Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Learnable latent embeddings for joint behavioral and neural analysis - Official implementation of CEBRA

License

NotificationsYou must be signed in to change notification settings

AdaptiveMotorControlLab/CEBRA

Repository files navigation

Welcome! 👋

CEBRA is a library for estimatingConsistentEmBeddings of high-dimensionalRecordings usingAuxiliary variables. It contains self-supervised learning algorithms implemented in PyTorch, and has support for a variety of different datasets common in biology and neuroscience.

To receive updates on code releases, please 👀 watch or ⭐️ star this repository!

cebra is a self-supervised method for non-linear clustering that allows for label-informed time series analysis.It can jointly use behavioral and neural data in a hypothesis- or discovery-driven manner to produce consistent, high-performance latent spaces. While it is not specific to neural and behavioral data, this is the first domain we used the tool in. This application case is to obtain a consistent representation of latent variables driving activity and behavior, improving decoding accuracy of behavioral variables over standard supervised learning, and obtaining embeddings which are robust to domain shifts.

Reference

License

  • Since version 0.4.0, CEBRA is open source software under an Apache 2.0 license.
  • Prior versions 0.1.0 to 0.3.1 were released for academic use only (please read the license file).

About

Learnable latent embeddings for joint behavioral and neural analysis - Official implementation of CEBRA

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp