Movatterモバイル変換


[0]ホーム

URL:


Bioconductor 3.22 Released

Bioconductor home
Menu

pcaMethods

This is thedevelopment version of pcaMethods; for the stable release version, seepcaMethods.

A collection of PCA methods

Platform availability badgeRanking badgeSupport activity badgeYears in BioConductor badgeBuild results badgeLast commit badgeDependency count badge

DOI: 10.18129/B9.bioc.pcaMethods


Bioconductor version: Development (3.23)

Provides Bayesian PCA, Probabilistic PCA, Nipals PCA, Inverse Non-Linear PCA and the conventional SVD PCA. A cluster based method for missing value estimation is included for comparison. BPCA, PPCA and NipalsPCA may be used to perform PCA on incomplete data as well as for accurate missing value estimation. A set of methods for printing and plotting the results is also provided. All PCA methods make use of the same data structure (pcaRes) to provide a common interface to the PCA results. Initiated at the Max-Planck Institute for Molecular Plant Physiology, Golm, Germany.

Author: Wolfram Stacklies, Henning Redestig, Kevin Wright

Maintainer: Henning Redestig <henning.red at gmail.com>

Citation (from within R, entercitation("pcaMethods")):

Installation

To install this package, start R (version "4.6") and enter:

if (!require("BiocManager", quietly = TRUE))    install.packages("BiocManager")# The following initializes usage of Bioc develBiocManager::install(version='devel')BiocManager::install("pcaMethods")

For older versions of R, please refer to the appropriateBioconductor release.

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("pcaMethods")
Data with outliersPDFR Script
IntroductionPDFR Script
Missing value imputationPDFR Script
Reference ManualPDF

Need some help? Ask on the Bioconductor Support site!

Details

biocViewsBayesian,Software
Version2.3.0
In Bioconductor sinceBioC 1.9 (R-2.4) (19 years)
LicenseGPL (>= 3)
DependsBiobase, methods
ImportsBiocGenerics,Rcpp (>= 0.11.3),MASS
System RequirementsRcpp
URLhttps://github.com/hredestig/pcamethods
Bug Reportshttps://github.com/hredestig/pcamethods/issues
See More
SuggestsmatrixStats,lattice,ggplot2
Linking ToRcpp
Enhances
Depends On Mecrmn,DiffCorr,imputeLCMD
Imports Medestiny,MAI,MSnbase,MultiBaC,OUTRIDER,PhosR,pmp,scde,SomaticSignatures,ADAPTS,geneticae,lfproQC,LOST,MetabolomicsBasics,metamorphr,missCompare,multiDimBio,pmartR,polyRAD,promor,santaR,scMappR
Suggests Meautonomics,cardelino,MsCoreUtils,notame,notameViz,QFeatures,qmtools,mtbls2,pagoda2,rsvddpd
Links To Me
Build ReportBuild Report

Package Archives

FollowInstallation instructions to use this package in your R session.

Source PackagepcaMethods_2.3.0.tar.gz
Windows Binary (x86_64) pcaMethods_2.3.0.zip
macOS Binary (x86_64)pcaMethods_2.3.0.tgz
macOS Binary (arm64)pcaMethods_2.3.0.tgz
Source Repositorygit clone https://git.bioconductor.org/packages/pcaMethods
Source Repository (Developer Access)git clone git@git.bioconductor.org:packages/pcaMethods
Bioc Package Browserhttps://code.bioconductor.org/browse/pcaMethods/
Package Short Urlhttps://bioconductor.org/packages/pcaMethods/
Package Downloads ReportDownload Stats

[8]ページ先頭

©2009-2025 Movatter.jp