Movatterモバイル変換


[0]ホーム

URL:


Bioconductor 3.22 Released

Bioconductor home
Menu

sparsenetgls

This is thereleased version of sparsenetgls; for the devel version, seesparsenetgls.

Using Gaussian graphical structue learning estimation in generalized least squared regression for multivariate normal regression

Platform availability badgeRanking badgeSupport activity badgeYears in BioConductor badgeBuild results badgeLast commit badgeDependency count badge

DOI: 10.18129/B9.bioc.sparsenetgls


Bioconductor version: Release (3.22)

The package provides methods of combining the graph structure learning and generalized least squares regression to improve the regression estimation. The main function sparsenetgls() provides solutions for multivariate regression with Gaussian distributed dependant variables and explanatory variables utlizing multiple well-known graph structure learning approaches to estimating the precision matrix, and uses a penalized variance covariance matrix with a distance tuning parameter of the graph structure in deriving the sandwich estimators in generalized least squares (gls) regression. This package also provides functions for assessing a Gaussian graphical model which uses the penalized approach. It uses Receiver Operative Characteristics curve as a visualization tool in the assessment.

Author: Irene Zeng [aut, cre], Thomas Lumley [ctb]

Maintainer: Irene Zeng <szen003 at aucklanduni.ac.nz>

Citation (from within R, entercitation("sparsenetgls")):

Installation

To install this package, start R (version "4.5") and enter:

if (!require("BiocManager", quietly = TRUE))    install.packages("BiocManager")BiocManager::install("sparsenetgls")

For older versions of R, please refer to the appropriateBioconductor release.

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("sparsenetgls")
Introduction to sparsenetglsHTMLR Script
Reference ManualPDF
NEWSText

Need some help? Ask on the Bioconductor Support site!

Details

biocViewsCopyNumberVariation,GraphAndNetwork,ImmunoOncology,MassSpectrometry,Metabolomics,Proteomics,Regression,Software,Visualization
Version1.28.0
In Bioconductor sinceBioC 3.8 (R-3.5) (7 years)
LicenseGPL-3
DependsR (>= 4.0.0),Matrix,MASS
Importsmethods,glmnet,huge, stats, graphics, utils
System RequirementsGNU make
URL
See More
Suggeststestthat,lme4,BiocStyle,knitr,rmarkdown,roxygen2 (>= 5.0.0)
Linking To
Enhances
Depends On Me
Imports Me
Suggests Me
Links To Me
Build ReportBuild Report

Package Archives

FollowInstallation instructions to use this package in your R session.

Source Packagesparsenetgls_1.28.0.tar.gz
Windows Binary (x86_64) sparsenetgls_1.28.0.zip (64-bit only)
macOS Binary (x86_64)sparsenetgls_1.28.0.tgz
macOS Binary (arm64)sparsenetgls_1.28.0.tgz
Source Repositorygit clone https://git.bioconductor.org/packages/sparsenetgls
Source Repository (Developer Access)git clone git@git.bioconductor.org:packages/sparsenetgls
Bioc Package Browserhttps://code.bioconductor.org/browse/sparsenetgls/
Package Short Urlhttps://bioconductor.org/packages/sparsenetgls/
Package Downloads ReportDownload Stats

[8]ページ先頭

©2009-2025 Movatter.jp