Movatterモバイル変換


[0]ホーム

URL:


Bioconductor 3.22 Released

Bioconductor home
Menu

scMET

This is thereleased version of scMET; for the devel version, seescMET.

Bayesian modelling of cell-to-cell DNA methylation heterogeneity

Platform availability badgeRanking badgeSupport activity badgeYears in BioConductor badgeBuild results badgeLast commit badgeDependency count badge

DOI: 10.18129/B9.bioc.scMET


Bioconductor version: Release (3.22)

High-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression.

Author: Andreas C. Kapourani [aut, cre]ORCID iD ORCID: 0000-0003-2303-1953, John Riddell [ctb]

Maintainer: Andreas C. Kapourani <kapouranis.andreas at gmail.com>

Citation (from within R, entercitation("scMET")):

Installation

To install this package, start R (version "4.5") and enter:

if (!require("BiocManager", quietly = TRUE))    install.packages("BiocManager")BiocManager::install("scMET")

For older versions of R, please refer to the appropriateBioconductor release.

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("scMET")
scMET analysis using synthetic dataHTMLR Script
Reference ManualPDF
NEWSText

Need some help? Ask on the Bioconductor Support site!

Details

biocViewsBayesian,Clustering,Coverage,DNAMethylation,DifferentialExpression,DifferentialMethylation,Epigenetics,FeatureExtraction,GeneExpression,GeneRegulation,Genetics,ImmunoOncology,Regression,Sequencing,SingleCell,Software
Version1.12.0
In Bioconductor sinceBioC 3.16 (R-4.2) (3 years)
LicenseGPL-3
DependsR (>= 4.2.0)
Importsmethods,Rcpp (>= 1.0.0),RcppParallel (>= 5.0.1),rstan (>= 2.21.3),rstantools (>= 2.1.0),VGAM,data.table,MASS,logitnorm,ggplot2,matrixStats,assertthat,viridis,coda,BiocStyle,cowplot, stats,SummarizedExperiment,SingleCellExperiment,Matrix,dplyr,S4Vectors
System RequirementsGNU make
URL
Bug Reportshttps://github.com/andreaskapou/scMET/issues
See More
Suggeststestthat,knitr,rmarkdown
Linking ToBH (>= 1.66.0),Rcpp (>= 1.0.0),RcppEigen (>= 0.3.3.3.0),RcppParallel (>= 5.0.1),rstan (>= 2.21.3),StanHeaders (>= 2.21.0.7)
Enhances
Depends On Me
Imports Me
Suggests Me
Links To Me
Build ReportBuild Report

Package Archives

FollowInstallation instructions to use this package in your R session.

Source PackagescMET_1.12.0.tar.gz
Windows Binary (x86_64) scMET_1.12.0.zip
macOS Binary (x86_64)scMET_1.12.0.tgz
macOS Binary (arm64)scMET_1.12.0.tgz
Source Repositorygit clone https://git.bioconductor.org/packages/scMET
Source Repository (Developer Access)git clone git@git.bioconductor.org:packages/scMET
Bioc Package Browserhttps://code.bioconductor.org/browse/scMET/
Package Short Urlhttps://bioconductor.org/packages/scMET/
Package Downloads ReportDownload Stats

[8]ページ先頭

©2009-2025 Movatter.jp