numpy.gcd() function computes the greatest common divisor (GCD) of two integers element-wise. The GCD of two numbers is the largest positive integer that divides both numbers without leaving a remainder.
Pythonimportnumpyasnpres=np.gcd(36,60)print(res)
The GCD of 36 and 60 is 12, which is the largest number that divides both without leaving a remainder.
Syntax
numpy.gcd(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Parameters:
Parameter | Type | Description |
---|
x1 | array_like | First input array or integer |
---|
x2 | array_like | Second input array or integer |
---|
out | ndarray, optional | Optional output array to store result |
---|
where | bool or array_like, optional | Condition array specifying where to compute |
---|
casting | {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional | Controls data casting (default: 'same_kind') |
---|
order | {'C', 'F', 'A', 'K'}, optional | Memory layout order of result (default: 'K') |
---|
dtype | data-type, optional | Overrides calculation data type |
---|
subok | bool, optional | Preserve subclasses if True |
---|
signature | callable, optional | Internal use for generalized ufuncs |
---|
extobj | object, optional | Internal error handling |
---|
Returns: This function returns the element-wise greatest common divisor of x1 and x2.
Examples
Example 1: GCD Element-wise on arrays
Pythonimportnumpyasnpa=np.array([24,36,48])b=np.array([18,60,72])res=np.gcd(a,b)print(res)
This function computes the GCD for each corresponding pair of elements in a and b.
- GCD(24, 18) is 6
- GCD(36, 60) is 12
- GCD(48, 72) is 24
Example 2:GCD of an array and a scalar
Pythonimportnumpyasnpa=np.array([20,30,40])res=np.gcd(a,10)print(res)
The scalar 10 is broadcast across all elements in the array a. The GCD of 10 with each number in a is computed.
Example 3: GCD with negative numbers
Pythonimportnumpyasnpa=np.array([-20,-30,-40])b=np.array([15,25,35])res=np.gcd(a,b)print(res)
This function works with negative integers too and it returns the positive GCD value, as the GCD is always positive by definition.
- GCD(-20, 15) is 5
- GCD(-30, 25) is 5
- GCD(-40, 35) is 5