researchgate.net/publication/331794887_Nonlinear_Unmixing_of_Hyperspectral_Data_via_Deep_Autoencoder_Networks
- https://ieeexplore.ieee.org/abstract/document/10534107 -> ReSC-net: Hyperspectral Image Classification Based on Attention-Enhanced Residual Module and Spatial-Channel Attention
- https://www.researchgate.net/publication/340961027_Recent_Advances_in_Hyperspectral_Unmixing_Using_Sparse_Techniques_and_Deep_Learning
- https://www.researchgate.net/publication/330272600_Semisupervised_Stacked_Autoencoder_With_Cotraining_for_Hyperspectral_Image_Classification
- https://www.researchgate.net/publication/336097421_Spatial-Spectral_Hyperspectral_Unmixing_Using_Multitask_Learning
- https://www.researchgate.net/publication/312355586_Spectral-Spatial_Classification_of_Hyperspectral_Imagery_with_3D_Convolutional_Neural_Network
- https://meetingorganizer.copernicus.org/EGU2020/EGU2020-10719.html -> Sentinel-2 as a tool for mapping iron-bearing alteration minerals: a case study from the Iberian Pyrite Belt (Southern Spain)
- https://www.researchgate.net/publication/334058881_SSDC-DenseNet_A_Cost-Effective_End-to-End_Spectral-Spatial_Dual-Channel_Dense_Network_for_Hyperspectral_Image_Classification
- https://www.researchgate.net/publication/333497470_Integration_of_auto-encoder_network_with_density-based_spatial_clustering_for_geochemical_anomaly_detection_for_mineral_exploration
- https://www.sciencedirect.com/science/article/pii/S0009281924000473 -> Geochemical characteristics and mapping of Reşadiye (Tokat-Türkiye) bentonite deposits using machine learning and sub-pixel mixture algorithms
- https://www.sciencedirect.com/science/article/pii/S0273117724004861?dgcid=rss_sd_all -> Optimization of machine learning algorithms for remote alteration mapping
- https://www.researchgate.net/publication/337841253_A_solar_optical_hyperspectral_library_of_rare_earth-bearing_minerals_rare_earth_oxides_copper-bearing_minerals_and_Apliki_mine_surface_samples
- https://ieeexplore.ieee.org/document/10536904 -> A Reversible Generative Network for Hyperspectral Unmixing With Spectral Variability
- https://www.researchgate.net/publication/3204295_Abundance_Estimation_of_Spectrally_Similar_Minerals_by_Using_Derivative_Spectra_in_Simulated_Annealing
- https://www.researchgate.net/publication/338371376_Accuracy_assessment_of_hydrothermal_mineral_maps_derived_from_ASTER_images
- https://www.researchgate.net/publication/337790490_Analysis_of_Most_Significant_Bands_and_Band_Ratios_for_Discrimination_of_Hydrothermal_Alteration_Minerals
- https://www.researchgate.net/project/Deep-Learning-for-Remote-Sensing-2
- https://ieeexplore.ieee.org/abstract/document/10589462 -> Deep Spectral Spatial Feature Enhancement through Transformer for Hyperspectral Image Classification
- https://www.researchgate.net/publication/331876006_Fusion_of_Landsat_and_Worldview_Images
- https://www.researchgate.net/publication/259096595_Geological_mapping_using_remote_sensing_data_A_comparison_of_five_machine_learning_algorithms_their_response_to_variations_in_the_spatial_distribution_of_training_data_and_the_use_of_explicit_spatial_
- https://www.researchgate.net/publication/341802637_Improved_k-means_and_spectral_matching_for_hyperspectral_mineral_mapping
- https://www.researchgate.net/publication/272565561_Integration_and_Analysis_of_ASTER_and_IKONOS_Images_for_the_Identification_of_Hydrothermally-_Altered_Mineral_Exploration_Sites
- https://www.researchgate.net/publication/236271149_Multi-_and_hyperspectral_geologic_remote_sensing_A_review_GRSG_Member_News
- https://www.researchgate.net/publication/220492175_Multi-and_Hyperspectral_geologic_remote_sensing_A_review
- https://www.sciencedirect.com/science/article/pii/S1574954124001572 -> Rapid estimation of soil Mn content by machine learning and soil spectra in large-scale
- https://www.researchgate.net/publication/342184377_remotesensing-12-01239-v2_1
- https://www.researchgate.net/project/Remote-sensing-exploration-of-critical-mineral-deposits
- https://www.researchgate.net/project/Sentinel-2-MSI-for-geological-remote-sensing
- https://www.researchgate.net/publication/323808118_Thermal_infrared_multispectral_remote_sensing_of_lithology_and_mineralogy_based_on_spectral_properties_of_materials
- https://www.researchgate.net/publication/340505978_Unsupervised_and_Supervised_Feature_Extraction_Methods_for_Hyperspectral_Images_Based_on_Mixtures_of_Factor_Analyzers
- https://www.researchgate.net/publication/235443308_Application_of_remote_sensing_and_GIS_mapping_to_Quaternary_to_recent_surficial_sediments_of_the_Central_Uranium_district_Namibia
- https://www.researchgate.net/publication/342373512_Geological_mapping_using_Random_Forests_applied_to_Remote_Sensing_data_a_demonstration_study_from_Msaidira-Souk_Al_Had_Sidi_Ifni_inlier_Western_Anti-Atlas_Morocco
- https://www.researchgate.net/publication/340534611_Identifying_high_potential_zones_of_gold_mineralization_in_a_sub-tropical_region_using_Landsat-8_and_ASTER_remote_sensing_data_a_case_study_of_the_Ngoura-Colomines_goldfield_Eastern_Cameroon
- https://www.researchgate.net/publication/342162988_Lithological_and_alteration_mineral_mapping_for_alluvial_gold_exploration_in_the_south_east_of_Birao_area_Central_African_Republic_using_Landsat-8_Operational_Land_Imager_OLI_data
- https://www.researchgate.net/publication/329193841_Mapping_Copper_Mineralisation_using_EO-1_Hyperion_Data_Fusion_with_Landsat_8_OLI_and_Sentinel-2A_in_Moroccan_Anti_Atlas
- https://www.researchgate.net/publication/230918249_SPECTRAL_REMOTE_SENSING_OF_HYDROTHERMAL_ALTERATION_ASSOCIATED_WITH_VOLCANOGENIC_MASSIVE_SULPHIDE_DEPOSITS_GOROB-HOPE_AREA_NAMIBIA
- https://www.researchgate.net/publication/337304180_The_application_of_day_and_night_time_ASTER_satellite_imagery_for_geothermal_and_mineral_mapping_in_East_Africa
- https://www.researchgate.net/publication/336823002_Towards_Multiscale_and_Multisource_Remote_Sensing_Mineral_Exploration_Using_RPAS_A_Case_Study_in_the_Lofdal_Carbonatite-Hosted_REE_Deposit_Namibia
- https://www.researchgate.net/publication/338296843_Use_of_the_Sentinel-2A_Multispectral_Image_for_Litho-Structural_and_Alteration_Mapping_in_Al_Glo'a_Map_Sheet_150000_Bou_Azzer-El_Graara_Inlier_Central_Anti-Atlas_Morocco
- https://www.researchgate.net/publication/287950835_Altimetric_and_aeromagnetometric_data_fusion_as_a_tool_of_geological_interpretation_the_example_of_the_Carajas_Mineral_Province_PA
- https://www.researchgate.net/publication/237222985_Analise_e_integracao_de_dados_do_SAR-R99B_com_dados_de_sensoriamento_remoto_optico_e_dados_aerogeofisicos_na_regiao_dos_depositos_de_oxido_de_Fe-Cu-Au_tipo_Sossego_e_118_na_Provincia_Mineral_de_Caraja
- https://www.researchgate.net/publication/327503453_Comparison_of_Altered_Mineral_Information_Extracted_from_ETM_ASTER_and_Hyperion_data_in_Aguas_Claras_Iron_Ore_Brazil
- https://www.researchgate.net/publication/251743903_Enhancement_Of_Landsat_Thematic_Mapper_Imagery_For_Mineral_Prospecting_In_Weathered_And_Vegetated_Terrain_In_SE_Brazil
- https://www.researchgate.net/publication/228854234_Hyperspectral_Data_Processing_For_Mineral_Mapping_Using_AVIRIS_1995_Data_in_Alto_Paraiso_de_Goias_Central_Brazil
- https://www.researchgate.net/publication/326612136_Mapping_Mining_Areas_in_the_Brazilian_Amazon_Using_MSISentinel-2_Imagery_2017
- https://www.researchgate.net/publication/242188704_MINERALOGICAL_CHARACTERIZATION_AND_MAPPING_USING_REFLECTANCE_SPECTROSCOPY_AN_EXPERIMENT_AT_ALTO_DO_GIZ_PEGMATITE_IN_THE_SOUTH_PORTION_OF_BORBOREMA_PEGMATITE_PROVINCE_BPP_NORTHEASTERN_BRAZIL
- https://www.researchgate.net/publication/338355143_A_comprehensive_scheme_for_lithological_mapping_using_Sentinel-2A_and_ASTER_GDEM_in_weathered_and_vegetated_coastal_zone_Southern_China
- https://www.researchgate.net/publication/332957713_Data_mining_of_the_best_spectral_indices_for_geochemical_anomalies_of_copper_A_study_in_the_northwestern_Junggar_region_Xinjiang
- https://www.researchgate.net/publication/380287318_Machine_learning_model_for_deep_exploration_Utilizing_short_wavelength_infrared_SWIR_of_hydrothermal_alteration_minerals_in_the_Qianchen_gold_deposit_Jiaodong_Peninsula_Eastern_China
- https://www.researchgate.net/publication/304906898_Remote_sensing_and_GIS_prospectivity_mapping_for_magmatic-hydrothermal_base-_and_precious-metal_deposits_in_the_Honghai_district_China
- https://www.researchgate.net/publication/326655551_Application_of_Multi-Sensor_Satellite_Data_for_Exploration_of_Zn-Pb_Sulfide_Mineralization_in_the_Franklinian_Basin_North_Greenland
- https://www.researchgate.net/publication/337512735_Fusion_of_DPCA_and_ICA_algorithms_for_mineral_detection_using_Landsat-8_spectral_bands
- https://www.researchgate.net/publication/336684298_Landsat-8_Advanced_Spaceborne_Thermal_Emission_and_Reflection_Radiometer_and_WorldView-3_Multispectral_Satellite_Imagery_for_Prospecting_Copper-Gold_Mineralization_in_the_Northeastern_Inglefield_Mobil
- https://www.researchgate.net/publication/337649256_Automated_lithological_mapping_by_integrating_spectral_enhancement_techniques_and_machine_learning_algorithms_using_AVIRIS-NG_hyperspectral_data_in_Gold-bearing_granite-greenstone_rocks_in_Hutti_India
- https://www.researchgate.net/publication/333816841_Integrated_application_of_AVIRIS-NG_and_Sentinel-2A_dataset_in_altered_mineral_abundance_mapping_A_case_study_from_Jahazpur_area_Rajasthan
- https://www.researchgate.net/publication/339631389_Identification_and_characterization_of_hydrothermally_altered_minerals_using_surface_and_space-based_reflectance_spectroscopy_in_parts_of_south-eastern_Rajasthan_India
- https://www.researchgate.net/publication/338116272_Potential_Use_of_ASTER_Derived_Emissivity_Thermal_Inertia_and_Albedo_Image_for_Discriminating_Different_Rock_Types_of_Aravalli_Group_of_Rocks_Rajasthan
- https://www.researchgate.net/publication/338336181_A_Remote_Sensing-Based_Application_of_Bayesian_Networks_for_Epithermal_Gold_Potential_Mapping_in_Ahar-Arasbaran_Area_NW_Iran
- https://www.researchgate.net/publication/338371376_Accuracy_assessment_of_hydrothermal_mineral_maps_derived_from_ASTER_images
- https://www.researchgate.net/publication/340606566_Application_of_Landsat-8_Sentinel-2_ASTER_and_WorldView-3_Spectral_Imagery_for_Exploration_of_Carbonate-Hosted_Pb-Zn_Deposits_in_the_Central_Iranian_Terrane_CIT
- https://www.researchgate.net/publication/331428927_Comparison_of_Different_Algorithms_to_Map_Hydrothermal_Alteration_Zones_Using_ASTER_Remote_Sensing_Data_for_Polymetallic_Vein-Type_Ore_Exploration_Toroud-Chahshirin_Magmatic_Belt_TCMB_North_Iran
- https://www.researchgate.net/publication/327832371_Band_Ratios_Matrix_Transformation_BRMT_A_Sedimentary_Lithology_Mapping_Approach_Using_ASTER_Satellite_Sensor
- https://www.researchgate.net/publication/331314687_Lithological_mapping_in_Sangan_region_in_Northeast_Iran_using_ASTER_satellite_data_and_image_processing_methods
- https://www.researchgate.net/publication/330774780_Mapping_hydrothermal_alteration_zones_and_lineaments_associated_with_orogenic_gold_mineralization_using_ASTER_data_A_case_study_from_the_Sanandaj-Sirjan_Zone_Iran
- https://www.researchgate.net/publication/380812370_Optimization_of_machine_learning_algorithms_for_remote_alteration_mapping
- https://www.researchgate.net/publication/362620968_Spatial_mapping_of_hydrothermal_alterations_and_structural_features_for_gold_and_cassiterite_exploration
- https://www.researchgate.net/publication/271714561_Geology_and_Hydrothermal_Alteration_of_the_Chapi_Chiara_Prospect_and_Nearby_Targets_Southern_Peru_Using_ASTER_Data_and_Reflectance_Spectroscopy
- https://www.researchgate.net/publication/317141295_Hyperspectral_remote_sensing_applied_to_mineral_exploration_in_southern_Peru_A_multiple_data_integration_approach_in_the_Chapi_Chiara_gold_prospect
- https://www.researchgate.net/publication/233039694_Geological_mapping_using_Landsat_Thematic_Mapper_imagery_in_Almeria_Province_south-east_Spain
- https://www.researchgate.net/publication/263542786_WEIGHTS_DERIVED_FROM_HYPERSPECTRAL_DATA_TO_FACILITATE_AN_OPTIMAL_FIELD_SAMPLING_SCHEME_FOR_POTENTIAL_MINERALS
- https://www.researchgate.net/publication/341611032_ASTER_spectral_band_ratios_for_lithological_mapping_A_case_study_for_measuring_geological_offset_along_the_Erkenek_Segment_of_the_East_Anatolian_Fault_Zone_Turkey
- https://www.researchgate.net/publication/379960654_From_sensor_fusion_to_knowledge_distillation_in_collaborative_LIBS_and_hyperspectral_imaging_for_mineral_identification
- https://www.researchgate.net/publication/229383008_Hydrothermal_Alteration_Mapping_at_Bodie_California_using_AVIRIS_Hyperspectral_Data
- https://www.researchgate.net/publication/332737573_Identification_of_alteration_zones_using_a_Landsat_8_image_of_densely_vegetated_areas_of_the_Wayang_Windu_Geothermal_field_West_Java_Indonesia
- https://www.researchgate.net/publication/325137721_Interpretation_of_surface_geochemical_data_and_integration_with_geological_maps_and_Landsat-TM_images_for_mineral_exploration_from_a_portion_of_the_precambrian_of_Uruguay
- https://www.researchgate.net/publication/336684298_Landsat-8_Advanced_Spaceborne_Thermal_Emission_and_Reflection_Radiometer_and_WorldView-3_Multispectral_Satellite_Imagery_for_Prospecting_Copper-Gold_Mineralization_in_the_Northeastern_Inglefield_Mobil
- https://www.researchgate.net/publication/304036250_Mineral_Exploration_for_Epithermal_Gold_in_Northern_Patagonia_Argentina_From_Regional-_to_Deposit-Scale_Prospecting_Using_Landsat_TM_and_Terra_ASTER
- https://www.researchgate.net/publication/340652300_New_logical_operator_algorithms_for_mapping_of_hydrothermally_altered_rocks_using_ASTER_data_A_case_study_from_central_Turkey
- https://www.researchgate.net/publication/324938267_Regional_geology_mapping_using_satellite-based_remote_sensing_approach_in_Northern_Victoria_Land_Antarctica
- https://www.mdpi.com/2072-4292/17/11/1878 -> Scalable Hyperspectral Enhancement via Patch-Wise Sparse Residual Learning: Insights from Super-Resolved EnMAP Data
- https://www.researchgate.net/publication/390874026_Assessing_named_entity_recognition_by_using_geoscience_domain_schemas_the_case_of_mineral_systems
- https://link.springer.com/article/10.1007/s12371-024-01011-2 -> Can AI Get a Degree in Geoscience? Performance Analysis of a GPT-Based Artificial Intelligence System Trained for Earth Science (GeologyOracle)
- https://www.researchgate.net/publication/376671309_Enhancing_knowledge_discovery_from_unstructured_data_using_a_deep_learning_approach_to_support_subsurface_modeling_predictions
- https://www.mdpi.com/2220-9964/13/7/260 -> Extracting Geoscientific Dataset Names from the Literature Based on the Hierarchical Temporal Memory Model
- Knowledge-Infused LLM Application in Data Analytics: Using Mindat as an Example
- https://www.sciencedirect.com/science/article/pii/S0169136824002154 -> Three-dimensional mineral prospectivity mapping based on natural language processing and random forests: A case study of the Xiyu diamond deposit, China
- https://arxiv.org/pdf/2401.16822 - EarthGPT: A Universal Multi-modal Large Language Model for Multi-sensor Image Comprehension in Remote Sensing Domain
- https://link.springer.com/article/10.1007/s12371-024-01011-2 -> Can AI Get a Degree in Geoscience? Performance Analysis of a GPT-Based Artificial Intelligence System Trained for Earth Science (GeologyOracle)
- Geology Oracle web prototype -https://geologyoracle.com/ask-the-geologyoracle/
- Knowledge-Infused LLM Application in Data Analytics: Using Mindat as an Example ->https://www.proquest.com/openview/38854958cb460de71484a93584fe0ff4/1?cbl=18750&diss=y&pq-origsite=gscholar [UNSEEN PAST THIS]
- https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5242692 -> GeoProspect: a domain specific geological large language model
- https://arxiv.org/abs/2404.05746v1 -> Causality for Earth Science -> A Review on Time-series and Spatiotemporal Causality Methods
- https://link.springer.com/article/10.1007/s11831-025-10244-5 -> Deep Learning for Time Series Forecasting: Review and Applications in Geotechnics and Geosciences
- https://ieeexplore.ieee.org/abstract/document/10825956 -> Enabling Scalable Mineral Exploration:Self-Supervision and Explainability
- https://www.researchgate.net/publication/384137154_Guidelines_for_Sensitivity_Analyses_in_Process_Simulations_for_Solid_Earth_Geosciences
- https://www.mdpi.com/1660-4601/18/18/9752 -> Learning and Expertise in Mineral Exploration Decision-Making: An Ecological Dynamics Perspective
- https://www.sciencedirect.com/science/article/pii/S2214629624001476 -> Mapping critical minerals projects and their intersection with Indigenous peoples' land rights in Australia
- https://www.sciencedirect.com/science/article/pii/S0169136824003470 -> Overcoming survival bias in targeting mineral deposits of the future: Towards null and negative tests of the exploration search space, accounting for lack of visibility
- https://www.sciencedirect.com/science/article/pii/S088329272400115X -> Ranking Mineral Exploration Targets in Support of Commercial Decision Making: A Key Component for Inclusion in an Exploration Information System
- https://earthmover.io/blog/tensors-vs-tables -> Tensors vs tables - why array native data structures are needed for performance
- https://www.researchgate.net/publication/390346411_A_Biological-Inspired_Deep_Learning_Framework_for_Big_Data_Mining_and_Automatic_Classification_in_Geosciences
- https://arxiv.org/abs/2408.11804 -> Approaching Deep Learning through the Spectral Dynamics of Weights
- https://www.researchgate.net/publication/384833877_A_Review_of_Mineral_Prospectivity_Mapping_Using_Deep_Learning
- https://arxiv.org/pdf/2310.19909.pdf -> Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
- https://pure.mpg.de/rest/items/item_3029184_8/component/file_3282959/content -> Deep learning and process understanding for data-driven Earth system science
- https://www.tandfonline.com/doi/pdf/10.1080/17538947.2024.2391952 -> Deep learning for spatiotemporal forecasting in Earth system science: a review
- https://wires.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/widm.1554 -> From 3D point-cloud data to explainable geometric deep learning: State-of-the-art and future challenges
- https://arxiv.org/pdf/2410.16602 -> Foundation Models for Remote Sensing and Earth Observation: A Survey
- https://www.researchgate.net/publication/383460665_Poly2Vec_Polymorphic_Encoding_of_Geospatial_Objects_for_Spatial_Reasoning_with_Deep_Neural_Networks
- https://www.nature.com/articles/s41467-021-24025-8 -> Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data-https://arxiv.org/html/2401.10825v3 -> Recent Advances in Named Entity Recognition: A Comprehensive Survey and Comparative Study
- https://arxiv.org/abs/2404.07738 ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models
- https://ieeexplore.ieee.org/abstract/document/10605826 -> Swin-CDSA: The Semantic Segmentation of Remote Sensing Images Based on Cascaded Depthwise Convolution and Spatial Attention Mechanism
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424000839#sec6 -> Leveraging automated deep learning (AutoDL) in geosciences
- Paul Bourke GOCAD formatshttps://paulbourke.net/dataformats/gocad/gocad.pdf
About
List of resources for mineral exploration and machine learning, generally with useful code and examples.
Topics
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Contributors2
Uh oh!
There was an error while loading.Please reload this page.