Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX.

License

NotificationsYou must be signed in to change notification settings

Blaizzy/mlx-vlm

Repository files navigation

Upload Python Package

MLX-VLM

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX.

Table of Contents

Installation

The easiest way to get started is to install themlx-vlm package using pip:

pip install mlx-vlm

Usage

Command Line Interface (CLI)

Generate output from a model using the CLI:

python -m mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --temperature 0.0 --image http://images.cocodataset.org/val2017/000000039769.jpg

Chat UI with Gradio

Launch a chat interface using Gradio:

python -m mlx_vlm.chat_ui --model mlx-community/Qwen2-VL-2B-Instruct-4bit

Python Script

Here's an example of how to use MLX-VLM in a Python script:

importmlx.coreasmxfrommlx_vlmimportload,generatefrommlx_vlm.prompt_utilsimportapply_chat_templatefrommlx_vlm.utilsimportload_config# Load the modelmodel_path="mlx-community/Qwen2-VL-2B-Instruct-4bit"model,processor=load(model_path)config=load_config(model_path)# Prepare inputimage= ["http://images.cocodataset.org/val2017/000000039769.jpg"]# image = [Image.open("...")] can also be used with PIL.Image.Image objectsprompt="Describe this image."# Apply chat templateformatted_prompt=apply_chat_template(processor,config,prompt,num_images=len(image))# Generate outputoutput=generate(model,processor,formatted_prompt,image,verbose=False)print(output)

Multi-Image Chat Support

MLX-VLM supports analyzing multiple images simultaneously with select models. This feature enables more complex visual reasoning tasks and comprehensive analysis across multiple images in a single conversation.

Supported Models

The following models support multi-image chat:

  1. Idefics 2
  2. LLaVA (Interleave)
  3. Qwen2-VL
  4. Phi3-Vision
  5. Pixtral

Usage Examples

Python Script

frommlx_vlmimportload,generatefrommlx_vlm.prompt_utilsimportapply_chat_templatefrommlx_vlm.utilsimportload_configmodel_path="mlx-community/Qwen2-VL-2B-Instruct-4bit"model,processor=load(model_path)config=load_config(model_path)images= ["path/to/image1.jpg","path/to/image2.jpg"]prompt="Compare these two images."formatted_prompt=apply_chat_template(processor,config,prompt,num_images=len(images))output=generate(model,processor,formatted_prompt,images,verbose=False)print(output)

Command Line

python -m mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt"Compare these images" --image path/to/image1.jpg path/to/image2.jpg

Video Understanding

MLX-VLM also supports video analysis such as captioning, summarization, and more, with select models.

Supported Models

The following models support video chat:

  1. Qwen2-VL
  2. Qwen2.5-VL
  3. Idefics3
  4. LLaVA

With more coming soon.

Usage Examples

Command Line

python -m mlx_vlm.video_generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt"Describe this video" --video path/to/video.mp4 --max-pixels 224 224 --fps 1.0

These examples demonstrate how to use multiple images with MLX-VLM for more complex visual reasoning tasks.

Fine-tuning

MLX-VLM supports fine-tuning models with LoRA and QLoRA.

LoRA & QLoRA

To learn more about LoRA, please refer to theLoRA.md file.


[8]ページ先頭

©2009-2025 Movatter.jp