Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Plant Sex Chromosomes

Abstract

Although individuals in most flowering plant species, and in many haploid plants, have both sex functions, dioecious species—in which individuals have either male or female functions only—are scattered across many taxonomic groups, and many species have genetic sex determination. Among these, some have visibly heteromorphic sex chromosomes, and molecular genetic studies are starting to uncover sex-linked markers in others, showing that they too have fully sex-linked regions that are either too small or are located in chromosomes that are too small to be cytologically detectable from lack of pairing, lack of visible crossovers, or accumulation of heterochromatin. Detailed study is revealing that, like animal sex chromosomes, plant sex-linked regions show evidence for accumulation of repetitive sequences and genetic degeneration. Estimating when recombination stopped confirms the view that many plants have young sex-linked regions, making plants of great interest for studying the timescale of these changes.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-arplant-043015-111911
    2016-04-29
    2025-11-26
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/arplant/67/1/annurev-arplant-043015-111911.html?itemId=/content/journals/10.1146/annurev-arplant-043015-111911&mimeType=html&fmt=ahah

    Literature Cited

    1. AkagiT,HenryIM,TaoR,ComaiL.1. 2014. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons.Science346:646–50[Google Scholar]
    2. Al-SaghirM,BakerSA,PusokR.2. 2014. Effective method to resolve the chromosome numbers inPistacia species (Anacardiaceae).Am. J. Plant Sci.5:2913–16[Google Scholar]
    3. Alstrom-RapaportC,LascouxM,WangYC,RobertsG,TuskanGA.3. 1998. Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.).J. Hered.89:44–49[Google Scholar]
    4. BachtrogD.4. 2008. The temporal dynamics of processes underlying Y chromosome degeneration.Genetics179:1513–25[Google Scholar]
    5. BellottD,HughesJF,SkaletskyH,BrownLG,PyntikovaT.5.  et al.2014. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators.Nature508:494–99[Google Scholar]
    6. BennetzenJL.6. 2000. The many hues of plant heterochromatin.Genome Biol.1:reviews107.1–4[Google Scholar]
    7. BennetzenJL,WangH.7. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes.Annu. Rev. Plant Biol.65:505–30[Google Scholar]
    8. BergeroR,CharlesworthD.8. 2011. Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system.Curr. Biol.21:1470–74[Google Scholar]
    9. BergeroR,ForrestA,KamauE,CharlesworthD.9. 2007. Evolutionary strata on the X chromosomes of the dioecious plantSilene latifolia: evidence from new sex-linked genes.Genetics175:1945–54[Google Scholar]
    10. BergeroR,QiuS,CharlesworthD.10. 2015. Gene loss from a plant sex chromosome system.Curr. Biol.25:1234–40[Google Scholar]
    11. BergeroR,QiuS,ForrestA,BorthwickH,CharlesworthD.11. 2013. Expansion of the pseudoautosomal region and ongoing recombination suppression in theSilene latifolia sex chromosomes.Genetics194:673–86[Google Scholar]
    12. BlavetN,BlavetH,MuyleA,KäferJ,CeganR.12.  et al.2015. Identifying new sex-linked genes through BAC sequencing in the dioecious plantSilene latifolia.BMC Genomics16:546[Google Scholar]
    13. BullJJ.13. 1983.Evolution of Sex Determining Mechanisms Menlo Park, CA: Benjamin/Cummings[Google Scholar]
    14. BuzekJ,KoutnikovaH,HoubenA,RihaK,JanousekB.14.  et al.1997. Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plantMelandrium album.Chromosome Res.5:57–65[Google Scholar]
    15. CermakT,KubatZ,HobzaR,KoblizkovaA,WidmerA.15.  et al.2008. Survey of repetitive sequences inSilene latifolia with respect to their distribution on sex chromosomes.Chromosome Res.16:961–76[Google Scholar]
    16. CharcharFJ,SvartmanM,El-MogharbelN,VenturaM,KirbyP.16.  et al.2003. Complex events in the evolution of the human pseudoautosomal region 2 (PAR2).Genome Res.13:281–86[Google Scholar]
    17. CharlesworthB.17. 2009. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation.Nat. Rev. Genet.10:195–205[Google Scholar]
    18. CharlesworthB,CharlesworthD.18. 1978. A model for the evolution of dioecy and gynodioecy.Am. Nat.112:975–97[Google Scholar]
    19. CharlesworthB,CharlesworthD.19. 2000. The degeneration of Y chromosomes.Philos. Trans. R. Soc. Lond. B355:1563–72[Google Scholar]
    20. CharlesworthB,SniegowskiP,StephanW.20. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes.Nature371:215–20[Google Scholar]
    21. CharlesworthD.21. 1984. Androdioecy and the evolution of dioecy.Biol. J. Linn. Soc.23:333–48[Google Scholar]
    22. CharlesworthD.22. 1985. Distribution of dioecy and self-incompatibility in angiosperms.Evolution: Essays in Honour of John Maynard Smith PJ Greenwood, M Slatkin237–68 Cambridge, UK: Cambridge Univ. Press[Google Scholar]
    23. CharlesworthD.23. 1993. Save the male.Curr. Biol.3:155–57[Google Scholar]
    24. CharlesworthD.24. 2004. Plant evolution: modern sex chromosomes.Curr. Biol.14:R271–73[Google Scholar]
    25. CherifE,ZehdiA,CastelloK,ChabrillangeN,AbdoulkaderS.25.  et al.2012. Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm.New Phytol.197:409–15[Google Scholar]
    26. ChibalinaM,FilatovD.26. 2011. Plant Y chromosome degeneration is retarded by haploid purifying selection.Curr. Biol.21:1475–79[Google Scholar]
    27. CortezD,MarinR,Toledo-FloresD,FroidevauxL,LiechtiA.27.  et al.2014. Origins and functional evolution of Y chromosomes across mammals.Nature508:488–93[Google Scholar]
    28. CostichDE,MeagherTR,YurkowEJ.28. 1991. A rapid means of sex identification inSilene latifolia by use of flow cytometry.Plant Mol. Biol. Rep.9:359–70[Google Scholar]
    29. CrossmanA,CharlesworthD.29. 2013. Breakdown of dioecy: models where males acquire cosexual functions.Evolution68:426–40[Google Scholar]
    30. CulleyTM,WellerSG,SakaiAK,RankinAE.30. 1999. Inbreeding depression and selfing rates in a self-compatible, hermaphroditic species,Schiedea membranaceae (Caryophyllaceae).Am. J. Bot.86:980–87[Google Scholar]
    31. DaiX,HuQ,CaiQ,FengK,YeN.31.  et al.2014. The willow genome and divergent evolution from poplar after the common genome duplication.Cell Res.24:1274–77[Google Scholar]
    32. DarwinCR.32. 1877.The Different Forms of Flowers on Plants of the Same Species London: John Murray[Google Scholar]
    33. DaveyJW,HohenloherPA,EtterPD,BooneJQ,CatchenJM,BlaxterML.33. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing.Nat. Rev. Genet.12:499–510[Google Scholar]
    34. DivashukM,AlexandrovO,KroupinP,KarlovG.34. 2011. Molecular cytogenetic mapping ofHumulus lupulus sex chromosomes.Cytogenet. Genome Res.134:213–19[Google Scholar]
    35. DivashukM,AlexandrovO,RazumovaO,KirovI,KarlovG.35. 2014. Molecular cytogenetic characterization of the dioeciousCannabis sativa with an XY chromosome sex determination system.PLOS ONE9:e85118[Google Scholar]
    36. DorkenME,BarrettSCG.36. 2004. Sex determination and the evolution of dioecy from monoecy inSagittaria latifolia (Alismataceae).Proc. R. Soc. Lond. B271:213–19[Google Scholar]
    37. DorkenME,PannellJ.37. 2009. Hermaphroditic sex allocation evolves when mating opportunities change.Curr. Biol.19:514–17[Google Scholar]
    38. EckhartVM.38. 1992. Resource compensation and the evolution of gynodioecy inPhacelia linearis (Hydrophyllaceae).Evolution46:1313–28[Google Scholar]
    39. FechterI,HausmannL,DaumM,SoerensenT,ViehoverP.39.  et al.2012. Candidate genes within a 143 kb region of the flower sex locus inVitis.Mol. Genet. Genomics287:247–59[Google Scholar]
    40. FraserL,TsangG,DatsonP,SilvaND,HarveyCF.40.  et al.2009. A gene-rich linkage map in the dioecious speciesActinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes.BMC Genomics10:102[Google Scholar]
    41. FujitaN,ToriiC,IshiiK,AonumaW,ShimizuY.41.  et al.2011. Narrowing down the mapping of plant sex-determination regions using new Y chromosome-specific markers and heavy-ion beam irradiation-induced Y deletion mutants inSilene latifolia.G32:271–78[Google Scholar]
    42. FujitoS,TakahataS,SuzukiR,HoshinoY,OhmidoN,OnoderaY.42. 2015. Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinctSpinacia species.G35:1663–73[Google Scholar]
    43. GambleT,CoryellJ,EzazT,LynchJ,ScantleburyDP,ZarkowerD.43. 2015. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems.Mol. Biol. Evol.32:1296–309[Google Scholar]
    44. GeraldesA,PangJ,ThiessenN,CezardT,MooreR.44.  et al.2015. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus).Mol. Ecol.24:3243–56[Google Scholar]
    45. GlaweGA,de JongTJ.45. 2009. Complex sex determination in the stinging nettleUrtica dioica.Evol. Ecol.23:635–49[Google Scholar]
    46. Grabowska-JoachimiakA,JoachimiakA.46. 2002. C-banded karyotypes of twoSilene species with heteromorphic sex chromosomes.Genome45:243–52[Google Scholar]
    47. Grabowska-JoachimiakA,KulaA,KsiążczykT,ChojnickaJ,SliwinskaE,JoachimiakA.47. 2015. Chromosome landmarks and autosome-sex chromosome translocations inRumex hastatulus, a plant with XX/XY1Y2 sex chromosome system.Chromosome Res.23:187–97[Google Scholar]
    48. Grabowska-JoachimiakA,MosiolekM,LechA,GóralskiG.48. 2011. C-Banding/DAPI and in situ hybridization reflect karyotype structure and sex chromosome differentiation inHumulus japonicus Siebold & Zucc.Cytogenet. Genome Res.132:203–11[Google Scholar]
    49. GschwendAR,YuQ,TongEJ,ZengF,HanJ.49.  et al.2012. Rapid divergence and expansion of the X chromosome in papaya.PNAS109:13716–21[Google Scholar]
    50. HobzaR,LengerovaM,SvobodaJ,KejnovskyE,VyskotB.50. 2006. An accumulation of tandem DNA repeats on the Y chromosome inSilene latifolia during early stages of sex chromosome evolution.Chromosoma115:376–82[Google Scholar]
    51. HollisterJD,GautBS.51. 2009. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression.Genome Res.19:1419–28[Google Scholar]
    52. HouJ,YeN,ZhangD,ChenY,FangL.52.  et al.2015. Different autosomes evolved into sex chromosomes in the sister genera ofSalix andPopulus.Sci. Rep.5:09076[Google Scholar]
    53. HoughJ,HollisterJD,WangW,BarrettSCH,OttoSP.53. 2014. Genetic degeneration of old and young Y chromosomes in the flowering plantRumex hastatulus.PNAS111:7713–18[Google Scholar]
    54. HoughJ,ImmlerS,BarrettSCH,OttoSP.54. 2013. Evolutionarily stable sex ratios and mutation load.Evolution67:1915–25[Google Scholar]
    55. HowellEC,ArmstrongS,FilatovD.55. 2009. Evolution of neo-sex chromosomes inSilene diclinis.Genetics182:1109–15[Google Scholar]
    56. IoveneM,YuQ,MingR,JiangJ.56. 2015. Evidence for emergence of sex-determining gene(s) in a centromeric region inVasconcellea parviflora.Genetics199:413–21[Google Scholar]
    57. JaillonO,AuryJ,NoelB,PolicritiA,ClepeC.57.  et al.2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.Nature449:463–67[Google Scholar]
    58. JamilenaM,MariottiB,ManzanoS.58. 2008. Plant sex chromosomes: molecular structure and function.Cytogenet. Genome Res.120:255–64[Google Scholar]
    59. KafkasS,KhodaeiaminjanM,GüneyM,KafkasE.59. 2015. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination inPistacia vera L.BMC Genomics16:98[Google Scholar]
    60. KimuraM,OhtaT.60. 1971.Theoretical Topics in Population Genetics Princeton, NJ: Princeton Univ. Press[Google Scholar]
    61. KohnJR.61. 1988. Why be female?.Nature335:431–33[Google Scholar]
    62. KohnJR.62. 1989. Sex ratio, seed production, biomass allocation, and the cost of male function inCucurbita foetidissima HBK (Cucurbitaceae).Evolution43:1424–34[Google Scholar]
    63. LahnBT,PageDC.63. 1999. Four evolutionary strata on the human X chromosome.Science286:964–67[Google Scholar]
    64. LaporteV,CharlesworthB.64. 2002. Effective population size and population subdivision in demographically structured populations.Genetics162:501–19[Google Scholar]
    65. LengerovaM,KejnovskyE,HobzaR,MacasJ,GrantSR,VyskotB.65. 2004. Multicolor FISH mapping of the dioecious model plant,Silene latifolia.Theor. Appl. Genet.108:1193–99[Google Scholar]
    66. LiuZ,MoorePH,MaH,AckermanCM,RagibaM.66.  et al.2004. A primitive Y chromosome in papaya marks the beginning of sex chromosome evolution.Nature427:348–52[Google Scholar]
    67. LloydDG.67. 1975. The maintenance of gynodioecy and androdioecy in angiosperms.Genetica45:325–39[Google Scholar]
    68. LloydDG.68. 1976. The transmission of genes via pollen and ovules in gynodioecious angiosperms.Theor. Pop. Biol.9:299–316[Google Scholar]
    69. LloydDG.69. 1980. The distributions of gender in four angiosperm species illustrating two evolutionary pathways to dioecy.Evolution34:123–34[Google Scholar]
    70. MartinA,TroadecC,BoualemA,RajabM,FernandezR.70.  et al.2009. A transposon-induced epigenetic change leads to sex determination in melon.Nature461:1135–38[Google Scholar]
    71. MatsunagaS,KawanoS,MichimotoH,HigashiyamaT,NakaoS.71.  et al.1999. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y sex chromosome DNA in a dioecious plant,Silene latifolia.Plant Cell Physiol.40:60–68[Google Scholar]
    72. McDanielSF,NeubigKM,PaytonAC,QuatranoRS,CoveDJ.72. 2013. Recent gene-capture on the UV sex chromosomes of the mossCeratodon purpureus.Evolution67:2811–22[Google Scholar]
    73. MichalovovaM,KubatZ,HobzaR,VyskotB,KejnovskyE.73. 2015. Fully automated pipeline for detection of sex linked genes using RNA-Seq data.BMC Bioinform.16:78[Google Scholar]
    74. MingR,BendahmaneA,RennerS.74. 2011. Sex chromosomes in land plants.Annu. Rev. Plant Biol.62:485–514[Google Scholar]
    75. MrackovaM,NicolasM,HobzaR,NegrutiuI,MonégerF.75.  et al.2008. Independent origin of sex chromosomes in two species of the genusSilene.Genetics179:1129–33[Google Scholar]
    76. MuyleA,ZempN,DeschampsC,MoussetS,WidmerA,MaraisG.76. 2012. Rapid de novo evolution of X chromosome dosage compensation inSilene latifolia, a plant with young sex chromosomes.PLOS Biol.10:e1001308[Google Scholar]
    77. Navajas-PérezR,de la HerránR,López GonzálezG,JamilenaM,LozanoR.77.  et al.2005. The evolution of reproductive systems and sex-determining mechanisms withinRumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data.Mol. Biol. Evol.22:1929–39[Google Scholar]
    78. ObbardDJ,HarrisSA,BuggsRJA,PannellJR.78. 2006. Hybridization, polyploidy, and the evolution of sexual systems inMercurialis (Euphorbiaceae).Evolution60:1801–15[Google Scholar]
    79. OhnishiO.79. 1985. Population genetics of cultivated buckwheat,Fagopyrum esculentum Moench. III. Frequency of sterility mutants in Japanese populations.Jpn. J. Genet.60:391–404[Google Scholar]
    80. PakullB,GroppeK,MecucciF,GaudetM,SabattiM,FladungM.80. 2011. Genetic mapping of linkage group XIX and identification of sex-linked SSR markers in aPopulus tremula ×Populus tremuloides cross.Can. J. For. Res.41:245–53[Google Scholar]
    81. PalaI,NaurinS,StervanderM,HasselquistD,BenschS,HanssonB.81. 2012. Evidence of a neo-sex chromosome in birds.Heredity108:264–72[Google Scholar]
    82. PannellJR,DorkenME,PujolB,BerjanoR.82. 2008. Gender variation and transitions between sexual systems inMercurialis annua (Euphorbiaceae).Int. J. Plant Sci.169:129–39[Google Scholar]
    83. PapadopulosAST,ChesterM,RidoutK,FilatovDA.82a. 2015. Rapid Y degeneration and dosage compensation in plant sex chromosomes.PNAS112:13021–26[Google Scholar]
    84. ParkerJS.83. 1990. Sex-chromosome and sex differentiation in flowering plants.Chromosomes Today10:187–98[Google Scholar]
    85. PetersonBK,WeberJN,KayEH,FisherHS,HoekstraHE.84. 2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species.PLOS ONE7:e37135[Google Scholar]
    86. PicqS,SantoniS,LacombeT,LatreilleM,WeberA.85.  et al.2014. A small XY chromosomal region explains sex determination in wild dioeciousV. vinifera and the reversal to hermaphroditism in domesticated grapevines.BMC Plant Biol.14:229[Google Scholar]
    87. PolicanskyD.86. 1982. Sex change in plants and animals.Annu. Rev. Ecol. Syst.13:471–96[Google Scholar]
    88. PucholtP,Ronnberg-WastljungA-C,BerlinS.87. 2015. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.).Heredity114:575–83[Google Scholar]
    89. RejónCR,JamilenaM,RamosMG,ParkerJS,RejónMR.88. 1994. Cytogenetic and molecular analysis of the multiple sex-chromosome system ofRumex acetosa.Heredity72:209–15[Google Scholar]
    90. RennerS.89. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database.Am. J. Bot.101:1588–96[Google Scholar]
    91. RiesebergLH,HansonMA,PhilbrickCT.90. 1992. Androdioecy is derived from dioecy in Datiscaceae: evidence from restriction site mapping of PCR amplified chloroplast DNA.Syst. Bot.17:324–36[Google Scholar]
    92. SakaiAK,WellerSG,ChenML,ChouSY,TasanontC.91. 1997. Evolution of gynodioecy and maintenance of females: the role of inbreeding depression, outcrossing rates, and resource allocation inSchiedea adamantis (Caryophyllaceae).Evolution51:724–36[Google Scholar]
    93. SakaiAK,WellerSG,CulleyTM,CampbellDR,Dunbar-WallisAK,AndresA.92. 2008. Sexual dimorphism and the genetic potential for evolution of sex allocation in the gynodioecious plant,Schiedea salicaria.J. Evol. Biol.21:1–17[Google Scholar]
    94. SayresM,MakovaK.93. 2013. Gene survival and death on the human Y chromosome.Mol. Biol. Evol.30:781–87[Google Scholar]
    95. ScottiI,DelphLF.94. 2006. Selective trade-offs and sex-chromosome evolution inSilene latifolia.Evolution60:1793–800[Google Scholar]
    96. SegerJ,EckhartVM.95. 1996. Evolution of sexual systems and sex allocation in annual plants when growth and reproduction overlap.Proc. R. Soc. Lond. B263:833–41[Google Scholar]
    97. SemerikovV,LagercrantzU,TsarouhasV,Ronnberg-WastljungA,Alstrom-RapaportC,LascouxM.96. 2003. Genetic mapping of sex-linked markers inSalix viminalis L.Heredity91:293–99[Google Scholar]
    98. ShannonR,HolsingerK.97. 2007. The genetics of sex determination in stinging nettle (Urtica dioica).Sex. Plant Reprod.20:35–43[Google Scholar]
    99. ShibataF,HizumeM,KurokiY.98. 2000. Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant,Rumex acetosa.Chromosome Res.8:229–36[Google Scholar]
    100. SlancarovaV,ZdanskaJ,JanousekB,TalianovaM,ZschachC.99.  et al.2013. Evolution of sex determination systems with heterogametic males and females inSilene.Evolution67:12[Google Scholar]
    101. SmedsL,WarmuthV,BolivarP,UebbingS,BurriR.100.  et al.2015. Evolutionary analysis of the female-specific avian W chromosome.Nat. Commun.6:7330[Google Scholar]
    102. SousaA,FuchsJ,RennerSS.101. 2012. Molecular cytogenetics (FISH, GISH) ofCoccinia grandis: a ca. 3 myr-old species of Cucurbitaceae with the largest Y/autosome divergence in flowering plants.Cytogenet. Genome Res.139:107–18[Google Scholar]
    103. SpiglerRB,LewersKS,AshmanT-L.102. 2011. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome.Evolution65:1114–26[Google Scholar]
    104. SpiglerRB,LewersKS,MainD,AshmanT-L.103. 2008. Genetic mapping of sex determination in a wild strawberry,Fragaria virginiana, reveals earliest form of sex chromosome.Heredity101:507–17[Google Scholar]
    105. SteflovaP,TokanV,VogelI,LexaM,MacasJ.104.  et al.2013. Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plantRumex acetosa.Genome Biol. Evol.5:769–82[Google Scholar]
    106. TanurdzicM,BanksJA.105. 2004. Sex-determining mechanisms in land plants.Plant Cell16:S61–71[Google Scholar]
    107. Telgmann-RauberA,JamsariA,KinneyMS,PiresJC,JungC.106. 2007. Genetic and physical maps around the sex-determiningM-locus of the dioecious plant asparagus.Mol. Genet. Genomics278:221–34[Google Scholar]
    108. TennessenJ,GovindarajuluR,ListonA,AshmanT.107. 2013. Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry,Fragaria vesca ssp.bracteata (Rosaceae).G33:1341–51[Google Scholar]
    109. ToricesR,MéndezM,GómezJ.108. 2011. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms.New Phytol.190:234–48[Google Scholar]
    110. TuskanG,YinT,DiFazioS,Faivre-RampantP,GaudetM.109.  et al.2012. The obscure events contributing to the evolution of an incipient sex chromosome inPopulus: a retrospective working hypothesis.Tree Genet. Genomes8:559–71[Google Scholar]
    111. UenoH,UrasakiN,NatsumeS,YoshidaK,TaroraK.110.  et al.2015. Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees.Mol. Genet. Genomics290:661–70[Google Scholar]
    112. VanBurenR,ZengF,ChenC,ZhangJ,WaiC.111.  et al.2015. Origin and domestication of papaya Yh chromosome.Genome Res.25:524–33[Google Scholar]
    113. WangJ,NaJ,YuQ,GschwendAR,HanJ.112.  et al.2012. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.PNAS109:13710–15[Google Scholar]
    114. WatersPD,DuffyB,FrostCJ,DelbridgeML,GravesJAM.113. 2001. The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80–130 million years ago.Cytogenet. Cell Genet.92:74–79[Google Scholar]
    115. WellerSG,SakaiAK.114. 1991. The genetic basis of male sterility inSchiedea (Caryophyllaceae), an endemic Hawaiian genus.Heredity67:265–73[Google Scholar]
    116. WestergaardM.115. 1958. The mechanism of sex determination in dioecious plants.Adv. Genet.9:217–81[Google Scholar]
    117. WilbyAS,ParkerJS.116. 1986. Continuous variation in Y-chromosome structure ofRumex acetosa.Heredity57:247–54[Google Scholar]
    118. WillisJH.117. 1999. The contribution of male sterility mutations to inbreeding depression inMimulus guttatus.Heredity83:337–46[Google Scholar]
    119. WuM,MoorePH.118. 2015. The evolutionary tempo of sex chromosome degradation inCarica papaya.J. Mol. Evol.80:265–77[Google Scholar]
    120. YamatoKT,IshizakiK,FujisawaM,OkadaS,NakayamaS.119.  et al.2007. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system.PNAS104:6472–77[Google Scholar]
    121. ZhouQ,ZhangJ,BachtrogD,AnN,HuangQ.120.  et al.2014. Complex evolutionary trajectories of sex chromosomes across bird taxa.Science346:1332[Google Scholar]
    122. ZimmermanJK.121. 1991. Ecological correlates of labile sex expression in the orchidCatasetum viridiflavum.Ecology72:597–608[Google Scholar]
    /content/journals/10.1146/annurev-arplant-043015-111911
    Loading
    Plant Sex Chromosomes
    Annual Review of Plant Biology67, 397 (2016);https://doi.org/10.1146/annurev-arplant-043015-111911
    /content/journals/10.1146/annurev-arplant-043015-111911
    /content/journals/10.1146/annurev-arplant-043015-111911
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/arplant
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-arplant-043015-111911
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. AkagiT,HenryIM,TaoR,ComaiL.1. 2014. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons.Science346:646–50[Google Scholar]
    2. Al-SaghirM,BakerSA,PusokR.2. 2014. Effective method to resolve the chromosome numbers inPistacia species (Anacardiaceae).Am. J. Plant Sci.5:2913–16[Google Scholar]
    3. Alstrom-RapaportC,LascouxM,WangYC,RobertsG,TuskanGA.3. 1998. Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.).J. Hered.89:44–49[Google Scholar]
    4. BachtrogD.4. 2008. The temporal dynamics of processes underlying Y chromosome degeneration.Genetics179:1513–25[Google Scholar]
    5. BellottD,HughesJF,SkaletskyH,BrownLG,PyntikovaT.5.  et al.2014. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators.Nature508:494–99[Google Scholar]
    6. BennetzenJL.6. 2000. The many hues of plant heterochromatin.Genome Biol.1:reviews107.1–4[Google Scholar]
    7. BennetzenJL,WangH.7. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes.Annu. Rev. Plant Biol.65:505–30[Google Scholar]
    8. BergeroR,CharlesworthD.8. 2011. Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system.Curr. Biol.21:1470–74[Google Scholar]
    9. BergeroR,ForrestA,KamauE,CharlesworthD.9. 2007. Evolutionary strata on the X chromosomes of the dioecious plantSilene latifolia: evidence from new sex-linked genes.Genetics175:1945–54[Google Scholar]
    10. BergeroR,QiuS,CharlesworthD.10. 2015. Gene loss from a plant sex chromosome system.Curr. Biol.25:1234–40[Google Scholar]
    11. BergeroR,QiuS,ForrestA,BorthwickH,CharlesworthD.11. 2013. Expansion of the pseudoautosomal region and ongoing recombination suppression in theSilene latifolia sex chromosomes.Genetics194:673–86[Google Scholar]
    12. BlavetN,BlavetH,MuyleA,KäferJ,CeganR.12.  et al.2015. Identifying new sex-linked genes through BAC sequencing in the dioecious plantSilene latifolia.BMC Genomics16:546[Google Scholar]
    13. BullJJ.13. 1983.Evolution of Sex Determining Mechanisms Menlo Park, CA: Benjamin/Cummings[Google Scholar]
    14. BuzekJ,KoutnikovaH,HoubenA,RihaK,JanousekB.14.  et al.1997. Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plantMelandrium album.Chromosome Res.5:57–65[Google Scholar]
    15. CermakT,KubatZ,HobzaR,KoblizkovaA,WidmerA.15.  et al.2008. Survey of repetitive sequences inSilene latifolia with respect to their distribution on sex chromosomes.Chromosome Res.16:961–76[Google Scholar]
    16. CharcharFJ,SvartmanM,El-MogharbelN,VenturaM,KirbyP.16.  et al.2003. Complex events in the evolution of the human pseudoautosomal region 2 (PAR2).Genome Res.13:281–86[Google Scholar]
    17. CharlesworthB.17. 2009. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation.Nat. Rev. Genet.10:195–205[Google Scholar]
    18. CharlesworthB,CharlesworthD.18. 1978. A model for the evolution of dioecy and gynodioecy.Am. Nat.112:975–97[Google Scholar]
    19. CharlesworthB,CharlesworthD.19. 2000. The degeneration of Y chromosomes.Philos. Trans. R. Soc. Lond. B355:1563–72[Google Scholar]
    20. CharlesworthB,SniegowskiP,StephanW.20. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes.Nature371:215–20[Google Scholar]
    21. CharlesworthD.21. 1984. Androdioecy and the evolution of dioecy.Biol. J. Linn. Soc.23:333–48[Google Scholar]
    22. CharlesworthD.22. 1985. Distribution of dioecy and self-incompatibility in angiosperms.Evolution: Essays in Honour of John Maynard Smith PJ Greenwood, M Slatkin237–68 Cambridge, UK: Cambridge Univ. Press[Google Scholar]
    23. CharlesworthD.23. 1993. Save the male.Curr. Biol.3:155–57[Google Scholar]
    24. CharlesworthD.24. 2004. Plant evolution: modern sex chromosomes.Curr. Biol.14:R271–73[Google Scholar]
    25. CherifE,ZehdiA,CastelloK,ChabrillangeN,AbdoulkaderS.25.  et al.2012. Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm.New Phytol.197:409–15[Google Scholar]
    26. ChibalinaM,FilatovD.26. 2011. Plant Y chromosome degeneration is retarded by haploid purifying selection.Curr. Biol.21:1475–79[Google Scholar]
    27. CortezD,MarinR,Toledo-FloresD,FroidevauxL,LiechtiA.27.  et al.2014. Origins and functional evolution of Y chromosomes across mammals.Nature508:488–93[Google Scholar]
    28. CostichDE,MeagherTR,YurkowEJ.28. 1991. A rapid means of sex identification inSilene latifolia by use of flow cytometry.Plant Mol. Biol. Rep.9:359–70[Google Scholar]
    29. CrossmanA,CharlesworthD.29. 2013. Breakdown of dioecy: models where males acquire cosexual functions.Evolution68:426–40[Google Scholar]
    30. CulleyTM,WellerSG,SakaiAK,RankinAE.30. 1999. Inbreeding depression and selfing rates in a self-compatible, hermaphroditic species,Schiedea membranaceae (Caryophyllaceae).Am. J. Bot.86:980–87[Google Scholar]
    31. DaiX,HuQ,CaiQ,FengK,YeN.31.  et al.2014. The willow genome and divergent evolution from poplar after the common genome duplication.Cell Res.24:1274–77[Google Scholar]
    32. DarwinCR.32. 1877.The Different Forms of Flowers on Plants of the Same Species London: John Murray[Google Scholar]
    33. DaveyJW,HohenloherPA,EtterPD,BooneJQ,CatchenJM,BlaxterML.33. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing.Nat. Rev. Genet.12:499–510[Google Scholar]
    34. DivashukM,AlexandrovO,KroupinP,KarlovG.34. 2011. Molecular cytogenetic mapping ofHumulus lupulus sex chromosomes.Cytogenet. Genome Res.134:213–19[Google Scholar]
    35. DivashukM,AlexandrovO,RazumovaO,KirovI,KarlovG.35. 2014. Molecular cytogenetic characterization of the dioeciousCannabis sativa with an XY chromosome sex determination system.PLOS ONE9:e85118[Google Scholar]
    36. DorkenME,BarrettSCG.36. 2004. Sex determination and the evolution of dioecy from monoecy inSagittaria latifolia (Alismataceae).Proc. R. Soc. Lond. B271:213–19[Google Scholar]
    37. DorkenME,PannellJ.37. 2009. Hermaphroditic sex allocation evolves when mating opportunities change.Curr. Biol.19:514–17[Google Scholar]
    38. EckhartVM.38. 1992. Resource compensation and the evolution of gynodioecy inPhacelia linearis (Hydrophyllaceae).Evolution46:1313–28[Google Scholar]
    39. FechterI,HausmannL,DaumM,SoerensenT,ViehoverP.39.  et al.2012. Candidate genes within a 143 kb region of the flower sex locus inVitis.Mol. Genet. Genomics287:247–59[Google Scholar]
    40. FraserL,TsangG,DatsonP,SilvaND,HarveyCF.40.  et al.2009. A gene-rich linkage map in the dioecious speciesActinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes.BMC Genomics10:102[Google Scholar]
    41. FujitaN,ToriiC,IshiiK,AonumaW,ShimizuY.41.  et al.2011. Narrowing down the mapping of plant sex-determination regions using new Y chromosome-specific markers and heavy-ion beam irradiation-induced Y deletion mutants inSilene latifolia.G32:271–78[Google Scholar]
    42. FujitoS,TakahataS,SuzukiR,HoshinoY,OhmidoN,OnoderaY.42. 2015. Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinctSpinacia species.G35:1663–73[Google Scholar]
    43. GambleT,CoryellJ,EzazT,LynchJ,ScantleburyDP,ZarkowerD.43. 2015. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems.Mol. Biol. Evol.32:1296–309[Google Scholar]
    44. GeraldesA,PangJ,ThiessenN,CezardT,MooreR.44.  et al.2015. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus).Mol. Ecol.24:3243–56[Google Scholar]
    45. GlaweGA,de JongTJ.45. 2009. Complex sex determination in the stinging nettleUrtica dioica.Evol. Ecol.23:635–49[Google Scholar]
    46. Grabowska-JoachimiakA,JoachimiakA.46. 2002. C-banded karyotypes of twoSilene species with heteromorphic sex chromosomes.Genome45:243–52[Google Scholar]
    47. Grabowska-JoachimiakA,KulaA,KsiążczykT,ChojnickaJ,SliwinskaE,JoachimiakA.47. 2015. Chromosome landmarks and autosome-sex chromosome translocations inRumex hastatulus, a plant with XX/XY1Y2 sex chromosome system.Chromosome Res.23:187–97[Google Scholar]
    48. Grabowska-JoachimiakA,MosiolekM,LechA,GóralskiG.48. 2011. C-Banding/DAPI and in situ hybridization reflect karyotype structure and sex chromosome differentiation inHumulus japonicus Siebold & Zucc.Cytogenet. Genome Res.132:203–11[Google Scholar]
    49. GschwendAR,YuQ,TongEJ,ZengF,HanJ.49.  et al.2012. Rapid divergence and expansion of the X chromosome in papaya.PNAS109:13716–21[Google Scholar]
    50. HobzaR,LengerovaM,SvobodaJ,KejnovskyE,VyskotB.50. 2006. An accumulation of tandem DNA repeats on the Y chromosome inSilene latifolia during early stages of sex chromosome evolution.Chromosoma115:376–82[Google Scholar]
    51. HollisterJD,GautBS.51. 2009. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression.Genome Res.19:1419–28[Google Scholar]
    52. HouJ,YeN,ZhangD,ChenY,FangL.52.  et al.2015. Different autosomes evolved into sex chromosomes in the sister genera ofSalix andPopulus.Sci. Rep.5:09076[Google Scholar]
    53. HoughJ,HollisterJD,WangW,BarrettSCH,OttoSP.53. 2014. Genetic degeneration of old and young Y chromosomes in the flowering plantRumex hastatulus.PNAS111:7713–18[Google Scholar]
    54. HoughJ,ImmlerS,BarrettSCH,OttoSP.54. 2013. Evolutionarily stable sex ratios and mutation load.Evolution67:1915–25[Google Scholar]
    55. HowellEC,ArmstrongS,FilatovD.55. 2009. Evolution of neo-sex chromosomes inSilene diclinis.Genetics182:1109–15[Google Scholar]
    56. IoveneM,YuQ,MingR,JiangJ.56. 2015. Evidence for emergence of sex-determining gene(s) in a centromeric region inVasconcellea parviflora.Genetics199:413–21[Google Scholar]
    57. JaillonO,AuryJ,NoelB,PolicritiA,ClepeC.57.  et al.2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.Nature449:463–67[Google Scholar]
    58. JamilenaM,MariottiB,ManzanoS.58. 2008. Plant sex chromosomes: molecular structure and function.Cytogenet. Genome Res.120:255–64[Google Scholar]
    59. KafkasS,KhodaeiaminjanM,GüneyM,KafkasE.59. 2015. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination inPistacia vera L.BMC Genomics16:98[Google Scholar]
    60. KimuraM,OhtaT.60. 1971.Theoretical Topics in Population Genetics Princeton, NJ: Princeton Univ. Press[Google Scholar]
    61. KohnJR.61. 1988. Why be female?.Nature335:431–33[Google Scholar]
    62. KohnJR.62. 1989. Sex ratio, seed production, biomass allocation, and the cost of male function inCucurbita foetidissima HBK (Cucurbitaceae).Evolution43:1424–34[Google Scholar]
    63. LahnBT,PageDC.63. 1999. Four evolutionary strata on the human X chromosome.Science286:964–67[Google Scholar]
    64. LaporteV,CharlesworthB.64. 2002. Effective population size and population subdivision in demographically structured populations.Genetics162:501–19[Google Scholar]
    65. LengerovaM,KejnovskyE,HobzaR,MacasJ,GrantSR,VyskotB.65. 2004. Multicolor FISH mapping of the dioecious model plant,Silene latifolia.Theor. Appl. Genet.108:1193–99[Google Scholar]
    66. LiuZ,MoorePH,MaH,AckermanCM,RagibaM.66.  et al.2004. A primitive Y chromosome in papaya marks the beginning of sex chromosome evolution.Nature427:348–52[Google Scholar]
    67. LloydDG.67. 1975. The maintenance of gynodioecy and androdioecy in angiosperms.Genetica45:325–39[Google Scholar]
    68. LloydDG.68. 1976. The transmission of genes via pollen and ovules in gynodioecious angiosperms.Theor. Pop. Biol.9:299–316[Google Scholar]
    69. LloydDG.69. 1980. The distributions of gender in four angiosperm species illustrating two evolutionary pathways to dioecy.Evolution34:123–34[Google Scholar]
    70. MartinA,TroadecC,BoualemA,RajabM,FernandezR.70.  et al.2009. A transposon-induced epigenetic change leads to sex determination in melon.Nature461:1135–38[Google Scholar]
    71. MatsunagaS,KawanoS,MichimotoH,HigashiyamaT,NakaoS.71.  et al.1999. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y sex chromosome DNA in a dioecious plant,Silene latifolia.Plant Cell Physiol.40:60–68[Google Scholar]
    72. McDanielSF,NeubigKM,PaytonAC,QuatranoRS,CoveDJ.72. 2013. Recent gene-capture on the UV sex chromosomes of the mossCeratodon purpureus.Evolution67:2811–22[Google Scholar]
    73. MichalovovaM,KubatZ,HobzaR,VyskotB,KejnovskyE.73. 2015. Fully automated pipeline for detection of sex linked genes using RNA-Seq data.BMC Bioinform.16:78[Google Scholar]
    74. MingR,BendahmaneA,RennerS.74. 2011. Sex chromosomes in land plants.Annu. Rev. Plant Biol.62:485–514[Google Scholar]
    75. MrackovaM,NicolasM,HobzaR,NegrutiuI,MonégerF.75.  et al.2008. Independent origin of sex chromosomes in two species of the genusSilene.Genetics179:1129–33[Google Scholar]
    76. MuyleA,ZempN,DeschampsC,MoussetS,WidmerA,MaraisG.76. 2012. Rapid de novo evolution of X chromosome dosage compensation inSilene latifolia, a plant with young sex chromosomes.PLOS Biol.10:e1001308[Google Scholar]
    77. Navajas-PérezR,de la HerránR,López GonzálezG,JamilenaM,LozanoR.77.  et al.2005. The evolution of reproductive systems and sex-determining mechanisms withinRumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data.Mol. Biol. Evol.22:1929–39[Google Scholar]
    78. ObbardDJ,HarrisSA,BuggsRJA,PannellJR.78. 2006. Hybridization, polyploidy, and the evolution of sexual systems inMercurialis (Euphorbiaceae).Evolution60:1801–15[Google Scholar]
    79. OhnishiO.79. 1985. Population genetics of cultivated buckwheat,Fagopyrum esculentum Moench. III. Frequency of sterility mutants in Japanese populations.Jpn. J. Genet.60:391–404[Google Scholar]
    80. PakullB,GroppeK,MecucciF,GaudetM,SabattiM,FladungM.80. 2011. Genetic mapping of linkage group XIX and identification of sex-linked SSR markers in aPopulus tremula ×Populus tremuloides cross.Can. J. For. Res.41:245–53[Google Scholar]
    81. PalaI,NaurinS,StervanderM,HasselquistD,BenschS,HanssonB.81. 2012. Evidence of a neo-sex chromosome in birds.Heredity108:264–72[Google Scholar]
    82. PannellJR,DorkenME,PujolB,BerjanoR.82. 2008. Gender variation and transitions between sexual systems inMercurialis annua (Euphorbiaceae).Int. J. Plant Sci.169:129–39[Google Scholar]
    83. PapadopulosAST,ChesterM,RidoutK,FilatovDA.82a. 2015. Rapid Y degeneration and dosage compensation in plant sex chromosomes.PNAS112:13021–26[Google Scholar]
    84. ParkerJS.83. 1990. Sex-chromosome and sex differentiation in flowering plants.Chromosomes Today10:187–98[Google Scholar]
    85. PetersonBK,WeberJN,KayEH,FisherHS,HoekstraHE.84. 2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species.PLOS ONE7:e37135[Google Scholar]
    86. PicqS,SantoniS,LacombeT,LatreilleM,WeberA.85.  et al.2014. A small XY chromosomal region explains sex determination in wild dioeciousV. vinifera and the reversal to hermaphroditism in domesticated grapevines.BMC Plant Biol.14:229[Google Scholar]
    87. PolicanskyD.86. 1982. Sex change in plants and animals.Annu. Rev. Ecol. Syst.13:471–96[Google Scholar]
    88. PucholtP,Ronnberg-WastljungA-C,BerlinS.87. 2015. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.).Heredity114:575–83[Google Scholar]
    89. RejónCR,JamilenaM,RamosMG,ParkerJS,RejónMR.88. 1994. Cytogenetic and molecular analysis of the multiple sex-chromosome system ofRumex acetosa.Heredity72:209–15[Google Scholar]
    90. RennerS.89. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database.Am. J. Bot.101:1588–96[Google Scholar]
    91. RiesebergLH,HansonMA,PhilbrickCT.90. 1992. Androdioecy is derived from dioecy in Datiscaceae: evidence from restriction site mapping of PCR amplified chloroplast DNA.Syst. Bot.17:324–36[Google Scholar]
    92. SakaiAK,WellerSG,ChenML,ChouSY,TasanontC.91. 1997. Evolution of gynodioecy and maintenance of females: the role of inbreeding depression, outcrossing rates, and resource allocation inSchiedea adamantis (Caryophyllaceae).Evolution51:724–36[Google Scholar]
    93. SakaiAK,WellerSG,CulleyTM,CampbellDR,Dunbar-WallisAK,AndresA.92. 2008. Sexual dimorphism and the genetic potential for evolution of sex allocation in the gynodioecious plant,Schiedea salicaria.J. Evol. Biol.21:1–17[Google Scholar]
    94. SayresM,MakovaK.93. 2013. Gene survival and death on the human Y chromosome.Mol. Biol. Evol.30:781–87[Google Scholar]
    95. ScottiI,DelphLF.94. 2006. Selective trade-offs and sex-chromosome evolution inSilene latifolia.Evolution60:1793–800[Google Scholar]
    96. SegerJ,EckhartVM.95. 1996. Evolution of sexual systems and sex allocation in annual plants when growth and reproduction overlap.Proc. R. Soc. Lond. B263:833–41[Google Scholar]
    97. SemerikovV,LagercrantzU,TsarouhasV,Ronnberg-WastljungA,Alstrom-RapaportC,LascouxM.96. 2003. Genetic mapping of sex-linked markers inSalix viminalis L.Heredity91:293–99[Google Scholar]
    98. ShannonR,HolsingerK.97. 2007. The genetics of sex determination in stinging nettle (Urtica dioica).Sex. Plant Reprod.20:35–43[Google Scholar]
    99. ShibataF,HizumeM,KurokiY.98. 2000. Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant,Rumex acetosa.Chromosome Res.8:229–36[Google Scholar]
    100. SlancarovaV,ZdanskaJ,JanousekB,TalianovaM,ZschachC.99.  et al.2013. Evolution of sex determination systems with heterogametic males and females inSilene.Evolution67:12[Google Scholar]
    101. SmedsL,WarmuthV,BolivarP,UebbingS,BurriR.100.  et al.2015. Evolutionary analysis of the female-specific avian W chromosome.Nat. Commun.6:7330[Google Scholar]
    102. SousaA,FuchsJ,RennerSS.101. 2012. Molecular cytogenetics (FISH, GISH) ofCoccinia grandis: a ca. 3 myr-old species of Cucurbitaceae with the largest Y/autosome divergence in flowering plants.Cytogenet. Genome Res.139:107–18[Google Scholar]
    103. SpiglerRB,LewersKS,AshmanT-L.102. 2011. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome.Evolution65:1114–26[Google Scholar]
    104. SpiglerRB,LewersKS,MainD,AshmanT-L.103. 2008. Genetic mapping of sex determination in a wild strawberry,Fragaria virginiana, reveals earliest form of sex chromosome.Heredity101:507–17[Google Scholar]
    105. SteflovaP,TokanV,VogelI,LexaM,MacasJ.104.  et al.2013. Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plantRumex acetosa.Genome Biol. Evol.5:769–82[Google Scholar]
    106. TanurdzicM,BanksJA.105. 2004. Sex-determining mechanisms in land plants.Plant Cell16:S61–71[Google Scholar]
    107. Telgmann-RauberA,JamsariA,KinneyMS,PiresJC,JungC.106. 2007. Genetic and physical maps around the sex-determiningM-locus of the dioecious plant asparagus.Mol. Genet. Genomics278:221–34[Google Scholar]
    108. TennessenJ,GovindarajuluR,ListonA,AshmanT.107. 2013. Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry,Fragaria vesca ssp.bracteata (Rosaceae).G33:1341–51[Google Scholar]
    109. ToricesR,MéndezM,GómezJ.108. 2011. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms.New Phytol.190:234–48[Google Scholar]
    110. TuskanG,YinT,DiFazioS,Faivre-RampantP,GaudetM.109.  et al.2012. The obscure events contributing to the evolution of an incipient sex chromosome inPopulus: a retrospective working hypothesis.Tree Genet. Genomes8:559–71[Google Scholar]
    111. UenoH,UrasakiN,NatsumeS,YoshidaK,TaroraK.110.  et al.2015. Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees.Mol. Genet. Genomics290:661–70[Google Scholar]
    112. VanBurenR,ZengF,ChenC,ZhangJ,WaiC.111.  et al.2015. Origin and domestication of papaya Yh chromosome.Genome Res.25:524–33[Google Scholar]
    113. WangJ,NaJ,YuQ,GschwendAR,HanJ.112.  et al.2012. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.PNAS109:13710–15[Google Scholar]
    114. WatersPD,DuffyB,FrostCJ,DelbridgeML,GravesJAM.113. 2001. The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80–130 million years ago.Cytogenet. Cell Genet.92:74–79[Google Scholar]
    115. WellerSG,SakaiAK.114. 1991. The genetic basis of male sterility inSchiedea (Caryophyllaceae), an endemic Hawaiian genus.Heredity67:265–73[Google Scholar]
    116. WestergaardM.115. 1958. The mechanism of sex determination in dioecious plants.Adv. Genet.9:217–81[Google Scholar]
    117. WilbyAS,ParkerJS.116. 1986. Continuous variation in Y-chromosome structure ofRumex acetosa.Heredity57:247–54[Google Scholar]
    118. WillisJH.117. 1999. The contribution of male sterility mutations to inbreeding depression inMimulus guttatus.Heredity83:337–46[Google Scholar]
    119. WuM,MoorePH.118. 2015. The evolutionary tempo of sex chromosome degradation inCarica papaya.J. Mol. Evol.80:265–77[Google Scholar]
    120. YamatoKT,IshizakiK,FujisawaM,OkadaS,NakayamaS.119.  et al.2007. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system.PNAS104:6472–77[Google Scholar]
    121. ZhouQ,ZhangJ,BachtrogD,AnN,HuangQ.120.  et al.2014. Complex evolutionary trajectories of sex chromosomes across bird taxa.Science346:1332[Google Scholar]
    122. ZimmermanJK.121. 1991. Ecological correlates of labile sex expression in the orchidCatasetum viridiflavum.Ecology72:597–608[Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-arplant-043015-111911
    10.1146/annurev-arplant-043015-111911
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp