In the previous blog post (Getting Started With CUDA C on Jetson Nvidia: Hello CUDA World!) I showed how to develop applications targeted at a GPU on a Nvidia Jetson Nano. As we observed in that blog post, performing a calculation on a 1-D array on a GPU had no performance benefit compared to a traditional CPU implementation, even on an array with many elements. In this blog post, we will learn about the GPU architecture to better explain the behavior and to understand the applications where a GPU shines (hint: it has to do with graphics).
One of the famous observations that have been made related to embedded systems is referred to as “Moore’s Law”, which states that the number of transistors in integrated circuits doubles every year. This observation has held mostly true for the past several decades, so powerful CPUs are no longer simply relegated to servers, desktops, and laptops. Instead, we see powerful CPUs with increased capabilities being introduced into embedded systems on devices that live at “the edge”....
One ubiquitous microprocessor of the late 1970s and 1980s was theMOS Technology MCS 6502. I included a section on the development of the 6502 inPart 2 of Supply Chain Games, and have posted it as an excerpt here, as I believe it is deserving in its own right.
(Note: MOS Technology is pronounced with the individual letters M-O-S “em oh ess”,[1] not “moss”, and should not be confused with another semiconductor company,
Today we’re going to talk about low-power design.
Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and aLoRa transceiver. The idea is something like...
This is the first blog of a number dealing with the NXP LPC17xx/40xx processor families and how to program them despite the lack of documentation. The next blog will deal with implementing the LPC17xx/40xx UART with interrupts properly, and a subsequent blog will show how to use the UART in RS485 Normal Multidrop Mode (NMM) with Auto Address Detection (AAD).
My company has decided on using the NXP LPC17xx/40xx processor line for all our embedded projects. Since...
Here is the Ada version (I should say AN Ada version) of the 7 segment multiplexing code presented in the last installment. The hardware now is the STM32F407 Discover board, which is a Cortex M4F board. There are lots of differences in GPIO and timer setup, but if you understoold the previous code in C you should not have much trouble understanding this code in Ada.
As interesting as the Ada approach to the task is the Ada ability to detect...
A coroutine is a function that you can jump back into after returning from it - and it remembers where it was in the code, and all the variables. This is very useful at times.
One use is generating a sequence of values. Here's how you can generate all the x,y pairs in a 2D range in Python:
def iterate(max_x, max_y): for x in range(max_x): for y in range(max_y): yield x,yfor x,y in iterate(2,2): print x,yThis prints:
0 00 11 01 1The yield keyword is like...
Recently I was working for an automotive client where I was supposed to choose a suitable microcontroller for my project. I started listing down the various microcontrollers available in the market, finally I made a big list and it became tough to finalize the best one. Most of the selected controllers were meeting my requirements, and it was really a tough task to choose the right one.
Then I started listing down the aspects...
One ubiquitous microprocessor of the late 1970s and 1980s was theMOS Technology MCS 6502. I included a section on the development of the 6502 inPart 2 of Supply Chain Games, and have posted it as an excerpt here, as I believe it is deserving in its own right.
(Note: MOS Technology is pronounced with the individual letters M-O-S “em oh ess”,[1] not “moss”, and should not be confused with another semiconductor company,
A coroutine is a function that you can jump back into after returning from it - and it remembers where it was in the code, and all the variables. This is very useful at times.
One use is generating a sequence of values. Here's how you can generate all the x,y pairs in a 2D range in Python:
def iterate(max_x, max_y): for x in range(max_x): for y in range(max_y): yield x,yfor x,y in iterate(2,2): print x,yThis prints:
0 00 11 01 1The yield keyword is like...
Today we’re going to talk about low-power design.
Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and aLoRa transceiver. The idea is something like...
Recently I was working for an automotive client where I was supposed to choose a suitable microcontroller for my project. I started listing down the various microcontrollers available in the market, finally I made a big list and it became tough to finalize the best one. Most of the selected controllers were meeting my requirements, and it was really a tough task to choose the right one.
Then I started listing down the aspects...
One of the famous observations that have been made related to embedded systems is referred to as “Moore’s Law”, which states that the number of transistors in integrated circuits doubles every year. This observation has held mostly true for the past several decades, so powerful CPUs are no longer simply relegated to servers, desktops, and laptops. Instead, we see powerful CPUs with increased capabilities being introduced into embedded systems on devices that live at “the edge”....
Here is the Ada version (I should say AN Ada version) of the 7 segment multiplexing code presented in the last installment. The hardware now is the STM32F407 Discover board, which is a Cortex M4F board. There are lots of differences in GPIO and timer setup, but if you understoold the previous code in C you should not have much trouble understanding this code in Ada.
As interesting as the Ada approach to the task is the Ada ability to detect...
In the previous blog post (Getting Started With CUDA C on Jetson Nvidia: Hello CUDA World!) I showed how to develop applications targeted at a GPU on a Nvidia Jetson Nano. As we observed in that blog post, performing a calculation on a 1-D array on a GPU had no performance benefit compared to a traditional CPU implementation, even on an array with many elements. In this blog post, we will learn about the GPU architecture to better explain the behavior and to understand the applications where a GPU shines (hint: it has to do with graphics).
This is the first blog of a number dealing with the NXP LPC17xx/40xx processor families and how to program them despite the lack of documentation. The next blog will deal with implementing the LPC17xx/40xx UART with interrupts properly, and a subsequent blog will show how to use the UART in RS485 Normal Multidrop Mode (NMM) with Auto Address Detection (AAD).
My company has decided on using the NXP LPC17xx/40xx processor line for all our embedded projects. Since...
A coroutine is a function that you can jump back into after returning from it - and it remembers where it was in the code, and all the variables. This is very useful at times.
One use is generating a sequence of values. Here's how you can generate all the x,y pairs in a 2D range in Python:
def iterate(max_x, max_y): for x in range(max_x): for y in range(max_y): yield x,yfor x,y in iterate(2,2): print x,yThis prints:
0 00 11 01 1The yield keyword is like...
One ubiquitous microprocessor of the late 1970s and 1980s was theMOS Technology MCS 6502. I included a section on the development of the 6502 inPart 2 of Supply Chain Games, and have posted it as an excerpt here, as I believe it is deserving in its own right.
(Note: MOS Technology is pronounced with the individual letters M-O-S “em oh ess”,[1] not “moss”, and should not be confused with another semiconductor company,
Here is the Ada version (I should say AN Ada version) of the 7 segment multiplexing code presented in the last installment. The hardware now is the STM32F407 Discover board, which is a Cortex M4F board. There are lots of differences in GPIO and timer setup, but if you understoold the previous code in C you should not have much trouble understanding this code in Ada.
As interesting as the Ada approach to the task is the Ada ability to detect...
Today we’re going to talk about low-power design.
Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and aLoRa transceiver. The idea is something like...
One of the famous observations that have been made related to embedded systems is referred to as “Moore’s Law”, which states that the number of transistors in integrated circuits doubles every year. This observation has held mostly true for the past several decades, so powerful CPUs are no longer simply relegated to servers, desktops, and laptops. Instead, we see powerful CPUs with increased capabilities being introduced into embedded systems on devices that live at “the edge”....
This is the first blog of a number dealing with the NXP LPC17xx/40xx processor families and how to program them despite the lack of documentation. The next blog will deal with implementing the LPC17xx/40xx UART with interrupts properly, and a subsequent blog will show how to use the UART in RS485 Normal Multidrop Mode (NMM) with Auto Address Detection (AAD).
My company has decided on using the NXP LPC17xx/40xx processor line for all our embedded projects. Since...
In the previous blog post (Getting Started With CUDA C on Jetson Nvidia: Hello CUDA World!) I showed how to develop applications targeted at a GPU on a Nvidia Jetson Nano. As we observed in that blog post, performing a calculation on a 1-D array on a GPU had no performance benefit compared to a traditional CPU implementation, even on an array with many elements. In this blog post, we will learn about the GPU architecture to better explain the behavior and to understand the applications where a GPU shines (hint: it has to do with graphics).
Recently I was working for an automotive client where I was supposed to choose a suitable microcontroller for my project. I started listing down the various microcontrollers available in the market, finally I made a big list and it became tough to finalize the best one. Most of the selected controllers were meeting my requirements, and it was really a tough task to choose the right one.
Then I started listing down the aspects...