Movatterモバイル変換


[0]ホーム

URL:


Bioconductor 3.22 Released

Bioconductor home
Menu

GSVA

This is thereleased version of GSVA; for the devel version, seeGSVA.

Gene Set Variation Analysis for Microarray and RNA-Seq Data

Platform availability badgeRanking badgeSupport activity badgeYears in BioConductor badgeBuild results badgeLast commit badgeDependency count badge

DOI: 10.18129/B9.bioc.GSVA


Bioconductor version: Release (3.22)

Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised method for estimating variation of gene set enrichment through the samples of a expression data set. GSVA performs a change in coordinate systems, transforming the data from a gene by sample matrix to a gene-set by sample matrix, thereby allowing the evaluation of pathway enrichment for each sample. This new matrix of GSVA enrichment scores facilitates applying standard analytical methods like functional enrichment, survival analysis, clustering, CNV-pathway analysis or cross-tissue pathway analysis, in a pathway-centric manner.

Author: Robert Castelo [aut, cre], Justin Guinney [aut], Alexey Sergushichev [ctb], Pablo Sebastian Rodriguez [ctb], Axel Klenk [ctb]

Maintainer: Robert Castelo <robert.castelo at upf.edu>

Citation (from within R, entercitation("GSVA")):

Installation

To install this package, start R (version "4.5") and enter:

if (!require("BiocManager", quietly = TRUE))    install.packages("BiocManager")BiocManager::install("GSVA")

For older versions of R, please refer to the appropriateBioconductor release.

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("GSVA")
Gene set variation analysisHTMLR Script
GSVA on single-cell RNA-seq dataHTMLR Script
Reference ManualPDF
NEWSText

Need some help? Ask on the Bioconductor Support site!

Details

biocViewsFunctionalGenomics,GeneSetEnrichment,Microarray,Pathways,RNASeq,Software
Version2.4.3
In Bioconductor sinceBioC 2.8 (R-2.13) (14.5 years)
LicenseArtistic-2.0
DependsR (>= 3.5.0)
Importsmethods, stats, utils, graphics,BiocGenerics,MatrixGenerics,S4Vectors,S4Arrays,HDF5Array,SparseArray,DelayedArray,IRanges,Biobase,SummarizedExperiment,GSEABase,Matrix (>= 1.5-0), parallel,BiocParallel,SingleCellExperiment,SpatialExperiment,sparseMatrixStats,DelayedMatrixStats,BiocSingular,cli,memuse
System Requirements
URLhttps://github.com/rcastelo/GSVA
Bug Reportshttps://github.com/rcastelo/GSVA/issues
See More
SuggestsRUnit,BiocStyle,knitr,rmarkdown,limma,RColorBrewer,org.Hs.eg.db,genefilter,edgeR,GSVAdata,sva,ggplot2,TENxPBMCData,scuttle,scran,igraph,shiny,shinydashboard,ggplot2,data.table,plotly,future,promises,shinybusy,shinyjs
Linking Tocli
Enhances
Depends On MeSMDIC
Imports MeconsensusOV,EGSEA,octad,oppar,pathMED,signifinder,singleCellTK,TBSignatureProfiler,autoGO,clustermole,DRviaSPCN,GSEMA,psSubpathway,scMappR,SIGN,sigQC,spatialGE,ssdGSA
Suggests MedecoupleR,escape,MCbiclust,mitology,sparrow,SPONGE,ReporterScore
Links To Me
Build ReportBuild Report

Package Archives

FollowInstallation instructions to use this package in your R session.

Source PackageGSVA_2.4.3.tar.gz
Windows Binary (x86_64) GSVA_2.4.1.zip (64-bit only)
macOS Binary (x86_64)GSVA_2.4.3.tgz
macOS Binary (arm64)GSVA_2.4.3.tgz
Source Repositorygit clone https://git.bioconductor.org/packages/GSVA
Source Repository (Developer Access)git clone git@git.bioconductor.org:packages/GSVA
Bioc Package Browserhttps://code.bioconductor.org/browse/GSVA/
Package Short Urlhttps://bioconductor.org/packages/GSVA/
Package Downloads ReportDownload Stats
Old Source Packages for BioC 3.22Source Archive

[8]ページ先頭

©2009-2025 Movatter.jp