Movatterモバイル変換


[0]ホーム

URL:


Open In App

Seabornis a Python data visualization library based onmatplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. Seaborn helps resolve the two major problems faced by Matplotlib; the problems are ?

  • Default Matplotlib parameters
  • Working with data frames

As Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half-way through Seaborn.

seaborn.jointplot() :

Draw a plot of two variables with bivariate and univariate graphs. This function provides a convenient interface to the 'JointGrid' class, with several canned plot kinds. This is intended to be a fairly lightweight wrapper; if you need more flexibility, you should use :class:'JointGrid' directly.

Syntax: seaborn.jointplot(x,  y,  data=None, kind='scatter', stat_func=None, color=None, height=6, ratio=5, space=0.2, dropna=True,  xlim=None, ylim=None, joint_kws=None, marginal_kws=None, annot_kws=None, **kwargs)

Parameters:The description of some main parameters are given below:

x, y: These parameters take Data or names of variables in "data".

data: (optional) This parameter take DataFrame when "x" and "y" are variable names.

kind: (optional) This parameter take Kind of plot to draw.

color:  (optional) This parameter take Color used for the plot elements.

dropna: (optional) This parameter take boolean value, If True, remove observations that are missing from "x" and "y".

Return: jointgrid object with the plot on it.

Below is the implementation of above method:

Example 1:

Python3
# importing required packagesimportseabornassnsimportmatplotlib.pyplotasplt# loading datasetdata=sns.load_dataset("attention")# draw jointplot with# hex kindsns.jointplot(x="solutions",y="score",kind="hex",data=data)# show the plotplt.show()# This code is contributed# by Deepanshu Rustagi.

Output:

Example 2:

Python3
# importing required packagesimportseabornassnsimportmatplotlib.pyplotasplt# loading datasetdata=sns.load_dataset("mpg")# draw jointplot with# scatter kindsns.jointplot(x="mpg",y="acceleration",kind="scatter",data=data)# show the plotplt.show()# This code is contributed# by Deepanshu Rustagi.

Output:

Example 3:

Python3
# importing required packagesimportseabornassnsimportmatplotlib.pyplotasplt# loading datasetdata=sns.load_dataset("exercise")# draw jointplot with# kde kindsns.jointplot(x="id",y="pulse",kind="kde",data=data)# Show the plotplt.show()# This code is contributed# by Deepanshu Rustagi.

Output:

Example 4:

Python3
# importing required packagesimportseabornassnsimportmatplotlib.pyplotasplt# loading datasetdata=sns.load_dataset("titanic")# draw jointplot with# reg kindsns.jointplot(x="age",y="fare",kind="reg",data=data,dropna=True)# show the plotplt.show()# This code is contributed# by Deepanshu Rustagi.

Output:


Improve
Improve
Article Tags :

Explore

Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences

[8]ページ先頭

©2009-2025 Movatter.jp