Movatterモバイル変換


[0]ホーム

URL:


Open In App
Next Article:
3D Surface plotting in Python using Matplotlib
Next article icon

A3D Scatter Plot is a mathematical diagram that visualizes data points in three dimensions, allowing us to observe relationships between three variables of a dataset.Matplotlib provides a built-in toolkit calledmplot3d, which enables three-dimensional plotting. To create a 3D Scatter Plot, we use theax.scatter3D() function from Matplotlib's mplot3d module. This function requires three sets of values—X, Y, and Z coordinates—to define the position of each point in the 3D space. Example:

The following example demonstrates how to create a simple 3D scatter plot using ax.scatter3D().

Python
importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dnp.random.seed(42)x=np.random.rand(50)y=np.random.rand(50)z=np.random.rand(50)# Create a figure and 3D axisfig=plt.figure(figsize=(8,6))ax=fig.add_subplot(111,projection='3d')# Create scatter plotax.scatter3D(x,y,z,color='red',marker='o')# Labelsax.set_xlabel('X Axis')ax.set_ylabel('Y Axis')ax.set_zlabel('Z Axis')ax.set_title('Basic 3D Scatter Plot')plt.show()

Output:

Output

Explanation: In this example, we generate three sets of random data and use scatter3D() to visualize them in a 3D space. The points are marked in red with circular markers.

Installation and setup

Before proceeding, ensure you have Matplotlib installed. If not, install it using:

pip install matplotlib

Now, let's explore various examples to understand how 3D scatter plots work.

Example 1: 3D Scatter Plot with Color Mapping

To enhance visualization, we can use color mappingbased on the Z-values of the data points.

Python
x=np.random.rand(100)y=np.random.rand(100)z=np.random.rand(100)colors=z# Color mapped to z-values# Create figure and 3D axisfig=plt.figure(figsize=(8,6))ax=fig.add_subplot(111,projection='3d')# Scatter plot with color mappingsc=ax.scatter3D(x,y,z,c=colors,cmap='viridis',marker='^')plt.colorbar(sc,ax=ax,label='Z Value')# Labelsax.set_xlabel('X Axis')ax.set_ylabel('Y Axis')ax.set_zlabel('Z Axis')ax.set_title('3D Scatter Plot with Color Mapping')plt.show()

Output:

output

Explanation:In this example, colors of the points are assigned based on the Z-values using the viridis colormap, making it easier to interpret variations in the dataset.

Example 2: 3D Scatter Plot with Different Markers and Sizes

To improve visualization, we can use different markers and vary the size of the points based on another dataset.

Python
x=np.random.rand(100)y=np.random.rand(100)z=np.random.rand(100)sizes=100*np.random.rand(100)# Size of markerscolors=np.random.rand(100)# Color variation# Create figure and 3D axisfig=plt.figure(figsize=(8,6))ax=fig.add_subplot(111,projection='3d')# Scatter plot with varying marker size and colorssc=ax.scatter3D(x,y,z,s=sizes,c=colors,cmap='coolwarm',alpha=0.7,marker='D')plt.colorbar(sc,ax=ax,label='Color Mapping')# Labelsax.set_xlabel('X Axis')ax.set_ylabel('Y Axis')ax.set_zlabel('Z Axis')ax.set_title('3D Scatter Plot with Different Markers and Sizes')plt.show()

Output:

output

Explanation: Here, we adjust marker sizes randomly to improve visualization and use the coolwarm colormap to enhance the color distribution.

Example 3: Customization and additional features

This example demonstrates how to create a 3D surface plot using matplotlib and numpy while incorporating customization options to enhance visualization. The code plots a 3D function and applies various modifications, such as adjusting the viewing angle, enabling the grid and changing the background color.

Python
importmatplotlib.pyplotaspltimportnumpyasnpfrommpl_toolkits.mplot3dimportAxes3Dfig=plt.figure()ax=fig.add_subplot(111,projection='3d')x=np.linspace(-5,5,100)y=np.linspace(-5,5,100)X,Y=np.meshgrid(x,y)Z=np.sin(np.sqrt(X**2+Y**2))# Plot surfaceax.plot_surface(X,Y,Z,cmap='viridis')# Customizationax.view_init(elev=30,azim=60)# Adjust view angleax.grid(True)# Add gridax.set_facecolor('lightgray')# Set background colorplt.show()

Output:

Output8995
Customization and additional features

Explanation: This code creates a 3D surface plot using Matplotlib. It generates X, Y coordinates using meshgrid. The surface is plotted with aviridis colormap. Customizations include adjusting theviewing angle, enabling the grid and changing thebackground color for better visualization.


Improve
Practice Tags :

Similar Reads

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood ourCookie Policy &Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences

[8]ページ先頭

©2009-2025 Movatter.jp