In this article, we will learn different ways to create subplots of different sizes usingMatplotlib. It provides 3 different methods using which we can create different subplots of different sizes.
Methods available to create subplot:
- Gridspec
- gridspec_kw
- subplot2grid
Create Different Subplot Sizes in Matplotlib using Gridspec
The GridSpec from the gridspec module is used to adjust the geometry of the Subplot grid. We can use different parameters to adjust the shape, size, and number of columns and rows.
gridspec.GridSpec(ncols=2, nrows=2, width_ratios=[2, 1],wspace=0.5,hspace=0.5,height_ratios=[1,2])
Python3# importing required librariesimportmatplotlib.pyplotaspltfrommatplotlibimportgridspecimportnumpyasnp# create a figurefig=plt.figure()# to change size of subplot's# set height of each subplot as 8fig.set_figheight(8)# set width of each subplot as 8fig.set_figwidth(8)# create grid for different subplotsspec=gridspec.GridSpec(ncols=2,nrows=2,width_ratios=[2,1],wspace=0.5,hspace=0.5,height_ratios=[1,2])# initializing x,y axis valuex=np.arange(0,10,0.1)y=np.cos(x)# ax0 will take 0th position in# geometry(Grid we created for subplots),# as we defined the position as "spec[0]"ax0=fig.add_subplot(spec[0])ax0.plot(x,y)# ax1 will take 0th position in# geometry(Grid we created for subplots),# as we defined the position as "spec[1]"ax1=fig.add_subplot(spec[1])ax1.plot(x,y)# ax2 will take 0th position in# geometry(Grid we created for subplots),# as we defined the position as "spec[2]"ax2=fig.add_subplot(spec[2])ax2.plot(x,y)# ax3 will take 0th position in# geometry(Grid we created for subplots),# as we defined the position as "spec[3]"ax3=fig.add_subplot(spec[3])ax3.plot(x,y)# display the plotsplt.show()
Output:
Create Different Subplot Sizes in Matplotlib gridspec_kw
It is a dictionary available inside"plt.subplots()" method in Matplotlib. By passing different parameters to the dictionary we can adjust the shape and size of each subplot.
plt.subplots(nrows=2, ncols=2,figsize=(7,7), gridspec_kw={'width_ratios': [3, 3], 'height_ratios': [3, 3], 'wspace' : 0.4, 'hspace' : 0.4})
Code :
Python3# importing required librariesimportmatplotlib.pyplotaspltimportnumpyasnp# setting different parameters to adjust each gridfig,ax=plt.subplots(nrows=2,ncols=2,figsize=(7,7),gridspec_kw={'width_ratios':[3,3],'height_ratios':[3,3],'wspace':0.4,'hspace':0.4})# initializing x,y axis valuex=np.arange(0,10,0.1)y=np.tan(x)# ax[0][0] will take 0th position in# geometry(Grid we created for subplots)ax[0][0].plot(x,y)# ax[0][0] will take 0th position in# geometry(Grid we created for subplots)ax[0][1].plot(x,y)# ax[0][0] will take 0th position in# geometry(Grid we created for subplots)ax[1][0].plot(x,y)# ax[0][0] will take 0th position in# geometry(Grid we created for subplots)ax[1][1].plot(x,y)plt.show()
Output :
Create Different Subplot Sizes in Matplotlib subplot2grid
It provides more flexibility to create a grid at any location. We can extend the grid horizontally as well as vertically very easily. Here shape is denoting to no. of rows and columns and loc denotes the geometric location of the grid. Whereas, colspan = 3 in ax1, it means this subplot will cover 3 of all columns of that row. If we give irregular input then it will give an error so we have given the proper value to colspan and rowspan.
plt.subplot2grid(shape=(3, 3), loc=(0, 0), colspan=3)
Python3# importing required libraryimportmatplotlib.pyplotaspltimportnumpyasnp# creating grid for subplotsfig=plt.figure()fig.set_figheight(6)fig.set_figwidth(6)ax1=plt.subplot2grid(shape=(3,3),loc=(0,0),colspan=3)ax2=plt.subplot2grid(shape=(3,3),loc=(1,0),colspan=1)ax3=plt.subplot2grid(shape=(3,3),loc=(1,2),rowspan=2)ax4=plt.subplot2grid((3,3),(2,0))ax5=plt.subplot2grid((3,3),(2,1),colspan=1)# initializing x,y axis valuex=np.arange(0,10,0.1)y=np.cos(x)# plotting subplotsax1.plot(x,y)ax1.set_title('ax1')ax2.plot(x,y)ax2.set_title('ax2')ax3.plot(x,y)ax3.set_title('ax3')ax4.plot(x,y)ax4.set_title('ax4')ax5.plot(x,y)ax5.set_title('ax5')# automatically adjust padding horizontally# as well as vertically.plt.tight_layout()# display plotplt.show()
Output :