Movatterモバイル変換


[0]ホーム

URL:


Open In App
Next Article:
numpy.vstack() in python
Next article icon

NumPy is a famous Python library used for working with arrays. One of the important functions of this library is stack().

Important points:

Syntax:  numpy.stack(arrays, axis=0, out=None)

Parameters:

Example #1 : stacking two 1d arrays

Python
importnumpyasnp# input arraya=np.array([1,2,3])b=np.array([4,5,6])# Stacking 2 1-d arraysc=np.stack((a,b),axis=0)print(c)

output - 

array([[1, 2, 3],
      [4, 5, 6]])

  Notice, output is a 2-D array.They are stacked row-wise. Now, let's change the axis to 1.

Python
# stack 2 1-d arrays column-wisenp.stack((a,b),axis=1)

output - 

array([[1, 4],
      [2, 5],
      [3, 6]])

Here, stack() takes 2 1-D arrays and stacks them one after another as if it fills elements in new arraycolumn-wise.

Python
#stacking 2 arrays along -1 axisnp.stack((a,b),axis=-1)

 output -

array([[1, 4],
      [2, 5],
      [3, 6]])

-1 represents 'last dimension-wise'. Here 2 axis are possible. 0 and 1. So, -1 is same as 1.

Example #2 : stacking two 2d arrays

Python3
# input arraysx=np.array([[1,2,3],[4,5,6]])y=np.array([[7,8,9],[10,11,12]])

1. stacking with axis=0

Python3
np.stack((x,y),axis=0)

output - 

array([[[ 1,  2,  3],
       [ 4,  5,  6]],

      [[ 7,  8,  9],
       [10, 11, 12]]])

Imagine as if they are stacked one after another and made a 3-D array.

2. stacking with axis=1

Python3
np.stack((x,y),axis=1)

Output - 3D array. 1st dimension has 1st rows. 2nd dimension has 2nd rows. [Row-wise stacking]

array([[[ 1,  2,  3],
       [ 7,  8,  9]],

      [[ 4,  5,  6],
       [10, 11, 12]]])

3. stacking with axis =2

Python3
np.stack((x,y),axis=2)

Output - 3D array. 1st dimension has 1st rows. 2nd dimension has 2nd rows. [Column-wise stacking]

array([[[ 1,  7],
       [ 2,  8],
       [ 3,  9]],

      [[ 4, 10],
       [ 5, 11],
       [ 6, 12]]])

Example #2 : stacking more than two 2d arrays

1. with axis=0 : Just stacking. 

Python3
x=np.array([[1,2,3],[4,5,6]])y=np.array([[7,8,9],[10,11,12]])z=np.array([[13,14,15],[16,17,18]])np.stack((x,y,z),axis=0)

 output - 

array([[[ 1,  2,  3],
       [ 4,  5,  6]],

      [[ 7,  8,  9],
       [10, 11, 12]],

      [[13, 14, 15],
       [16, 17, 18]]])

2. with axis =1 (row-wise stacking)

Python3
np.stack((x,y,z),axis=1)

output - 

array([[[ 1,  2,  3],
       [ 7,  8,  9],
       [13, 14, 15]],

      [[ 4,  5,  6],
       [10, 11, 12],
       [16, 17, 18]]])

3. with axis =2 (column-wise stacking)

Python
np.stack((x,y,z),axis=2)

output-

array([[[ 1,  7, 13],
       [ 2,  8, 14],
       [ 3,  9, 15]],

      [[ 4, 10, 16],
       [ 5, 11, 17],
       [ 6, 12, 18]]])

Example #3 : stacking two 3d arrays

1. axis=0. Just stacking

Python3
#2 input 3d arraysm=np.array([[[1,2,3],[4,5,6],[7,8,9]],[[10,11,12],[13,14,15],[16,17,18]]])n=np.array([[[51,52,53],[54,55,56],[57,58,59]],[[110,111,112],[113,114,115],[116,117,118]]])# stackingnp.stack((m,n),axis=0)

 output - 

array([[[[  1,   2,   3],
        [  4,   5,   6],
        [  7,   8,   9]],

       [[ 10,  11,  12],
        [ 13,  14,  15],
        [ 16,  17,  18]]],


      [[[ 51,  52,  53],
        [ 54,  55,  56],
        [ 57,  58,  59]],

       [[110, 111, 112],
        [113, 114, 115],
        [116, 117, 118]]]])

2. with axis=1 

Python3
np.stack((m,n),axis=1)

output - Imagine as if the resultant array takes 1st plane of each array for 1st dimension and so on.

array([[[[  1,   2,   3],
        [  4,   5,   6],
        [  7,   8,   9]],

       [[ 51,  52,  53],
        [ 54,  55,  56],
        [ 57,  58,  59]]],


      [[[ 10,  11,  12],
        [ 13,  14,  15],
        [ 16,  17,  18]],

       [[110, 111, 112],
        [113, 114, 115],
        [116, 117, 118]]]])

3. with axis = 2 

Python3
np.stack((m,n),axis=2)

output - 

array([[[[  1,   2,   3],
        [ 51,  52,  53]],

       [[  4,   5,   6],
        [ 54,  55,  56]],

       [[  7,   8,   9],
        [ 57,  58,  59]]],


      [[[ 10,  11,  12],
        [110, 111, 112]],

       [[ 13,  14,  15],
        [113, 114, 115]],

       [[ 16,  17,  18],
        [116, 117, 118]]]])

4. with axis = 3

Python3
np.stack((m,n),axis=3)

output - 

array([[[[  1,  51],
        [  2,  52],
        [  3,  53]],

       [[  4,  54],
        [  5,  55],
        [  6,  56]],

       [[  7,  57],
        [  8,  58],
        [  9,  59]]],


      [[[ 10, 110],
        [ 11, 111],
        [ 12, 112]],

       [[ 13, 113],
        [ 14, 114],
        [ 15, 115]],

       [[ 16, 116],
        [ 17, 117],
        [ 18, 118]]]])


Similar Reads

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood ourCookie Policy &Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences

[8]ページ先頭

©2009-2025 Movatter.jp