Movatterモバイル変換


[0]ホーム

URL:


Bioconductor 3.22 Released

Bioconductor home
Menu

miloR

This is thereleased version of miloR; for the devel version, seemiloR.

Differential neighbourhood abundance testing on a graph

Platform availability badgeRanking badgeSupport activity badgeYears in BioConductor badgeBuild results badgeLast commit badgeDependency count badge

DOI: 10.18129/B9.bioc.miloR


Bioconductor version: Release (3.22)

Milo performs single-cell differential abundance testing. Cell states are modelled as representative neighbourhoods on a nearest neighbour graph. Hypothesis testing is performed using either a negative bionomial generalized linear model or negative binomial generalized linear mixed model.

Author: Mike Morgan [aut, cre]ORCID iD ORCID: 0000-0003-0757-0711, Emma Dann [aut, ctb]

Maintainer: Mike Morgan <michael.morgan at abdn.ac.uk>

Citation (from within R, entercitation("miloR")):

Installation

To install this package, start R (version "4.5") and enter:

if (!require("BiocManager", quietly = TRUE))    install.packages("BiocManager")BiocManager::install("miloR")

For older versions of R, please refer to the appropriateBioconductor release.

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("miloR")
Differential abundance testing with MiloHTMLR Script
Differential abundance testing with Milo - Mouse gastrulation exampleHTMLR Script
Mixed effect models for Milo DA testingHTMLR Script
Using contrasts for differential abundance testingHTMLR Script
Reference ManualPDF
NEWSText
LICENSEText

Need some help? Ask on the Bioconductor Support site!

Details

biocViewsFunctionalGenomics,MultipleComparison,SingleCell,Software
Version2.6.0
In Bioconductor sinceBioC 3.13 (R-4.1) (4.5 years)
LicenseGPL-3 + fileLICENSE
DependsR (>= 4.0.0),edgeR
ImportsBiocNeighbors,BiocGenerics,SingleCellExperiment,Matrix (>= 1.3-0),MatrixGenerics,S4Vectors, stats,stringr, methods,igraph,irlba, utils,cowplot,BiocParallel,BiocSingular,limma,ggplot2,tibble,matrixStats,ggraph,gtools,SummarizedExperiment,patchwork,tidyr,dplyr,ggrepel,ggbeeswarm,RColorBrewer, grDevices,Rcpp,pracma,numDeriv
System Requirements
URLhttps://marionilab.github.io/miloR
Bug Reportshttps://github.com/MarioniLab/miloR/issues
See More
Suggeststestthat,mvtnorm,scater,scran,covr,knitr,rmarkdown,uwot,scuttle,BiocStyle,MouseGastrulationData,MouseThymusAgeing,magick,RCurl,MASS,curl,scRNAseq, graphics,sparseMatrixStats
Linking ToRcpp,RcppArmadillo,RcppEigen,RcppML
Enhances
Depends On Me
Imports MedandelionR
Suggests Me
Links To Me
Build ReportBuild Report

Package Archives

FollowInstallation instructions to use this package in your R session.

Source PackagemiloR_2.6.0.tar.gz
Windows Binary (x86_64) miloR_2.6.0.zip (64-bit only)
macOS Binary (x86_64)miloR_2.6.0.tgz
macOS Binary (arm64)miloR_2.6.0.tgz
Source Repositorygit clone https://git.bioconductor.org/packages/miloR
Source Repository (Developer Access)git clone git@git.bioconductor.org:packages/miloR
Bioc Package Browserhttps://code.bioconductor.org/browse/miloR/
Package Short Urlhttps://bioconductor.org/packages/miloR/
Package Downloads ReportDownload Stats

[8]ページ先頭

©2009-2025 Movatter.jp