Movatterモバイル変換


[0]ホーム

URL:


Bioconductor 3.22 Released

Bioconductor home
Menu

POMA

This is thereleased version of POMA; for the devel version, seePOMA.

Tools for Omics Data Analysis

Platform availability badgeRanking badgeSupport activity badgeYears in BioConductor badgeBuild results badgeLast commit badgeDependency count badge

DOI: 10.18129/B9.bioc.POMA


Bioconductor version: Release (3.22)

The POMA package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, POMA leverages the standardized SummarizedExperiment class from Bioconductor, ensuring seamless integration and compatibility with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making POMA an essential asset for researchers handling omics datasets. See https://github.com/pcastellanoescuder/POMAShiny. Paper: Castellano-Escuder et al. (2021) for more details.

Author: Pol Castellano-Escuder [aut, cre]ORCID iD ORCID: 0000-0001-6466-877X

Maintainer: Pol Castellano-Escuder <polcaes at gmail.com>

Citation (from within R, entercitation("POMA")):

Installation

To install this package, start R (version "4.5") and enter:

if (!require("BiocManager", quietly = TRUE))    install.packages("BiocManager")BiocManager::install("POMA")

For older versions of R, please refer to the appropriateBioconductor release.

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("POMA")
Get StartedHTMLR Script
Normalization MethodsHTMLR Script
Reference ManualPDF
NEWSText

Need some help? Ask on the Bioconductor Support site!

Details

biocViewsBatchEffect,Classification,Clustering,DecisionTree,DimensionReduction,MultidimensionalScaling,Normalization,Preprocessing,PrincipalComponent,RNASeq,Regression,Software,StatisticalMethod,Visualization
Version1.20.0
In Bioconductor sinceBioC 3.12 (R-4.0) (5 years)
LicenseGPL-3
DependsR (>= 4.0)
Importsbroom,caret,ComplexHeatmap,dbscan,dplyr,DESeq2,fgsea,FSA,ggcorrplot,ggplot2,ggrepel,glmnet, grid,impute,janitor,limma,lme4,magrittr,MASS,mixOmics,multcomp,msigdbr,purrr,randomForest,RankProd(>= 3.14),rlang,SummarizedExperiment,sva,tibble,tidyr, utils,uwot,vegan
System Requirements
URLhttps://github.com/pcastellanoescuder/POMA
Bug Reportshttps://github.com/pcastellanoescuder/POMA/issues
See More
SuggestsBiocStyle,covr,ggraph,ggtext,knitr,patchwork,plotly,tidyverse,testthat (>= 2.3.2)
Linking To
Enhances
Depends On Me
Imports MePRONE
Suggests Mefobitools
Links To Me
Build ReportBuild Report

Package Archives

FollowInstallation instructions to use this package in your R session.

Source PackagePOMA_1.20.0.tar.gz
Windows Binary (x86_64) POMA_1.20.0.zip
macOS Binary (x86_64)POMA_1.20.0.tgz
macOS Binary (arm64)POMA_1.20.0.tgz
Source Repositorygit clone https://git.bioconductor.org/packages/POMA
Source Repository (Developer Access)git clone git@git.bioconductor.org:packages/POMA
Bioc Package Browserhttps://code.bioconductor.org/browse/POMA/
Package Short Urlhttps://bioconductor.org/packages/POMA/
Package Downloads ReportDownload Stats

[8]ページ先頭

©2009-2025 Movatter.jp