High on the Chajnantor plateau in the Chilean Andes, the European Southern Observatory (ESO), together with its international partners, is operating the Atacama Large Millimeter/submillimeter Array (ALMA) — a state-of-the-art telescope to study light from some of the coldest objects in the Universe. This light has wavelengths of around a millimetre, between infrared light and radio waves, and is therefore known as millimetre and submillimetre radiation. ALMA comprises 66 high-precisionantennas, spread over distances of up to 16 kilometres. This global collaboration is the largest ground-based astronomical project in existence.
Light at these wavelengths comes from vast cold clouds in interstellar space, at temperatures only a few tens of degrees above absolute zero, and from some of the earliest and most distant galaxies in the Universe. Astronomers can use it to study the chemical and physical conditions in molecular clouds — the dense regions of gas and dust where new stars are being born. Often these regions of the Universe are dark and obscured in visible light, but they shine brightly in the millimetre and submillimetre part of the spectrum.
Millimetre and submillimetre radiation opens a window into the enigmatic cold Universe, but the signals from space are heavily absorbed by water vapour in the Earth's atmosphere. Telescopes for this kind of astronomy must be built on high, dry sites, such as the 5000-m high plateau at Chajnantor, one of the highest astronomical observatory sites on Earth.
The ALMA site, some 50 km east of San Pedro de Atacama in northern Chile, is in one of the driest places on Earth. Astronomers find unsurpassed conditions for observing, but they must operate a frontier observatory under very difficult conditions. Chajnantor is more than 750 m higher than the observatories on Mauna Kea, and 2400 m higher than theVLT on Cerro Paranal.
Click on the image to take aVirtual Tour in and nearby Chajnantor. |
To visit the ALMA Site, please seeMedia Visits
ALMA is a single telescope of revolutionary design, composed initially of 66 high-precision antennas, and operating at wavelengths of 0.32 to 3.6 mm. Its main 12-metre array has fifty antennas, each measuring 12 metres in diameter, which together act as a single telescope — aninterferometer. An additional compact array of four 12-metre and twelve 7-metre antennas complements this. The 66 ALMA antennas can be arranged in different configurations, where the maximum distance between antennas can vary from 150 metres to 16 kilometres, which gives ALMA a powerful variable “zoom”. It is able to probe the Universe at millimetre and submillimetre wavelengths with unprecedented sensitivity and resolution, with a vision up to ten times sharper than theHubble Space Telescope, and complementing images made using theVLT Interferometer.
ALMA is the most powerful telescope for observing the cool Universe — molecular gas and dust. ALMA studies the building blocks of stars, planetary systems, galaxies and life itself. By providing scientists with detailed images of stars and planets being born in gas clouds near our Solar System, and detecting distant galaxies forming at the edge of the observable Universe, which we see as they were roughly ten billion years ago, it lets astronomers address some of the deepest questions of our cosmic origins.
ALMA was inaugurated in 2013, but early scientific observations with a partial array began in 2011. See press releaseeso1137 for more information.
ALMA has consistenly produced unique and spectacular results. The fields in which it has delivered its most outstanding results include:
For more information on discoveries made with ALMA, explore theScience with ESO Telescopes page.
ALMA is a partnership between ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).
ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
Star formation, molecular clouds, early Universe.
"In search of our Cosmic Origins" is an inspiring show, introducing ALMA, the largest astronomical project in existence. Read more at theCosmic Origins website.
Download the ALMA trailer in thevideo archive.
ALMA
|
Did you know? Stars form in dense clouds of the interstellar medium, but even in these densest regions the pressure is comparable to the most tenuous vacuum created in a laboratory on Earth. In these clouds, the temperatures are below -200 degrees Celsius. Did you know? ALMA is located in the southern hemisphere, but it is close enough to the Equator to be able to observe 73% of the northern sky, and 87% of the sky overall. Did you know? When astronomers combine the light waves from two telescopes using the principle of interferometry, they can very precisely determine the direction of an object in space. Your ears work in a similar way to localise sounds, by comparing the sound received at the left and right ears. Did you know? The skies over the ESO sites in Chile are so dark that on a clear moonless night it is possible to see your shadow cast by the light of the Milky Way alone. Did you know? There is an Earth-mass of alcohol near the centre of our Milky Way. However, most of it is methanol, and it is diluted 1:1000 with water. Telescopes observing at millimetre and submillimetre wavelengths, like APEX and soon ALMA, are used to detect many other molecules in space. Did you know? The two ALMA transporters each weigh 132.5 tonnes and have twin engines each rated at 500 kW each (at sea level). This gives a total of about 1400 horsepower, and is equivalent to about 20 "Smart Fortwo" cars. |
The antenna icons in this image show — in real time — the location of the antennas at the Chajnantor plateau (AOS)
View larger mapWe use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded fromESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’sembedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
As for their duration, cookies can be:
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the linkCookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.